
Query languages 2 (NDBI006)

Expressive power - part 2

J. Pokorný

MFF UK

Query languages 2 – Expressive power 2 2

Recursive DATALOG

Ex.:

In EDB there is a relation
WORKS_FOR(Name_of_w,Chairman)

SUB_SUP(x,y):-WORKS_FOR(x,y)

SUB_SUP(x,y):-WORKS_FOR(x,z), SUB_SUP(z,y)

The following holds:

WORKS_FOR SUB_SUP

(WORKS_FOR * SUB_SUP)[1,3] SUB_SUP

SUB_SUP* is a transitive closure of the relation WORKS_FOR*

Query languages 2 – Expressive power 2 3

Recursive DATALOG

 SUB_SUP* is a solution of equation

(WORKS_FOR * SUB_SUP)[1,3]
WORKS_FOR = SUB_SUP

More generally:

For IDB there is a system of equations

Ei(P1,…,Pn) = Pi i=1,…,n

The solution of the system depends on EDB and is its

fixpoint.

Remark: Since all used operations of AR are additive,

the fixpoint exists and even the least one.

Query languages 2 – Expressive power 2 4

Recursive DATALOG
Algorithm: (Naive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: least fixpoint P1*,…,Pn*

Method: We use a function eval(E) evaluating a relational
expression E.

for i:=1 to n do Pi := ;

repeat for i:=1 to n do

Qi := Pi; {store old values}

for i:=1 to n do

Pi := eval(Ei(P1,…,Pn))

until Pi = Qi for all i 1,n

Remark: It is so-called Gauss-Seidel method.

Query languages 2 – Expressive power 2 5

Recursive DATALOG

Statement: Evaluating algorithm stops and returns the least
fixpoint of the system of datalogical equations.

Proof:

(1) follows from the fact that eval is monotonic and Pi* are
generated from a finite number of elements.

(2) follows from that Pi* is solution of the system of equations
and, moreover, it is a part of each solution for each i. It can
be proved by induction on the number of iterations. The start
is from, which is a part of each solution.

Disadvantages:

creating duplicate tuples,

creating unnecessarily large relations, when we want,
e.g., only a selection of the tuples from Pi* in the result.

Query languages 2 – Expressive power 2 6

Recursive DATALOG

Method of differences

Idea: in the (k+1). step of the iteration we do not calculate Pi
k+1,

but Di
k+1 = Pi

k+1 - Pi
k, i.e.

Pi
k+1 = Pi

k Di
k+1 and thus

Pi
k+1 = Ei(Pi

k-1) Ei(Di
k),

since Ei is additive.

The change of eval for Pi is given by on rule:

pincreval(Ei(P1,…,Pn))

= j=1..n eval(Ei(…,Pj-1,Pj,Pj+1,…))

Query languages 2 – Expressive power 2 7

Recursive DATALOG

The change of eval for Pi given by s rules:

increval(Pk;P1,…,Pn))

= j=1..s pincreval(Ej(P1,…,Pn))

Ex.:

increval(S’) =

increval(C) =

(F(X1,X)*F(X2,Y)* S’(X1,X2))[X,Y]

(F(X1,X)*F(X2,Y)* C(X1,X2))[X,Y]

increval(R) =

S’(X,Y) (R(X,Y)*F(Z,Y))[X,Y]
(R(Z,Y)*F(Z,X))[X,Y]

Query languages 2 – Expressive power 2 8

Recursive DATALOG

Algorithm: (Seminaive) evaluation

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: least fixpoint P1*,…,Pn*

Method: 1 use the function eval and on differences increval
for i:=1 to n do

Pi := eval (Ei (,…,));

repeat for i:=1 to n do Qi := Pi; {store old diferences}

for i:=1 to n do begin

Pi := increval(Ei;(Q1,…,Qn, P1,…, Pn))

Pi := Pi - Pi {delete duplicates}

end ;

for i:=1 to n do Pi := Pi Pi

until Pi = for all i 1,n

Query languages 2 – Expressive power 2 9

Recursive DATALOG

Statement: The evaluating algorithm stops and

 returns the LFP of the system of datalogical equations,

 LFP corresponds just to those facts, which are provable
from EDB by rules from IDB.

Ex.: R(x,y) :- P(x,y)

R(x,y) :- R(x,z), R(z,y)

LFP R* is a solution of equation

R(X,Y) = P(X,Y) (R(X,Z)*R(Z,Y))[X,Y] (*)

 if P* = {(1,2), (2,3)}, then

R* = {(1,2), (2,3), (1,3)} is the LFP, whose elements
correspond to all derivable facts,

R* is also a minimal model.

Query languages 2 – Expressive power 2 10

Recursive DATALOG

 If (1,1) R*, then R(1,1) :- R(1,1),R(1,1), so also R* =
{(1,1),(1,2), (2,3), (1,3)} is a model and it is a solution
of equation (*).

 If (3,1) R*, then {(1,2), (2,3), (1,3), (3,1)}

is not a model and not a solution of the equation (*).

Let P* = ; R* = {(1,2)}.

then R* is a model, but it is not a solution the equation
(*).

Query languages 2 – Expressive power 2 11

Use of recursive Datalog in web services

Assumption: web sources with querying, which

enables to formulate always a subset of

conjunctive queries.

Ex.: Amazon – we enter an author name and

obtain the list of his/her books. We can not ask

for a list of all available books.

Ex.: Travel service with source relations R:

flights(start, end), trains(start, end),

buses(start, end), shuttle(start, end)

Query languages 2 – Expressive power 2 12

Use of recursive Datalog in web services

Datalogical program extends possibilities of

conjunctive queries by generating views with

recursion, e.g. LP

ans(a, b) :- flights(a,c), ind(c,b)

ind(c,b) :- flights(c,b), buses(b, Praha)

ind(c,b) :- flights(c,c’), ind(c’,b)

Remark: However, we can not find out from LP

anyway whether Prague is accessible from

somewhere with air followed by a shuttle service.

Query languages 2 – Expressive power 2 13

Extension of Datalog by negation

Ex.: NSR(x,y) … x and y are relatives, but x is not a sibling of y

NSR(x,y) :- R(x,y), S’(x,y)

NSR* = R* - S’*

or

NSR(X,Y) = R(X,Y) * S’(X,Y), where S’ is the complement to
a suitable universe.

Approach:

We allow a negation in bodies of rules, i.e. negative
literals between L1,…,Ln

safe rules must have limited variables, i.e. we forbid
variables, which are in a negative literal and are not
limited by the original definition.

Query languages 2 – Expressive power 2 14

Extension of Datalog by negation

Problem:

The solution of a logical program does not have to be
LFP, but a number of MFPs.

Ex.: BORING(x) :- INTERESTING(x), MAN(x)

INTERESTING(x) :- BORING(x), MAN(x)

B(X) = M(X) - I(X)

I(X) = M(X) - B(X)

Solution: Let M = {John},

M1: {BORING* = {John}, INTERESTING* = }

M2: {INTERESTING* = {John}, BORING* = }

Query languages 2 – Expressive power 2 15

Stratified DATALOG

 It is not true, that one model is less than the second
one,

 There is no model less than M1 or M2

 we have two minimal models

Intuition: a constraint of the negation – if it is applied ,
then to a known relation, i.e. relations have to be first
defined (maybe recursively) without negation. Then a
new relation can be defined by them without or with
negations.

Df.: Definition of a virtual relation S is a set of all rules,
which have S in head.

Df.: S occurs in a rule positively (negatively), if it is
contained in a positive (negative) literal.

Query languages 2 – Expressive power 2 16

Stratified DATALOG

Df: Program P is stratifiable, if there is a partition P =
P1 … Pn (Pi are mutually disjunctive) such that
for each i <1,n> the following holds:

1. If the relational symbol S occurs positively in a rule
from Pi, then the definition of S is contained in ji Pj

2. If the relational symbol S occurs negatively in a rule
from Pi, then the definition of S is contained in j<i Pj

(P1 can be)

Df.: Partition P1,…, Pn is called a stratification P, each Pi

is a stratum.

Remark: stratum … layer

strata … layers

Query languages 2 – Expressive power 2 17

Stratified DATALOG

Ex.: Program P(x) :- Q(x) (1)

R(1) (2)

Q(x) :- Q(x), R(x) (3)

is stratifiable. Stratification: {(2)} {(3)} {(1)}

Program P(x) :- Q(x)

Q(x) :- P(x)

is not stratifiable.

Df.: Let (U,V) is an edge in a dependency graph. (U,V)

is positive (negative), if there is a rule V:- … U … and

U occurs there positively (negatively).

Remark: An edge can be positive and negative as well.

Query languages 2 – Expressive power 2 18

Stratified DATALOG

Statement: Program P is stratifiable if and only if its
dependency graph contain no cycle with a negative edge.

Proof: each virtual relation P has assigned the index of

stratum, in which it is defined. Thus, (P,Q) is positive

index(P) index(Q)

(P,Q) is negative index(P) < index(Q)

If there was a cycle with a negative edge, there would be a
node X, where index(X) < index(X), which is contradiction.

 We find strongly connected components in the dependency
graph, then perform the graph’s condensation, which is
acyclic, and assign a topological ordering of components.

Query languages 2 – Expressive power 2 19

Stratified DATALOG

5 -

4

1

2

3

6

-

other edges are +

Each component defines one stratum, ordering of component
defines their numbering. Since negative edges are at most
between components, the rules associated to a component
create a stratum.

Ex.:

Query languages 2 – Expressive power 2 20

Stratified DATALOG

Assumptions: rules are safe, rectified.

adom … union of constants from EDB and IDB

 Q(x1,…,xn) is transformed to (adom ... adom) - Q*

Algorithm: Evaluation of a stratifiable program

Input: EDB = {R1,…,Rk}, IDB = {rules for P1,…,Pn},

Output: minimal fixpoint P1*,…,Pn*

method: Find a stratification of the program; calculate adom;

for i:=1 to s do {s strata}

begin {for stratum i there are relations calculated from strata j, where j<i}

if Q in stratum i is positive then use Q;

if Q in stratum i is is negative then use adomn - Q;

use algorithm for calculation of LFP

end

Query languages 2 – Expressive power 2 21

Stratified DATALOG

Statement: Evaluating algorithm stops and returns a

MFP of the system of datalogical equations.

Proof: FP follows by induction on the number of strata.

Remark: LP of the stratified DATALOG can have

more MFPs.

Query languages 2 – Expressive power 2 22

Stratified DATALOG

EDB: Parts(part, subpart, quantity) IDB

tricycle bike, 3 Large(P) :- Parts(P,S,Q), Q > 2

tricycle frame 1 Small(P) :- Parts(P,S,Q), Large(P)

frame saddle 1

frame pedal 2

bike rim 1

bike tire 1

tire valve 1

tire inner tube 1

Stratification and resulting MFP: Stratum 0: Parts

Stratum 1: Large Large = {tricycle}

Stratum 2: Small Small = {frame, bike, tire}

But: relations Small={tricycle, frame, bike, tire}, Large={} provide other MFP of this

program, although it is not the result of a stratified evaluation.

Query languages 2 – Expressive power 2 23

Stratified DATALOG

Remark: Stratifiable program has generally more stratifications.

They are equivalent, i.e. their evaluation leads to the same

MFP (Apt, 1986).

Statement: Non-recursive Datalog programs express just those

queries, which are expressible by a monotonic subset of AR.

Remark: positive relational algebra ARP {, , [], }.

Query languages 2 – Expressive power 2 24

Stratified DATALOG

stratified DATALOG

DATALOG

ARP

AR

Query languages 2 – Expressive power 2 25

Relational algebra and DATALOG

Statement: Non-recursive DATALOG programs express just

those queries, which are expressible in AR.

Proof: by induction on the number of operators in E

1. of operators: E R R is from EDB

E const. relation

then for each tuple add p(a1,…,an) into EDB. Nothing into IDB.

2. E E1 E2

By induction hypothesis, there are programs for E1 and E2

(associated predicates are e1 and e2)

e(x1,…,xn) :- e1(x1,…,xn)

e(x1,…,xn) :- e2(x1,…,xn)

Query languages 2 – Expressive power 2 26

Relational algebra and DATALOG

3. E E1 - E2

e(x1,…,xn) :- e1(x1,…,xn), e2(x1,…,xn)

4. E E1[i1,…,ik]

e(xi1,…,xik) :- e1(x1,…,xn),

5. E E1 E2

e(x1,…,xn+m) :- e1(x1,…,xn), e2(xn+1,…,xn+m)

5. E E1()

e(x1,…,xn) :- e1(x1,…,xn), xij= xik or xij= a

 from non-recursiveness: topological ordering + adomn – Q* for
negation. For each P defined in IDB it is possible to construct
an expression in AR . By substitutions (according to ordering)
we obtain relational expressions depending only on relations
from EDB.

Query languages 2 – Expressive power 2 27

Relational algebra and DATALOG

Ex.: Construction of LP from a relational expression

CAN_BUY(X,Y)

IS_LIKED(X,Y) - (DEBTOR(X) IS_LIKED(X,Y)[Y])

EDB: IS_LIKED(X,Y) … person X likes the thing Y

DEBTOR(X) … person X is a DEBTOR

denote DEBTOR(X) IS_LIKED(X,Y)[Y] as
D_A_COUPLE(X,Y).

Then a datalogical program for CAN_BUY is:

IS_ADMIRED(y) :- IS_LIKED(x,y)

D_A_COUPLE(x,y):-DEBTOR(x), IS_ADMIRED(y)

CAN_BUY(x,y) :- IS_LIKED(x,y), D_A_COUPLE(x,y)

Query languages 2 – Expressive power 2 28

Relational algebra and DATALOG

Ex.: Construction of a relational expression from LP

EDB: R*, S*, adom R[X] R[Y] S

P(x) :- R(x,y), S(y)

Q(z) :- S(z), P(z)

P(X) (R(X,Y) * {adom - S}(Y))[X]

Q(Z) S(Z) * {adom - P}(from) (S {adom - P})(from)

Since S adom, salary Q(Z) S(Z) - P(Z). After substitution of
P

Q(Z) S(Z) - (R(Z,Y) * {adom - S}(Y))[from]

Remark: adom can be replaced by R[Y]

R

P

Q

S

Query languages 2 – Expressive power 2 29

Closed World Assumption (1)

Remark: logical program leads to one resulted relation.

More generally: more (independent) relations more
relational expressions

Ex.: S´(y,w) := F(x,y), F(x,w), y w

If F is such, that it can not be inferred S´(Moore, Bond), then
can be declared S´(Moore, Bond)

Remark: It is not proof!

Df.: Consider Horn clauses (without). Closed World
Assumption (CWA) says: whenever the fact R(a1,...,ak) is
not derivable from EDB and rules, then R(a1,...,ak).

Remark: CWA is a metarule for deriving negative information.

Notation: CWA

Query languages 2 – Expressive power 2 30

Closed World Assumption (2)

Assumptions for use of CWA:

(1) different constants do not denote the same object

Ex.: F(Flemming, Bond), F(Flemming, 007) S’(Bond, 007)

If Bond and 007 are names of the same agent, we obtain
nonsense

(2) Domain is closed (constants from EDB+IDB)

Ex.: Otherwise, it could not deduce S´(Bond,007);

(they could have his father “except” of database).

Statement: (about CWA consistency): Let E is a set of facts from
EDB, I is a set of facts derivable by the datalogical program
IDBEDB, J is a set of facts the form R(a1,...,ak) , where R
is a predicate symbol from IDBEDB and R(a1,...,ak) is not in I
 E. Then IEJ is logically consistent.

Query languages 2 – Expressive power 2 31

Closed World Assumption (3)

Proof: Let K = I E J is not consistent. rule p(...):-
q1(...),...,qk(...) and a substitution such that facts on the right
side of the rule are in K and derived facts are not in K. Since
facts from right side are positive literals, they are from IE
and not from J. But then the literal from the rule head has to
be from I (is derivable by LFP), that is a contradiction.

Remark: DATALOG can not be built on CWA.

Ex.: Consider the program

LP: BORING(Emil) :- INTERESTING(Emil)

i.e. INTERESTING(Emil) BORING(Emil) that is

INTERESTING(Emil) BORING(Emil) and therefore neither
INTERESTING(Emil) nor BORING(Emil) can be derivable
from LP.

Query languages 2 – Expressive power 2 32

Closed World Assumption (4)

LP CWA INTERESTING(Emil)

LP CWA BORING(Emil)

But no model of LP can contain

INTERESTING(Emil),BORING(Emil)

DATALOGis not consistent with CWA.

Remark: LP has two minimal models:

BORING(Emil)and INTERESTING(Emil)

Stratification solves the example naturally:

EDBLP =

first, it calculates INTERESTING, that is , then BORING=
Emil,

i.e., the minimal model BORING(Emil) is chosen.

Query languages 2 – Expressive power 2 33

Closed World Assumption (5)

Consider program

P’: INTERESTING(Emil) :- BORING(Emil)

i.e. BORING(Emil) INTERESTING(Emil) that is
 INTERESTING(Emil) BORING(Emil)

Stratification will chose the model
INTERESTING(Emil)

Query languages 2 – Expressive power 2 34

Deductive databases (1)

Informally: EDB IDB IC

Discusion of clauses: clause is universally quantified
disjunction of literals

L1 L2 ... LkK1 K2 ...Kp ()

L1 L2 ...Lk K1 K2 ...Kp

Remark: p=1 in Datalog

(i) k=0, p=1:

facts, e.g., emp(George), earns(Tom,8000)

unrestricted clauses, e.g. likes(Good,x)

(ii) k=1, p=0:

negative facts, e.g. earns(Eduard,8000)

IC, e.g., likes(John,x)

Query languages 2 – Expressive power 2 35

Deductive databases (2)

(iii) k1, p=0:

IC, e.g. x (man(x) woman(x))

(iv) k1, p=1: this is a Horn clause, i.e.,

IC or a deductive rule

(in) k0, p1:

disjunctive information, e.g. man(x) woman(x),

earns(Eda,8000) earns(Eda,9000)

(vi) k0, p1:

IC or definition of uncertain data, e.g. father

parent(x,y) father(x,y) mother(x,y)

(vii) k=0, p=0:

empty clauses (should not be a part of DB)

Query languages 2 – Expressive power 2 36

Deductive databases (3)

df.: Definite deductive database is a set clauses, which are
neither of type (in) nor (vi). Database containing (v) or
(vi) is indefinite.

Definite deductive DB can be understood as a couple

1. theory T, which contains special axioms:

 facts (associated to tuples from EDB)

axioms about elements and facts:
 completeness (no other facts hold than those from EDB and those

derivable by rules)

 domain closure axiom

 unique names axiom

set of Horn clauses (deductive rules)

Query languages 2 – Expressive power 2 37

Deductive databases (4)
CWA can be used for definite deductive DB.

Remark: this eliminates to need to use axioms of
completeness and axiom of unique names more
simple implementation

Statement: Definite deductive DB is consistent.

 answer to a query Q(x1,...,xk) in a deductive DB is a set
of tuples (a1,...,ak) such, that

T Q(a1,...,ak),

 deductive database fulfils IC iff c IC T c.

Remark: if a formal system is correct and complete,
then is the same as .

Query languages 2 – Expressive power 2 38

Correctness of IS (1)

DB vs. real world (object world)

Requirements:

 consistency

It is not possible to prove that w and w

 correctness in the object world

Database is in accordance to the object
world

 completeness

In the system it is possible to prove, that
either w or w.

Query languages 2 – Expressive power 2 39

Correctness of IS (2)

Ex.: problems related to the object world

Sch1: emp(.), salary(.), earns(.,.)

IC: x (emp(x) y (salary(y) earns(x,y))

M1: emp: {George, Charles}, salary: {19500, 16700}

earns: { (George, 19500), (Charles, 16700)},

M2: INSERT: (19500, 16700) to earns

Sch2: emp(.), salary(.), earns(.,.)

IC: x y (emp(x) earns(x,y))

x y(earns(x,y) (emp(x) salary(y)))

M2 is not a model

Achieving consistency: a model construction

Query languages 2 – Expressive power 2 40

IC (1)

IC as closed formulas.

Problems: consistency

nonredundancy

Ex.: functional dependences

 in the language of 1. order logic

a,b,c1,c2,d1,d2

((R(a,b,c1,d1) R(a,b,c2,d2) c1 = c2))

 in theory of functional dependencies

AB C

Non-redundancy is investigated by the solution of
membership problem.

Query languages 2 – Expressive power 2 41

IC (2)

 general dependences

y1,...,ykx1,...,xm((A1 ... Ap) (B1 ... Bq))

where

k, p, q 1, m0,

Ai … positive literals with variables from {y1,...,yk}

Bi … equalities or positive literals with variables from
{y1,...,yk} {x1,...,xm}

m = 0 … full dependences

m > 0 … embedded dependences

Query languages 2 – Expressive power 2 42

IC (3)

Classification of dependencies:

 typed (1 variable is not in more columns)

 full, embedded

 tuple-generating, equality-generating

 functional

inclusion (generally embedded, untyped)

template (q=1, B je positive literal)

...

Query languages 2 – Expressive power 2 43

General dependences - examples

x (emp(x) y (salary(y) earns (x,y))

x,y1,y2(earns(x,y1) earns(x,y2) y1=y2)

x, z (manages(x,z) emp(x))

x,y,z (earns(x,y) manages(x,z) y > 5000)

x, z (manages(x,z) y (solves(x,y)))

EMBEDDED, TUPLE-GENERATING

FULL, EQUALITY-GENERATING, FUNCTIONAL

FULL, TUPLE-GENERATING, INCLUSION

FULL (MORE GENARAL)

EMBEDDED, TUPLE-GENERATING, INCLUSION

Query languages 2 – Expressive power 2 44

Statements about dependencies (1)

Statement: The best procedure solving the membership
problem for typed full dependencies has exponential time
complexity.

Remark: Membership problem for full dependences is the
same for finite and infinite relations.

Ex.: = {A B, A B }

: B A

It holds:

e.g., on relation {(i+1,i): i 0}

f

Query languages 2 – Expressive power 2 45

Statements about dependencies (2)

Statement: Membership problems for general
dependences are not equivalent for finite and infinite
relation. Both problems are not solvable.

Statement: Membership problem for FD and ID is not
solvable.

Statement: Let contains only FD and unary ID. Then
the membership problem for finite and also for infinite
relations is solvable in polynomial time.

Query languages 2 – Expressive power 2 46

Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for
today’s and future computers, then full dependences are
the broadest class of dependencies usable for deductive
databases.

 significant role of Horn clauses in computer science.

Pessimistic view:

 Generally, completeness can not be achieved.

 Generally, consistency can not be achieved.

 Algorithmic complexity can be a real issue. It sometimes
can not be improved and often not solved – an
associated proof procedure does not exist.

Query languages 2 – Expressive power 2 47

Statements about dependencies (4)

 constraints may make consistence, but associated
models do not match real world facts.

Optimistic view:

 Pessimistic results are general. What are the sets of
real dependencies?

Query languages 2 – Expressive power 2 48

Query languages - problems

 1982: Chandra and Harel stated a problem:

Is there a query language (logic), enabling to express
exactly all queries computable in polynomial time
(PTIME)?

Answer: unknown till now.

 1982: Immerman and Vardi proved, that the
extension of the 1. order logic by the operator LFP
enables it on the class of all ordered finite structures.

 Another approximation: FP+C (counting operator). It
enables catch up PTIME, e.g., on all trees, planar
graphs and others.
 Remark: counting enables to find the number of items

satisfying a formula.

