Query languages 2 (NDBI006) Expressive power - part 2

J. Pokorný

MFF UK

Recursive DATALOG

Ex.:
In EDB there is a relation WORKS_FOR(Name_of_w,Chairman)
SUB_SUP(x,y):-WORKS_FOR(x,y)
SUB_SUP(x,y):-WORKS_FOR(x,z), SUB_SUP(z,y)
SUB_SUP* is a transitive closure of the relation WORKS_FOR*

The following holds:
WORKS_FOR \subseteq SUB_SUP
(WORKS_FOR * SUB_SUP)[1,3] \subseteq SUB_SUP

Recursive DATALOG

\Rightarrow SUB_SUP* is a solution of equation
(WORKS_FOR * SUB_SUP) $[1,3] \cup$ WORKS_FOR = SUB_SUP
More generally:
For IDB there is a system of equations

$$
\mathrm{E}_{\mathrm{i}}\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right)=\mathrm{P}_{\mathrm{i}} \quad \mathrm{i}=1, \ldots, \mathrm{n}
$$

The solution of the system depends on EDB and is its fixpoint.

Remark: Since all used operations of A_{R} are additive, the fixpoint exists and even the least one.

Recursive DATALOG

Algorithm: (Naive) evaluation Input: EDB $=\left\{R_{1}, \ldots, R_{k}\right\}$, IDB $=\left\{\right.$ rules for $\left.P_{1}, \ldots, P_{n}\right\}$,
Output: least fixpoint $\mathrm{P}_{1}{ }^{*}, \ldots, \mathrm{P}_{\mathrm{n}}{ }^{*}$
Method: We use a function eval(E) evaluating a relational expression E.
for $\mathrm{i}:=1$ to n do $\mathrm{P}_{\mathrm{i}}:=\varnothing$;
repeat for $\mathrm{i}:=1$ to n do

$$
\mathrm{Q}_{\mathrm{i}}:=\mathrm{P}_{\mathrm{i}} ; \quad \text { \{store old values\} }
$$

$$
\underline{\text { for }} i:=1 \text { to } n \underline{d o}
$$

$$
P_{i}:=\operatorname{eval}\left(E_{i}\left(P_{1}, \ldots, P_{n}\right)\right)
$$

until $P_{i}=Q_{i}$ for all $i \in<1, n>$
Remark: It is so-called Gauss-Seidel method.

Recursive DATALOG

Statement: Evaluating algorithm stops and returns the least fixpoint of the system of datalogical equations.
Proof:
(1) follows from the fact that eval is monotonic and P_{i}^{*} are generated from a finite number of elements.
(2) follows from that P_{i}^{*} is solution of the system of equations and, moreover, it is a part of each solution for each i. It can be proved by induction on the number of iterations. The start is from \varnothing, which is a part of each solution.
Disadvantages:
> creating duplicate tuples,
$>$ creating unnecessarily large relations, when we want, e.g., only a selection of the tuples from $\mathrm{P}_{\mathrm{i}}{ }^{*}$ in the result.

Recursive DATALOG

Method of differences

Idea: in the $(k+1)$. step of the iteration we do not calculate $P_{i}{ }^{k+1}$, but

$$
\begin{aligned}
& D_{i}^{k+1}=P_{i}^{k+1}-P_{i}^{k}, \text { i.e. } \\
& P_{i}^{k+1}=P_{i}^{k} \cup D_{i}^{k+1} \text { and thus } \\
& P_{i}^{k+1}=E_{i}\left(P_{i}^{k-1}\right) \cup E_{i}\left(D_{i}^{k}\right),
\end{aligned}
$$

since E_{i} is additive.
The change of eval for P_{i} is given by on rule: pincreval $\left(E_{i}\left(\Delta P_{1}, \ldots, \Delta P_{n}\right)\right)$

$$
=\cup_{j=1 . . n} \operatorname{eval}\left(E_{i}\left(\ldots, P_{j-1}, \Delta P_{j}, P_{j+1}, \ldots\right)\right)
$$

Recursive DATALOG

The change of eval for P_{i} given by s rules: increval $\left(\mathrm{P}_{\mathrm{k}} ; \Delta \mathrm{P}_{1}, \ldots, \Delta \mathrm{P}_{\mathrm{n}}\right)$)

$$
=\cup_{\mathrm{j}=1 . . \mathrm{s}} \operatorname{pincreval}\left(\mathrm{E}_{\mathrm{j}}\left(\Delta \mathrm{P}_{1}, \ldots, \Delta \mathrm{P}_{\mathrm{n}}\right)\right)
$$

Ex.:
increval($\left(S^{\prime}\right)=\varnothing$
increval(C) =

$$
\begin{aligned}
& \left(\mathrm{F}(\mathrm{X} 1, \mathrm{X})^{*} \mathrm{~F}(\mathrm{X} 2, \mathrm{Y})^{*} \Delta \mathrm{~S}^{\prime}(\mathrm{X} 1, \mathrm{X} 2)\right)[\mathrm{X}, \mathrm{Y}] \cup \\
& \left(\mathrm{F}(\mathrm{X} 1, \mathrm{X})^{*} \mathrm{~F}(\mathrm{X} 2, \mathrm{Y})^{*} \Delta \mathrm{C}(\mathrm{X} 1, \mathrm{X} 2)\right)[\mathrm{X}, \mathrm{Y}]
\end{aligned}
$$

increval $(\mathrm{R})=$
$\Delta S^{\prime}(X, Y) \cup\left(\Delta R(X, Y)^{*} F(Z, Y)\right)[X, Y] \cup$ $\left(\Delta R(Z, Y)^{*} F(Z, X)\right)[X, Y]$

Recursive DATALOG

Algorithm: (Seminaive) evaluation Input: EDB $=\left\{R_{1}, \ldots, R_{k}\right\}$, IDB $=\left\{\right.$ rules for $\left.P_{1}, \ldots, P_{n}\right\}$,
Output: least fixpoint $\mathrm{P}_{1}{ }^{*}, \ldots, \mathrm{P}_{n}{ }^{*}$
Method: $1 \times$ use the function eval and on differences increval for $\mathrm{i}:=1$ to n do

$$
\Delta \mathrm{P}_{\mathrm{i}}:=\operatorname{eval}\left(\mathrm{E}_{\mathrm{i}}(\varnothing, \ldots, \varnothing)\right) ;
$$

repeat for $i:=1$ to n do $\Delta Q_{i}:=\Delta P_{i}$;
\{store old diferences\}

$$
\underline{\text { for }} i:=1 \text { to } n \text { do begin }
$$

$$
\Delta P_{i}:=\operatorname{increval}\left(E_{i} ;\left(\Delta Q_{1}, \ldots, \Delta Q_{n}, P_{1}, \ldots, P_{n}\right)\right)
$$

$$
\Delta \mathrm{P}_{\mathrm{i}}:=\Delta \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{i}}
$$

\{delete duplicates\} end;
for $i:=1$ to n do $P_{i}:=P_{i} \cup \Delta P_{i}$ until $\Delta P_{i}=\varnothing$ for all $i \in<1, n>$

Recursive DATALOG

Statement: The evaluating algorithm stops and

* returns the LFP of the system of datalogical equations,
* LFP corresponds just to those facts, which are provable from EDB by rules from IDB.
Ex.: $\quad R(x, y)$:- $P(x, y)$

$$
R(x, y):-R(x, z), R(z, y)
$$

LFP R^{*} is a solution of equation

$$
\begin{equation*}
R(X, Y)=P(X, Y) \cup\left(R(X, Z)^{*} R(Z, Y)\right)[X, Y] \tag{*}
\end{equation*}
$$

$>$ if $P^{*}=\{(1,2),(2,3)\}$, then

$$
\begin{aligned}
R^{*}= & \{(1,2),(2,3),(1,3)\} \text { is the LFP, whose elements } \\
& \text { correspond to all derivable facts, }
\end{aligned}
$$

R^{*} is also a minimal model.

Recursive DATALOG

$>$ If $(1,1) \in R^{*}$, then $R(1,1):-R(1,1), R(1,1)$, so also $R^{*}=$ $\{(1,1),(1,2),(2,3),(1,3)\}$ is a model and it is a solution of equation (*).
$>$ If $(3,1) \in \mathrm{R}^{*}$, then $\{(1,2),(2,3),(1,3),(3,1)\}$
is not a model and not a solution of the equation (*).
$>$ Let $P^{*}=\varnothing ; R^{*}=\{(1,2)\}$.
then R^{*} is a model, but it is not a solution the equation (*).

Use of recursive Datalog in web services

Assumption: web sources with querying, which enables to formulate always a subset of conjunctive queries.
Ex.: Amazon - we enter an author name and obtain the list of his/her books. We can not ask for a list of all available books.

Ex.: Travel service with source relations R:
flights(start, end), trains(start, end),
buses(start, end), shuttle(start, end)

Use of recursive Datalog in web services

Datalogical program extends possibilities of conjunctive queries by generating views with recursion, e.g. LP
ans(a, b) :- flights(a,c), ind(c,b)
ind(c,b) :- flights(c,b), buses(b, Praha)
ind(c,b) :- flights(c, c'), ind(c',b)
Remark: However, we can not find out from LP anyway whether Prague is accessible from somewhere with air followed by a shuttle service.

Extension of Datalog by negation

Ex.: $\operatorname{NSR}(x, y) \ldots x$ and y are relatives, but x is not a sibling of y
NSR(x, y) :- R(x,y), $\neg S^{\prime}(\mathrm{x}, \mathrm{y})$
NSR ${ }^{*}=R^{*}-S^{*}$
or
NSR $(X, Y)=R(X, Y)$ * $\underline{S}^{\prime}(X, Y)$, where $\underline{S^{\prime}}$ is the complement to a suitable universe.

Approach:
$>$ We allow a negation in bodies of rules, i.e. negative literals between $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}$
> safe rules must have limited variables, i.e. we forbid variables, which are in a negative literal and are not limited by the original definition.

Extension of Datalog by negation

Problem:

The solution of a logical program does not have to be LFP, but a number of MFPs.
Ex.: BORING(x) :- \neg INTERESTING(x), MAN(x) INTERESTING(x) :- \neg BORING(x), MAN(x)
$B(X)=M(X)-I(X)$
$I(X)=M(X)-B(X)$
Solution: Let $\mathrm{M}=\{\mathrm{John}\}$,
M1: $\{B O R I N G * ~=~\{J o h n\}, ~ I N T E R E S T I N G * ~=~ \varnothing\} ~$
M2: $\{I N T E R E S T I N G * ~=~\{J o h n\}, ~ B O R I N G * ~=~ \varnothing\} ~$

Stratified DATALOG

* It is not true, that one model is less than the second one,
* There is no model less than M1 or M2
\Rightarrow we have two minimal models
Intuition: a constraint of the negation - if it is applied , then to a known relation, i.e. relations have to be first defined (maybe recursively) without negation. Then a new relation can be defined by them without or with negations.
Df.: Definition of a virtual relation S is a set of all rules, which have S in head.
Df.: S occurs in a rule positively (negatively), if it is contained in a positive (negative) literal.

Stratified DATALOG

Df: Program P is stratifiable, if there is a partition $P=$ $P_{1} \cup \ldots \cup P_{n}\left(P_{i}\right.$ are mutually disjunctive) such that for each $i \in<1, n>$ the following holds:

1. If the relational symbol S occurs positively in a rule from P_{i}, then the definition of S is contained in $\cup_{j \leq i} P_{j}$
2. If the relational symbol S occurs negatively in a rule from P_{i}, then the definition of S is contained in $\cup_{j<i} P_{j}$ (P_{1} can be \varnothing)
Df.: Partition $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$ is called a stratification P , each P_{i} is a stratum.
Remark: stratum ... layer
strata ... layers

Stratified DATALOG

$$
\begin{align*}
& \text { Ex.: Program } \mathrm{P}(\mathrm{x}):-\neg \mathrm{Q}(\mathrm{x}) \tag{1}\\
& \mathrm{R}(1) \tag{2}\\
& \mathrm{Q}(\mathrm{x}):-\mathrm{Q}(\mathrm{x}), \neg \mathrm{R}(\mathrm{x}) \tag{3}
\end{align*}
$$

is stratifiable. Stratification: $\{(2)\} \cup\{(3)\} \cup\{(1)\}$
$\begin{array}{ll}\text { Program } \quad & P(x):-\neg Q(x) \\ & Q(x):-\neg P(x)\end{array}$
is not stratifiable.
Df.: Let (U, V) is an edge in a dependency graph. (U, V) is positive (negative), if there is a rule $\mathrm{V}:-\ldots \mathrm{U} . .$. and U occurs there positively (negatively).
Remark: An edge can be positive and negative as well.

Stratified DATALOG

Statement: Program P is stratifiable if and only if its dependency graph contain no cycle with a negative edge.
Proof: \Rightarrow each virtual relation P has assigned the index of stratum, in which it is defined. Thus, (P, Q) is positive \Rightarrow index $(\mathrm{P}) \leq \operatorname{index}(\mathrm{Q})$
(P, Q) is negative \Rightarrow index (P) < index (Q)
If there was a cycle with a negative edge, there would be a node X , where index (X) < index (X), which is contradiction.
\Leftarrow We find strongly connected components in the dependency graph, then perform the graph's condensation, which is acyclic, and assign a topological ordering of components.

Stratified DATALOG

Each component defines one stratum, ordering of component defines their numbering. Since negative edges are at most between components, the rules associated to a component create a stratum.

Ex.:

Stratified DATALOG

Assumptions: rules are safe, rectified.
adom ... union of constants from EDB and IDB
$\neg \mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is transformed to (adom $\times \ldots \times$ adom) - Q^{*}
Algorithm: Evaluation of a stratifiable program
Input: EDB $=\left\{R_{1}, \ldots, R_{k}\right\}$, IDB $=\left\{\right.$ rules for $\left.P_{1}, \ldots, P_{n}\right\}$,
Output: minimal fixpoint $P_{1}{ }^{*}, \ldots, P_{n}{ }^{*}$
method: Find a stratification of the program; calculate adom;
for $\mathrm{i}:=1$ to s do $\{s$ strata\}
begin $\{$ for stratum i there are relations calculated from strata j, where $j<i\}$
if Q in stratum i is positive then use Q;
if Q in stratum i is is negative then use adom ${ }^{n} Q$;
use algorithm for calculation of LFP
end

Stratified DATALOG

Statement: Evaluating algorithm stops and returns a MFP of the system of datalogical equations.
Proof: FP follows by induction on the number of strata.
Remark: LP of the stratified DATALOG ${ }^{\square}$ can have more MFPs.

Stratified DATALOG

EDB: Parts(part, subpart, quantity) tricycle bike
tricycle frame frame saddle
frame pedal bike rim 1 bike tire tire valve tire inner tube

Stratification and resulting MFP:

IDB

Large(P) :- Parts(P,S,Q), Q > 2
Small(P) :- Parts(P,S,Q), \neg Large(P)

Stratified DATALOG

Remark: Stratifiable program has generally more stratifications. They are equivalent, i.e. their evaluation leads to the same MFP (Apt, 1986).
Statement: Non-recursive Datalog programs express just those queries, which are expressible by a monotonic subset of A_{R}.
Remark: positive relational algebra $A_{R P}\{\times, \cup,[], \varphi\}$.

Stratified DATALOG

stratified DATALOG

Relational algebra and DATALOG

Statement: Non-recursive DATALOG programs express just those queries, which are expressible in A_{R}.
Proof: \Leftarrow by induction on the number of operators in E

1. \varnothing of operators: $\quad E \equiv R \quad R$ is from EDB

$$
E \equiv \text { const. relation }
$$

then for each tuple add $p\left(a_{1}, \ldots, a_{n}\right)$ into EDB. Nothing into IDB.
2. $E \equiv E_{1} \cup E_{2}$

By induction hypothesis, there are programs for E_{1} and E_{2} (associated predicates are e_{1} and e_{2})

$$
\begin{aligned}
& e\left(x_{1}, \ldots, x_{n}\right):-e_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& e\left(x_{1}, \ldots, x_{n}\right):-e_{2}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Relational algebra and DATALOG

3. $E \equiv E_{1}-E_{2}$ $e\left(x_{1}, \ldots, x_{n}\right):-e_{1}\left(x_{1}, \ldots, x_{n}\right), \neg e_{2}\left(x_{1}, \ldots, x_{n}\right)$
4. $E \equiv E_{1}\left[i_{1}, \ldots, i_{k}\right]$
$e\left(x_{i 1}, \ldots, x_{i k}\right):-e_{1}\left(x_{1}, \ldots, x_{n}\right)$,
5. $E \equiv E_{1} \times E_{2}$
$e\left(x_{1}, \ldots, x_{n+m}\right):-e_{1}\left(x_{1}, \ldots, x_{n}\right), e_{2}\left(x_{n+1}, \ldots, x_{n+m}\right)$
6. $E \equiv E_{1}(\varphi)$
$e\left(x_{1}, \ldots, x_{n}\right):-e_{1}\left(x_{1}, \ldots, x_{n}\right), x_{i j}=x_{i k}$ or $x_{i j}=a$
\Rightarrow from non-recursiveness: topological ordering + adom ${ }^{\mathrm{n}}-Q^{*}$ for negation. For each P defined in IDB it is possible to construct an expression in A_{R}. By substitutions (according to ordering) we obtain relational expressions depending only on relations from EDB.

Relational algebra and DATALOG

Ex.: Construction of LP from a relational expression
CAN_BUY $(X, Y) \equiv$
IS_LIKED $(X, Y)-\left(D E B T O R(X) \times I S _L I K E D(X, Y)[Y]\right)$
EDB: IS_LIKED $(X, Y) \ldots$ person X likes the thing Y
DEBTOR (X)... person X is a DEBTOR denote $\operatorname{DEBTOR}(\mathrm{X}) \times \operatorname{IS}$ LIKED $(X, Y)[Y]$ as D_A_COUPLE(X,Y).

Then a datalogical program for CAN_BUY is: IS_ADMIRED (y) :- IS_LIKED (x, y)
D_A_COUPLE(x, y):-DEBTOR(x), IS_ADMIRED (y)
CAN_BUY (x, y) :- IS_LIKED $(x, y), \neg D _A _C O U P L E(x, y)$

Relational algebra and DATALOG

Ex.: Construction of a relational expression from LP
$E D B: R^{*}, S^{*}$, adom $\equiv R[X] \cup R[Y] \cup S$
$P(x):-R(x, y), \neg S(y)$
$Q(z):-S(z), \neg P(z)$
$P(X) \equiv(R(X, Y) *$ adom $-S\}(Y))[X]$

$Q(Z) \equiv S(Z)$ * $\{$ adom $-P\}($ from $) \equiv(S \cap\{$ adom $-P\})($ from $)$
Since $S \subset$ adom, salary $Q(Z) \equiv S(Z)-P(Z)$. After substitution of P
$Q(Z) \equiv S(Z)-\left(R(Z, Y){ }^{*}\right.$ \{adom - $\left.\left.S\right\}(Y)\right)[$ from $]$
Remark: adom can be replaced by $\mathrm{R}[\mathrm{Y}]$

Closed World Assumption (1)

Remark: logical program leads to one resulted relation.
More generally: more (independent) relations \Rightarrow more relational expressions
Ex.: $S^{\prime}(y, w):=F(x, y), F(x, w), y \neq w$
If F^{*} is such, that it can not be inferred S^{\prime} (Moore, Bond), then can be declared $\neg S^{\prime}$ (Moore, Bond)
Remark: It is not proof!
Df.: Consider Horn clauses (without $ᄀ$). Closed World Assumption (CWA) says: whenever the fact $R\left(a_{1}, \ldots, a_{k}\right)$ is not derivable from EDB and rules, then $\neg R\left(a_{1}, \ldots, a_{k}\right)$.
Remark: CWA is a metarule for deriving negative information.
Notation: \qquad

Closed World Assumption (2)

Assumptions for use of CWA:
(1) different constants do not denote the same object

Ex.: F(Flemming, Bond), F(Flemming, 007) $\Rightarrow S^{\prime}($ Bond, 007) If Bond and 007 are names of the same agent, we obtain nonsense
(2) Domain is closed (constants from EDB+IDB)

Ex.: Otherwise, it could not deduce $\neg S^{\prime}$ (Bond,007); (they could have his father "except" of database).
Statement: (about CWA consistency): Let E is a set of facts from EDB, I is a set of facts derivable by the datalogical program IDB $\cup E D B, J$ is a set of facts the form $\neg R\left(a_{1}, \ldots, a_{k}\right)$, where R is a predicate symbol from IDB $\cup E D B$ and $R\left(a_{1}, \ldots, a_{k}\right)$ is not in / $\cup E$. Then $ル E \cup J$ is logically consistent.

Closed World Assumption (3)

Proof: Let $K=I \cup E \cup J$ is not consistent. $\Rightarrow \exists$ rule $p(\ldots)$:$\mathrm{q}_{1}(\ldots), \ldots, \mathrm{q}_{\mathrm{k}}(\ldots)$ and a substitution such that facts on the right side of the rule are in K and derived facts are not in K. Since facts from right side are positive literals, they are from $/ \cup E$ and not from J. But then the literal from the rule head has to be from I (is derivable by LFP), that is a contradiction.
Remark: DATALOG \urcorner can not be built on CWA.
Ex.: Consider the program
LP: BORING(Emil) :- - INTERESTING(Emil)
i.e. \neg INTERESTING(Emil) \Rightarrow BORING(Emil) that is \Leftrightarrow

INTERESTING(Emil) \vee BORING(Emil) and therefore neither INTERESTING(Emil) nor BORING(Emil) can be derivable from LP.

Closed World Assumption (4)

LP $\models \mathrm{CWA} \neg$ INTERESTING(Emil)
LP $\models \mathrm{CWA} \neg$ BORING(Emil)
But no model of LP can contain
$\{\neg$ INTERESTING(Emil), \neg BORING(Emil) $\}$
\Rightarrow DATALOG \neg is not consistent with CWA.
Remark: LP has two minimal models: \{BORING(Emil) $\}$ and INTERESTING $\{($ Emil $)\}$
Stratification solves the example naturally:
$E B_{\mathrm{LP}}=\varnothing$
first, it calculates INTERESTING, that is \varnothing, then BORING= \{Emil\},
i.e., the minimal model $\{$ BORING(Emil) $\}$ is chosen.

Closed World Assumption (5)

Consider program
P': INTERESTING(Emil) :- \neg BORING(Emil)
i.e. $\quad \neg$ BORING(Emil) \Rightarrow INTERESTING(Emil) that is \Leftrightarrow INTERESTING(Emil) \vee BORING(Emil)
Stratification will chose the model \{INTERESTING(Emil)\}

Deductive databases (1)

Informally: EDB \cup IDB \cup IC
Discusion of clauses: clause is universally quantified disjunction of literals

$$
\begin{aligned}
& \neg L_{1} \vee \neg L_{2} \vee \ldots \vee \neg L_{k} \vee K_{1} \vee K_{2} \vee \ldots \vee K_{p} \quad \Leftrightarrow \\
& L_{1} \wedge L_{2} \wedge \ldots \wedge L_{k} \Rightarrow K_{1} \vee K_{2} \vee \ldots \vee K_{p}
\end{aligned}
$$

Remark: $p=1$ in Datalog
(i) $\mathrm{k}=0, \mathrm{p}=1$:
facts, e.g., emp(George), earns(Tom,8000) unrestricted clauses, e.g. likes(Good,x)
(ii) $\mathrm{k}=1, \mathrm{p}=0$:
negative facts, e.g. \neg earns(Eduard,8000)
IC, e.g., \neg likes(John,x)

Deductive databases (2)

(iii) $k>1, p=0$:

IC, e.g. $\forall x(\neg \operatorname{man}(x) \vee \neg$ woman $(x))$
(iv) $k>1, p=1$: this is a Horn clause, i.e.,

IC or a deductive rule
(in) $\mathrm{k}=0, \mathrm{p}>1$:
disjunctive information, e.g. man $(x) \vee$ woman (x),
earns(Eda,8000) \vee earns(Eda,9000)
(vi) $k>0, p>1$:

IC or definition of uncertain data, e.g. father parent $(x, y) \Rightarrow$ father $(x, y) \vee$ mother (x, y)
(vii) $k=0, p=0$:
empty clauses (should not be a part of DB)

Deductive databases (3)

df.: Definite deductive database is a set clauses, which are neither of type (in) nor (vi). Database containing (v) or (vi) is indefinite.

Definite deductive DB can be understood as a couple

1. theory T , which contains special axioms:
$>$ facts (associated to tuples from EDB)
> axioms about elements and facts:

- completeness (no other facts hold than those from EDB and those derivable by rules)
- domain closure axiom
- unique names axiom
$>$ set of Horn clauses (deductive rules)

Deductive databases (4)

CWA can be used for definite deductive DB.
Remark: this eliminates to need to use axioms of completeness and axiom of unique names \Rightarrow more simple implementation
Statement: Definite deductive DB is consistent.

* answer to a query $\mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ in a deductive DB is a set of tuples $\left(a_{1}, \ldots, a_{k}\right)$ such, that
$T \models \mathrm{Q}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$,
* deductive database fulfils IC iff $\forall c \in I C T \models c$.

Remark: if a formal system is correct and complete, then \vdash is the same as \vDash.

Correctness of IS (1)

DB vs. real world (object world)
Requirements:

* consistency

It is not possible to prove that w and $\neg \mathrm{w}$

* correctness in the object world

Database is in accordance to the object world

* completeness

In the system it is possible to prove, that either w or \neg w.

Correctness of IS (2)

Ex.: problems related to the object world
Sch1: emp(.), salary(.), earns(...)
IC: $\forall \mathrm{x}(\mathrm{emp}(\mathrm{x}) \Rightarrow \exists \mathrm{y}$ (salary $(\mathrm{y}) \wedge$ earns $(\mathrm{x}, \mathrm{y}))$
M1: emp: \{George, Charles\}, salary: \{19500, 16700\} earns: \{ (George, 19500), (Charles, 16700)\},
M2: INSERT: (19500, 16700) to earns
Sch2: emp(.), salary(.), earns(...)
IC: $\forall x \exists y$ (emp $(x) \Rightarrow$ earns $(x, y))$ $\forall x \forall y($ earns $(x, y) \Rightarrow(e m p(x) \wedge$ salary $(y)))$
M2 is not a model
Achieving consistency: a model construction

IC (1)

IC as closed formulas.
Problems: consistency nonredundancy
Ex.: functional dependences
$*$ in the language of 1 . order logic
$\forall a, b, c_{1}, c_{2}, d_{1}, d_{2}$
$\left(\left(R\left(a, b, c_{1}, d_{1}\right) \wedge R\left(a, b, c_{2}, d_{2}\right) \Rightarrow c_{1}=c_{2}\right)\right)$

* in theory of functional dependencies
$A B \rightarrow C$
Non-redundancy is investigated by the solution of membership problem.

IC (2)

* general dependences
$\forall y_{1}, \ldots, y_{k} \exists x_{1}, \ldots, x_{m}\left(\left(A_{1} \wedge \ldots \wedge A_{p}\right) \Rightarrow\left(B_{1} \wedge \ldots \wedge B_{q}\right)\right)$
where
$k, p, q \geq 1, m \geq 0$,
$A_{i} \ldots$ positive literals with variables from $\left\{y_{1}, \ldots, y_{k}\right\}$
$B_{i} \ldots$ equalities or positive literals with variables from $\left\{y_{1}, \ldots, y_{k}\right\} \cup\left\{x_{1}, \ldots, x_{m}\right\}$
$m=0 \ldots$ full dependences
$\mathrm{m}>0 \ldots$ embedded dependences

IC (3)

Classification of dependencies:

* typed (1 variable is not in more columns)
\star full, embedded
* tuple-generating, equality-generating
* functional inclusion (generally embedded, untyped) template ($q=1, B$ je positive literal)

General dependences - examples

EMBEDDED, TUPLE-GENERATING

$\forall x(e m p(x) \Rightarrow \exists y$ (salary $(\mathrm{y}) \wedge$ earns (x, y))
FULL, EQUALITY-GENERATING, FUNCTIONAL
$\forall x, y_{1}, y_{2}\left(\operatorname{earns}\left(x, y_{1}\right) \wedge\right.$ earns $\left.\left(x, y_{2}\right) \Rightarrow y_{1}=y_{2}\right)$
FULL, TUPLE-GENERATING, INCLUSION
$\forall x$, z (manages $(x, z) \Rightarrow \operatorname{emp}(x))$
FULL (MORE GENARAL)
$\forall x, y, z$ (earns $(x, y) \wedge$ manages $(x, z) \Rightarrow y>5000)$
EMBEDDED, TUPLE-GENERATING, INCLUSION
$\forall x, z($ manages $(x, z) \Rightarrow \exists y($ solves $(x, y)))$

Statements about dependencies (1)

Statement: The best procedure solving the membership problem for typed full dependencies has exponential time complexity.
Remark: Membership problem for full dependences is the same for finite and infinite relations.
Ex.: $\Sigma=\{A \rightarrow B, A \subseteq B\}$
$\tau: B \subseteq A$
It holds: $\Sigma \models_{\mathrm{f}} \tau \quad \Sigma \not \equiv \tau$
e.g., on relation $\{(i+1, i): i \geq 0\}$

Statements about dependencies (2)

Statement: Membership problems for general dependences are not equivalent for finite and infinite relation. Both problems are not solvable.
Statement: Membership problem for FD and ID is not solvable.

Statement: Let Σ contains only FD and unary ID. Then the membership problem for finite and also for infinite relations is solvable in polynomial time.

Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for today's and future computers, then full dependences are the broadest class of dependencies usable for deductive databases.
\Rightarrow significant role of Horn clauses in computer science.
Pessimistic view:

* Generally, completeness can not be achieved.
* Generally, consistency can not be achieved.
* Algorithmic complexity can be a real issue. It sometimes can not be improved and often not solved - an associated proof procedure does not exist.

Statements about dependencies (4)

* constraints may make consistence, but associated models do not match real world facts.

Optimistic view:

* Pessimistic results are general. What are the sets of real dependencies?

Query languages - problems

* 1982: Chandra and Harel stated a problem:

Is there a query language (logic), enabling to express exactly all queries computable in polynomial time (PTIME)?
Answer: unknown till now.

* 1982: Immerman and Vardi proved, that the extension of the 1. order logic by the operator LFP enables it on the class of all ordered finite structures.
* Another approximation: FP+C (counting operator). It enables catch up PTIME, e.g., on all trees, planar graphs and others.
$>$ Remark: counting enables to find the number of items satisfying a formula.

