

Query languages 2 (NDBl006) Expressive power - part 2

J. Pokorný MFF UK

Ex.: In EDB there is a relation WORKS_FOR(Name_of_w,Chairman) SUB_SUP(x,y):-WORKS_FOR(x,y) SUB_SUP(x,y):-WORKS_FOR(x,z), SUB_SUP(z,y)

SUB_SUP* is a transitive closure of the relation WORKS_FOR*

The following holds: WORKS_FOR \subseteq SUB_SUP (WORKS_FOR * SUB_SUP)[1,3] \subseteq SUB_SUP

 \Rightarrow SUB_SUP* is a solution of equation (WORKS_FOR * SUB_SUP)[1,3] \cup WORKS_FOR = SUB_SUP

More generally:

For IDB there is a system of equations

 $E_i(P_1,...,P_n) = P_i$ i=1,...,n

The solution of the system depends on EDB and is its *fixpoint*.

Remark: Since all used operations of A_R are additive, the fixpoint exists and even the least one.

Algorithm: (Naive) evaluation Input: EDB = $\{R_1, ..., R_k\}$, IDB = $\{rules \text{ for } P_1, ..., P_n\}$, Output: least fixpoint $P_1^*, ..., P_n^*$ Method: We use a function eval(E) evaluating a relational expression E.

 $\begin{array}{l} \underline{for} \ i:=1 \ \underline{to} \ n \ \underline{do} \ \mathsf{P}_i := \varnothing; \\ \underline{repeat} \ \underline{for} \ i:=1 \ \underline{to} \ n \ \underline{do} \\ \mathsf{Q}_i \ := \mathsf{P}_i; \quad \{ store \ old \ values \} \\ \underline{for} \ i:=1 \ \underline{to} \ n \ \underline{do} \\ \mathsf{P}_i \ := eval(\mathsf{E}_i(\mathsf{P}_1,\ldots,\mathsf{P}_n)) \\ \underline{until} \ \mathsf{P}_i = \mathsf{Q}_i \ for \ all \ i \quad \in <1,n > \end{array}$

Remark: It is so-called Gauss-Seidel method.

```
Query languages 2 – Expressive power 2
```

Statement: Evaluating algorithm stops and returns the least fixpoint of the system of datalogical equations.

Proof:

- (1) follows from the fact that *eval* is monotonic and P_i* are generated from a finite number of elements.
- (2) follows from that P_i^* is solution of the system of equations and, moreover, it is a part of each solution for each *i*. It can be proved by induction on the number of iterations. The start is from \emptyset , which is a part of each solution.

Disadvantages:

- > creating duplicate tuples,
- creating unnecessarily large relations, when we want, e.g., only a selection of the tuples from P_i* in the result.

Method of differences

Idea: in the (k+1). step of the iteration we do not calculate P_i^{k+1} , but $D_i^{k+1} = P_i^{k+1} - P_i^k$, i.e. $P_i^{k+1} = P_i^k \cup D_i^{k+1}$ and thus $P_i^{k+1} = E_i(P_i^{k-1}) \cup E_i(D_i^k)$,

since E_i is additive.

The change of *eval* for P_i is given by on rule: $pincreval(E_i(\Delta P_1,...,\Delta P_n))$ $= \bigcup_{j=1..n} eval(E_i(...,P_{j-1},\Delta P_j,P_{j+1},...))$

The change of eval for P_i given by s rules: $increval(P_k; \Delta P_1, ..., \Delta P_n))$ $= \bigcup_{j=1..s} pincreval(E_j(\Delta P_1, ..., \Delta P_n))$

Ex.:

 $increval(S') = \emptyset$ increval(C) = $(F(X1,X)*F(X2,Y)* \Delta S'(X1,X2))[X,Y] \cup$ $(F(X1,X)*F(X2,Y)* \Delta C(X1,X2))[X,Y]$ increval(R) = $\Delta S'(X,Y) \cup (\Delta R(X,Y)*F(Z,Y))[X,Y] \cup$ $(\Delta R(Z,Y)*F(Z,X))[X,Y]$

Algorithm: (Seminaive) evaluation *Input*: EDB = { $R_1, ..., R_k$ }, IDB = {rules for $P_1, ..., P_n$ }, *Output*: least fixpoint P₁*,...,P_n* *Method*: 1× use the function *eval* and on differences *increval* <u>for i:=1 to n do</u> $\Delta P_i := eval (E_i (\emptyset, ..., \emptyset));$ <u>repeat</u> for i:=1 to n do ΔQ_i := ΔP_i ; {store old diferences} for i:=1 to n do begin $\Delta P_i := increval(E_i; (\Delta Q_1, ..., \Delta Q_n, P_1, ..., P_n))$ $\Delta P_i := \Delta P_i - P_i$ *{delete duplicates}* end; for i:=1 to n do $P_i := P_i \cup \Delta P_i$ <u>until</u> $\Delta P_i = \emptyset$ for all $i \in <1, n>$

Statement: The evaluating algorithm stops and

- returns the LFP of the system of datalogical equations,
- LFP corresponds just to those facts, which are provable from EDB by rules from IDB.

Ex.:
$$R(x,y) := P(x,y)$$

 $\mathsf{R}(\mathsf{x},\mathsf{y}) := \mathsf{R}(\mathsf{x},\mathsf{z}), \, \mathsf{R}(\mathsf{z},\mathsf{y})$

LFP R* is a solution of equation

 $R(X,Y) = P(X,Y) \cup (R(X,Z)^*R(Z,Y))[X,Y]$ (*)

 \succ if P* = {(1,2), (2,3)}, then

R* = {(1,2), (2,3), (1,3)} is the LFP, whose elements correspond to all derivable facts,

R* is also a minimal model.

- If (1,1) ∈ R*, then R(1,1) :- R(1,1),R(1,1), so also R* = {(1,1),(1,2), (2,3), (1,3)} is a model and it is a solution of equation (*).
- ➢ If (3,1) ∈ R*, then {(1,2), (2,3), (1,3), (3,1)}
 is not a model and not a solution of the equation (*).
 ➢ Let P* = ∅; R* = {(1,2)}.

then R* is a model, but it is not a solution the equation (*).

Use of recursive Datalog in web services

Assumption: web sources with querying, which enables to formulate always a subset of conjunctive queries.

Ex.: Amazon – we enter an author name and obtain the list of his/her books. We can not ask for a list of all available books.

Ex.: Travel service with source relations R: flights(start, end), trains(start, end), buses(start, end), shuttle(start, end)

Use of recursive Datalog in web services

Datalogical program extends possibilities of conjunctive queries by generating views with recursion, e.g. LP

ans(a, b) :- flights(a,c), ind(c,b)

ind(c,b) :- flights(c,b), buses(b, Praha)

ind(c,b) :- flights(c,c'), ind(c',b)

Remark: However, we can not find out from LP anyway whether Prague is accessible from somewhere with air followed by a shuttle service.

Extension of Datalog by negation

Ex.: NSR(x,y) ... x and y are relatives, but x is not a sibling of y NSR(x,y) :- R(x,y), \neg S'(x,y) NSR* = R* - S'*

or

NSR(X,Y) = R(X,Y) * $\underline{S'}(X,Y)$, where $\underline{S'}$ is the complement to a suitable universe.

Approach:

- We allow a negation in bodies of rules, i.e. negative literals between L₁,...,L_n
- safe rules must have limited variables, i.e. we forbid variables, which are in a negative literal and are not limited by the original definition.

Extension of Datalog by negation

Problem:

The solution of a logical program does not have to be LFP, but a number of MFPs.

Ex.: BORING(x) :- \neg INTERESTING(x), MAN(x) INTERESTING(x) :- \neg BORING(x), MAN(x)

```
\mathsf{B}(\mathsf{X}) = \mathsf{M}(\mathsf{X}) - \mathsf{I}(\mathsf{X})
```

I(X) = M(X) - B(X)

Solution: Let M = {John},

M1: {BORING* = {John}, INTERESTING* = \emptyset }

M2: {INTERESTING* = {John}, BORING* = \emptyset }

- It is not true, that one model is less than the second one,
- There is no model less than M1 or M2
- \Rightarrow we have two minimal models
- Intuition: a constraint of the negation if it is applied, then to a known relation, i.e. relations have to be first defined (maybe recursively) without negation. Then a new relation can be defined by them without or with negations.
- Df.: Definition of a virtual relation S is a set of all rules, which have S in head.
- Df.: S occurs in a rule positively (negatively), if it is contained in a positive (negative) literal.

Df: Program P is stratifiable, if there is a partition P = $P_1 \cup \ldots \cup P_n$ (P_i are mutually disjunctive) such that for each $i \in <1,n>$ the following holds:

- 1. If the relational symbol S occurs positively in a rule from P_i, then the definition of S is contained in $\cup_{i \le i} P_i$
- 2. If the relational symbol S occurs negatively in a rule from P_i , then the definition of S is contained in $\cup_{j \le i} P_j$ (P_1 can be \emptyset)
- Df.: Partition P_1, \dots, P_n is called a stratification P, each P_i is a stratum.
- Remark: stratum ... layer

strata ... layers

is not stratifiable.

Df.: Let (U,V) is an edge in a dependency graph. (U,V) is positive (negative), if there is a rule V:- ... U ... and U occurs there positively (negatively).

Remark: An edge can be positive and negative as well.

Statement: Program P is stratifiable if and only if its dependency graph contain no cycle with a negative edge.

Proof: \Rightarrow each virtual relation P has assigned the index of stratum, in which it is defined. Thus, (P,Q) is positive \Rightarrow index(P) \leq index(Q)

(P,Q) is negative \Rightarrow index(P) < index(Q)

- If there was a cycle with a negative edge, there would be a node X, where index(X) < index(X), which is contradiction.
- We find strongly connected components in the dependency graph, then perform the graph's condensation, which is acyclic, and assign a topological ordering of components.

Each component defines one stratum, ordering of component defines their numbering. Since negative edges are at most between components, the rules associated to a component create a stratum.

Assumptions: rules are safe, rectified. *adom* ... union of constants from EDB and IDB $\neg Q(x_1,...,x_n)$ is transformed to (*adom* ×...× *adom*) - Q* *Algorithm*: **Evaluation of a stratifiable program** *Input*: EDB = {R₁,...,R_k}, IDB = {rules for P₁,...,P_n}, *Output*: minimal fixpoint P₁*,...,P_n* *method*: Find a stratification of the program; calculate *adom*; for i:=1 to s do {s strata}

<u>begin</u> {for stratum *i* there are relations calculated from strata *j*, where *j<i*} <u>if</u> Q in stratum *i* is positive <u>then</u> use Q;

if Q in stratum *i* is is negative then use adomⁿ - Q;

use algorithm for calculation of LFP

<u>end</u>

Statement: Evaluating algorithm stops and returns a MFP of the system of datalogical equations.
Proof: FP follows by induction on the number of strata.
Remark: LP of the stratified DATALOG[¬] can have more MFPs.

EDB: Parts(part, subpart, quantity)

	tricycle	bike,	3	Large(P
	tricycle	frame	1	Small(P
	frame	saddle	1	
	frame	pedal	2	
	bike	rim	1	
	bike	tire	1	
	tire	valve	1	
	tire	inner tube	1	
Stratification and resulting MFP:			Stratum	0: Parts

IDB

Stratum 1: Large Large = {tricycle}

Large(P) :- Parts(P,S,Q), Q > 2

 $Small(P) := Parts(P,S,Q), \neg Large(P)$

Stratum 2: Small Small = {frame, bike, tire} But: relations Small={tricycle, frame, bike, tire}, Large={} provide other MFP of this program, although it is not the result of a stratified evaluation.

Remark: Stratifiable program has generally more stratifications. They are equivalent, i.e. their evaluation leads to the same MFP (Apt, 1986).

Statement: Non-recursive Datalog programs express just those queries, which are expressible by a monotonic subset of A_R . Remark: positive relational algebra A_{RP} {×, \cup , [], ϕ }.

Statement: Non-recursive DATALOG[¬] programs express just those queries, which are expressible in A_R .

Proof: \Leftarrow by induction on the number of operators in E

1. \oslash of operators: $E \equiv R$ R is from EDB E = const. relation

then for each tuple add $p(a_1,...,a_n)$ into EDB. Nothing into IDB. 2. $E \equiv E_1 \cup E_2$

By induction hypothesis, there are programs for E_1 and E_2 (associated predicates are e_1 and e_2)

$$e(x_1,...,x_n) := e_1(x_1,...,x_n)$$

 $e(x_1,...,x_n) := e_2(x_1,...,x_n)$

3. $E \equiv E_1 - E_2$

- $e(x_1,...,x_n) := e_1(x_1,...,x_n), \neg e_2(x_1,...,x_n)$ 4. $E \equiv E_1[i_1, ..., i_k]$
 - $e(X_{i1},...,X_{ik}) :- e_1(X_1,...,X_n),$
- 5. $E \equiv E_1 \times E_2$
- $e(X_1,...,X_{n+m}) := e_1(X_1,...,X_n), e_2(X_{n+1},...,X_{n+m})$ 5. $E \equiv E_1(\phi)$

 $e(x_1,...,x_n) := e_1(x_1,...,x_n), x_{ii} = x_{ik} \text{ or } x_{ii} = a$

 \Rightarrow from non-recursiveness: topological ordering + adomⁿ – Q* for negation. For each P defined in IDB it is possible to construct an expression in A_R. By substitutions (according to ordering) we obtain relational expressions depending only on relations from FDB Query languages 2 – Expressive power 2

Ex.: Construction of LP from a relational expression
CAN_BUY(X,Y) ≡
IS_LIKED(X,Y) - (DEBTOR(X) × IS_LIKED(X,Y)[Y])
EDB: IS_LIKED(X,Y) ... person X likes the thing Y
DEBTOR(X) ... person X is a DEBTOR

denote DEBTOR(X) \times IS_LIKED(X,Y)[Y] as D_A_COUPLE(X,Y).

Then a datalogical program for CAN_BUY is: IS_ADMIRED(y) :- IS_LIKED(x,y) D_A_COUPLE(x,y):-DEBTOR(x), IS_ADMIRED(y) CAN_BUY(x,y) :- IS_LIKED(x,y), \neg D_A_COUPLE(x,y)

Ex.: Construction of a relational expression from LP EDB: R^* , S^* , adom = $R[X] \cup R[Y] \cup S$ () $P(x) := R(x,y), \neg S(y)$ $Q(z) := S(z), \neg P(z)$ R S $P(X) \equiv (R(X,Y) * \{adom - S\}(Y))[X]$ $Q(Z) \equiv S(Z) * \{adom - P\}(from) \equiv (S \cap \{adom - P\})(from)$ Since S \subset adom, salary Q(Z) \equiv S(Z) - P(Z). After substitution of Ρ $Q(Z) \equiv S(Z) - (R(Z,Y) * \{adom - S\}(Y))$ [from] Remark: adom can be replaced by R[Y]

Closed World Assumption (1)

Remark: logical program leads to one resulted relation. More generally: more (independent) relations \Rightarrow more relational expressions

Ex.: S'(y,w) := F(x,y), F(x,w),
$$y \neq w$$

If F* is such, that it can not be inferred S'(Moore, Bond), then can be declared ¬S'(Moore, Bond)

Remark: It is not proof!

Df.: Consider Horn clauses (without \neg). Closed World Assumption (CWA) says: whenever the fact R(a₁,...,a_k) is not derivable from EDB and rules, then \neg R(a₁,...,a_k).

Remark: CWA is a metarule for deriving negative information. Notation: \models CWA

Closed World Assumption (2)

Assumptions for use of CWA:

(1) different constants do not denote the same object

- Ex.: F(Flemming, Bond), F(Flemming, 007) \Rightarrow S'(Bond, 007) If Bond and 007 are names of the same agent, we obtain nonsense
- (2) Domain is closed (constants from EDB+IDB)
- Ex.: Otherwise, it could not deduce $\neg S'(Bond,007)$;

(they could have his father "except" of database).

Statement: (about CWA consistency): Let *E* is a set of facts from EDB, *I* is a set of facts derivable by the datalogical program IDB \cup EDB, *J* is a set of facts the form $\neg R(a_1,...,a_k)$, where R is a predicate symbol from IDB \cup EDB and $R(a_1,...,a_k)$ is not in *I* $\cup E$. Then $I \cup E \cup J$ is logically consistent.

Closed World Assumption (3)

Proof: Let $K = I \cup E \cup J$ is not consistent. $\Rightarrow \exists$ rule p(...): $q_1(...),...,q_k(...)$ and a substitution such that facts on the right side of the rule are in K and derived facts are not in K. Since facts from right side are positive literals, they are from $I \cup E$ and not from J. But then the literal from the rule head has to be from I (is derivable by LFP), that is a contradiction.

Remark: DATALOG[¬] can not be built on CWA.

Ex.: Consider the program

LP: BORING(Emil) :- ¬INTERESTING(Emil)

i.e. \neg INTERESTING(Emil) \Rightarrow BORING(Emil) that is \Leftrightarrow INTERESTING(Emil) \lor BORING(Emil) and therefore neither INTERESTING(Emil) nor BORING(Emil) can be derivable from LP.

Closed World Assumption (4)

- LP ⊨^{CWA} ¬ INTERESTING(Emil)
- LP ⊨^{CWA} ¬ BORING(Emil)
- But no model of LP can contain
 - {¬ INTERESTING(Emil),¬BORING(Emil)}
- \Rightarrow DATALOG[¬] is not consistent with CWA.
- Remark: LP has two minimal models:
 - {BORING(Emil)} and INTERESTING{(Emil)}
- Stratification solves the example naturally:
 - $EDB_{LP} = \emptyset$
 - first, it calculates INTERESTING, that is \emptyset , then BORING= {Emil},
 - i.e., the minimal model {BORING(Emil)} is chosen.

Closed World Assumption (5)

Consider program P': INTERESTING(Emil) :- \neg BORING(Emil) i.e. \neg BORING(Emil) \Rightarrow INTERESTING(Emil) that is \Leftrightarrow INTERESTING(Emil) \lor BORING(Emil) Stratification will chose the model {INTERESTING(Emil)}

Deductive databases (1)

Informally: $EDB \cup IDB \cup IC$

Discusion of clauses: clause is universally quantified disjunction of literals

$$\neg L_1 \lor \neg L_2 \lor \dots \lor \neg L_k \lor K_1 \lor K_2 \lor \dots \lor K_p \qquad (\Leftrightarrow)$$

$$L_1 \land L_2 \land \dots \land L_k \Longrightarrow K_1 \lor K_2 \lor \dots \lor K_p$$

Remark: p=1 in Datalog

(i) k=0, p=1:

facts, e.g., emp(George), earns(Tom,8000) unrestricted clauses, e.g. likes(Good,x)

(ii) k=1, p=0:

negative facts, e.g. – earns(Eduard,8000)

IC, e.g., ¬ likes(John,x)

Deductive databases (2)

(iii) k>1, p=0: IC, e.g. $\forall x (\neg man(x) \lor \neg woman(x))$ (iv) k>1, p=1: this is a Horn clause, i.e., IC or a deductive rule (in) k=0, p>1: disjunctive information, e.g. $man(x) \lor woman(x)$, earns(Eda,8000) v earns(Eda,9000) (vi) k>0, p>1: IC or definition of uncertain data, e.g. father $parent(x,y) \Rightarrow father(x,y) \lor mother(x,y)$ (vii) k=0, p=0: empty clauses (should not be a part of DB)

Deductive databases (3)

df.: Definite deductive database is a set clauses, which are neither of type (in) nor (vi). Database containing (v) or (vi) is indefinite.

Definite deductive DB can be understood as a couple

1. theory T, which contains special axioms:

- facts (associated to tuples from EDB)
- axioms about elements and facts:
 - completeness (no other facts hold than those from EDB and those derivable by rules)
 - domain closure axiom
 - unique names axiom

set of Horn clauses (deductive rules)

Deductive databases (4)

CWA can be used for definite deductive DB. Remark: this eliminates to need to use axioms of completeness and axiom of unique names \Rightarrow more simple implementation

Statement: Definite deductive DB is consistent.

- Answer to a query Q(x₁,...,x_k) in a deductive DB is a set of tuples (a₁,...,a_k) such, that
 - $T \models Q(a_1,...,a_k),$

♦ deductive database fulfils IC iff ∀ c∈ IC T ⊨ c.
 Remark: if a formal system is correct and complete, then ⊢ is the same as ⊨ .

Correctness of IS (1)

DB vs. real world (object world) Requirements:

consistency

It is not possible to prove that w and \neg w

correctness in the object world

Database is in accordance to the object world

completeness

In the system it is possible to prove, that either w or \neg w.

Query languages 2 – Expressive power 2

Correctness of IS (2)

Ex.: problems related to the object world

Sch1: emp(.), salary(.), earns(.,.) IC: $\forall x (emp(x) \Rightarrow \exists y (salary(y) \land earns(x,y))$ M1: emp: {George, Charles}, salary: {19500, 16700} earns: { (George, 19500), (Charles, 16700)}, M2: INSERT: (19500, 16700) to earns Sch2: emp(.), salary(.), earns(.,.) IC: $\forall x \exists y (emp(x) \Rightarrow earns(x,y))$ $\forall x \forall y (earns(x,y) \Rightarrow (emp(x) \land salary(y)))$ M2 is not a model Achieving consistency: a model construction

IC (1)

IC as closed formulas. Problems: consistency nonredundancy **Ex.:** functional dependences In the language of 1. order logic $\forall a, b, c_1, c_2, d_1, d_2$ $((\mathsf{R}(\mathsf{a},\mathsf{b},\mathsf{c}_1,\mathsf{d}_1)\land\mathsf{R}(\mathsf{a},\mathsf{b},\mathsf{c}_2,\mathsf{d}_2)\Rightarrow\mathsf{c}_1=\mathsf{c}_2))$ in theory of functional dependencies $AB \rightarrow C$ Non-redundancy is investigated by the solution of membership problem.

IC (2)

* general dependences $\forall y_1,...,y_k \exists x_1,...,x_m((A_1 \land ... \land A_p) \Rightarrow (B_1 \land ... \land B_q))$ where

 $k,\,p,\,q\geq 1,\,m{\geq}0,$

 $A_i \dots$ positive literals with variables from $\{y_1, \dots, y_k\}$

 $B_i \ldots$ equalities or positive literals with variables from $\{y_1, \ldots, y_k\} \cup \{x_1, \ldots, x_m\}$

$$m = 0 \dots$$
 full dependences

m > 0 ... embedded dependences

IC (3)

Classification of dependencies:
typed (1 variable is not in more columns)
full, embedded
tuple-generating, equality-generating
functional inclusion (generally embedded, untyped) template (g=1, B je positive literal)

General dependences - examples

EMBEDDED, TUPLE-GENERATING $\forall x (emp(x) \Rightarrow \exists y (salary(y) \land earns (x,y))$ FULL, EQUALITY-GENERATING, FUNCTIONAL $\forall x, y_1, y_2(earns(x, y_1) \land earns(x, y_2) \Rightarrow y_1 = y_2)$ FULL, TUPLE-GENERATING, INCLUSION $\forall x, z \text{ (manages}(x,z) \Rightarrow emp(x))$ FULL (MORE GENARAL) $\forall x,y,z \text{ (earns}(x,y) \land \text{manages}(x,z) \Rightarrow y > 5000)$ EMBEDDED, TUPLE-GENERATING, INCLUSION $\forall x, z \text{ (manages}(x,z) \Rightarrow \exists y \text{ (solves}(x,y) \text{))}$

Statements about dependencies (1)

Statement: The best procedure solving the membership problem for typed full dependencies has exponential time complexity.

Remark: Membership problem for full dependences is the same for finite and infinite relations.

$$\mathsf{Ex.:} \Sigma = \{\mathsf{A} \to \mathsf{B}, \mathsf{A} \subseteq \mathsf{B} \}$$

 $\tau : \mathsf{B} \subseteq \mathsf{A}$

It holds: $\Sigma \models_{f} \tau \qquad \Sigma \nvDash \tau$

e.g., on relation $\{(i+1,i): i \ge 0\}$

Statements about dependencies (2)

Statement: Membership problems for general dependences are not equivalent for finite and infinite relation. Both problems are not solvable.

- Statement: Membership problem for FD and ID is not solvable.
- Statement: Let Σ contains only FD and unary ID. Then the membership problem for finite and also for infinite relations is solvable in polynomial time.

Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for today's and future computers, then full dependences are the broadest class of dependencies usable for deductive databases.

 \Rightarrow significant role of Horn clauses in computer science.

Pessimistic view:

- Generally, completeness can not be achieved.
- Generally, consistency can not be achieved.
- Algorithmic complexity can be a real issue. It sometimes can not be improved and often not solved – an associated proof procedure does not exist.

Statements about dependencies (4)

 constraints may make consistence, but associated models do not match real world facts.

Optimistic view:

Pessimistic results are general. What are the sets of real dependencies?

Query languages - problems

 1982: Chandra and Harel stated a problem: Is there a query language (logic), enabling to express exactly all queries computable in polynomial time (PTIME)?

Answer: unknown till now.

- Immerman and Vardi proved, that the extension of the 1. order logic by the operator LFP enables it on the class of all ordered finite structures.
- Another approximation: FP+C (counting operator). It enables catch up PTIME, e.g., on all trees, planar graphs and others.
 - Remark: counting enables to find the number of items satisfying a formula.