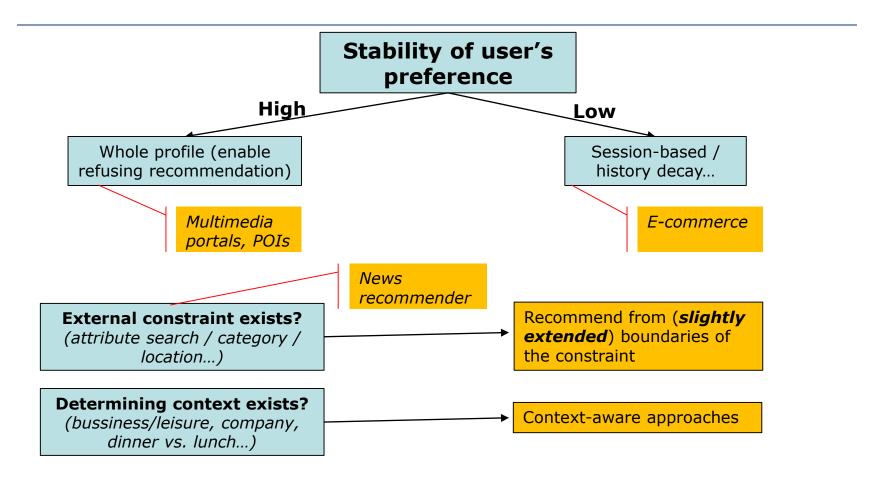

Summary and outlook


Paradigms of recommender systems

RecSys Usage Trees (When use what)

RecSys Usage Trees

Recommending Deployment (Recommending eco-system)

Think where/when to recommend what

- Homepage + new session -> recommend based on long-term preferences
- Detail of an object -> session-based or item-based recommendations (similar)
- Upon purchase -> related items
- ...

Recommending Deployment

Always evaluate what you build

- Is it effective (do the users click on it)?
 - Try another recommending paradigm
- Does it scale well (how fast are calculations)?
 - Load recommendations dynamically
- Do the users trust the recommendations (vs. "personalized" adds)?
 - Explanations, answer "why this is recommended" upon request
- Are the recommendations helpful (vs. trivial)?
 - Enhance diversity / novelty

You will fail sometimes

- It is important (and hard) to accept that something does not work well
- "If you want to double your success rate, you should double your failure rate"

Recommending Deployment

Work with respect to the domain, do not miss important variables!

- News domain -> age of articles
- Dating service -> mutual attractivity
- (some) E-commerce -> related vs. similar items after purchase

Do not build from scratch

- TensorFlow, sci-kit learn, various machine learning libraries, recsys libraries
- Almost all RecSys algorithms you can read about have some publicly available implementation

Encapsulate RecSys training + recommendation calculation

- It may signifficantly slow down other applications
- Deal with failures (no items to recommend, too long time to compute, errors...)
 - Have simple baseline ready
 - Load recommendations on the fly

Summary

Recommender systems have their roots in various research areas, such as

- information retrieval,
- information filtering, and
- text classification.

Recommender systems apply methods from different fields, such as

- machine learning,
- data mining, and
- knowledge-based systems.
- computational linguistics

Addressed main topics

- Basic recommendation algorithms
- Knowledge-based and hybrid approaches
- Evaluation of recommender systems and their business value
- Recent research topics

Outlook on the next-generation recommenders (1)

Improved collaborative filtering and hybrid techniques

- Use more data sources such as tagging data, demographic information, and time data
- Combine different techniques (predictors)
- Automatic fine-tuning of parameters

More scalable and more accurate algorithms

Netflix Prize competition (<u>www.netflixprize.com</u>) gave CF research an additional boost

Multicriterial recommender systems

 Exploiting multicriteria ratings containing contextual information as an additional source of knowledge for improving the accuracy

Context awareness

- Taking time aspects, geographical location and additional context aspects of the user into account
- Emotional context ("I fell in love with a boy. I want to watch a romantic movie.")

Group recommendations

Accompanying persons? ("Recommendations for a couple or for friends?")

Outlook on the next-generation recommenders (2)

- Better explanations that change the way the user interface works
- More elaborate user interaction models
 - Natural language processing techniques,
 - dialog-based systems for interactive preference, and
 - multimodal and multimedia-enhanced rich interfaces
 - are important steps in the transition between classical recommender systems and virtual advisors.
- Recommendation techniques will merge into other research fields
 - User modeling
 - Personalized reasoning

Next-generation recommenders might someday be able to simulate the **behavior of** an experienced salesperson instead of only filtering and ranking items from a given catalog.

Outlook on the next-generation recommenders (3)

Deep learning

- Heterogeneous information sources
- Multimedia content

Recommending user-generated content

- Twitter (finding trendy persons)
- Facebook
- Blogs / youtube...

Heterogeneous / external content integration

- Single -> multiple content providers
- Personalized reasoning

RecSys as a service

- Let someone do it for us
- Gravity R&D

Exams

- Dates
 - 16.1., 12:20, my office
 - 23.1., 12:20, my office
 - 30.1., 12:20, my office
 - One additional date in February
- Explain one key term + two additional terms
- Write + explain one of the key algorithms
- Sketch what/when/where should be recommended for some particular domain

Mid-Sized E-Commerce

- E-shop s outdoorovým vybavením například hudy.cz, hanibal.cz
- Řádově (malé) tisíce produktů, některé s variantami (barvy, velikosti)
 - Heterogenní seznam atributů, vždy cena a značka; obdobné atributy v rámci kategorie
 - Možnost komplexního atributového vyhledávání
 - Produkty jsou obvykle relevantní cca půl roku rok; stejné řady produktů se obvykle pro novou sezónu mírně obmění;
 různé "výkonnostní třídy" v rámci značky
- Přichází několik set až tisíců uživatelů/den cca 10% na hlavní stránku, 60% na konkrétní produkty a zbytek na kategorie.
 - U některých uživatelů jsme schopni dohledat minulé návštěvy, případně i objednávky
- Cca 5-10% uživatelů vloží něco do košíku
 - Řada lidí objednávku nedokončí
 - Řada lidí odchází po shlédnutí prvního objektu (primárně ti co přišli přímo na něj)
- Cílem provozovatele je zvýšit zisk z prodeje
 - zvýšit podíl osob, které si něco koupí (nebo alespoň vloží do košíku)
 - zvýšit celkový objem objednávek (více produktů v košíku)
 - zvýšit podíl zboží s vyšší marží/ziskem
- Jaké jsou klíčové vlastnosti domény?
- Kde / Jak / Komu budeme doporučovat? Jak vyhodnocovat?

Interested in more of Recommender Systems?

- NSWI167 Pokročilé metody doporučování
 - Extension towards state-of-the-art algorithms
 - Recommending challenge
- Bachelor / Master theses available
 - List of some template topics on: http://www.ksi.mff.cuni.cz/~peska/projekty.php
 - Other topics possible upon consultation
- Conferences, journals,...
- Slideshare tutorials

Thank you for your attention!

Questions?

Questions?

Questions?

http://www.recommenderbook.net

Recommender Systems – An Introduction by

Dietmar Jannach, Markus Zanker, Alexander Felfernig and Gerhard Friedrich

Cambridge University Press, 2011

ACM RecSys Recommender Systems http://recsys.acm.org

UMAP User Modeling

http://www.um.org/

ACM SIGKDD Knowledge Discovery and Data Mining www.sigkdd.org

IUI
Intelligent User Interfaces
http://iuiconf.org

Credits

Slide authors:

- Mouzhi Ge, TU Dortmund
- Fatih Gedikli, TU Dortmund
- Dietmar Jannach, TU Dortmund
- Zeynep Karakaya, TU Dortmund
- Markus Zanker, Alpen-Adria-Universitaet Klagenfurt