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Deep	Collaborative	Filtering



CF	with	Neural	Networks
• Natural	application	area
• Some	exploration	during	the	Netflix	prize
• E.g.:	NSVD1	[Paterek,	2007]

– Asymmetric	MF
– The	model:

• Input:	sparse	vector	of	interactions
– Item-NSVD1:	ratings	given	for	the	item	by	users

» Alternatively:	metadata	of	the	item
– User-NSVD1:	ratings	given	by	the	user

• Input	to	hidden	weights:	„secondary”	feature	vectors
• Hidden	layer:	item/user	feature	vector
• Hidden	to	output	weights:	user/item	feature	vectors
• Output:

– Item-NSVD1:	predicted	ratings	on	the	item	by	all	users
– User-NSVD1:	predicted	ratings	of	the	user	on	all	items

– Training	with	SGD
– Implicit	counterpart	by	[Pilászy	et.	al,	2009]
– No	non-linarities	in	the	model

Ratings	of	the	user

User	features

Predicted	ratings

Secondary	feature	
vectors

Item	feature	
vectors



Restricted	Boltzmann	Machines	(RBM)	for	
recommendation

• RBM
– Generative	stochastic	neural	network
– Visible	&	hidden	units	connected	by	(symmetric)	weights

• Stochastic	binary	units
• Activation	probabilities:	

– 𝑝 ℎ8 = 1 𝑣 = 𝜎 𝑏8L + ∑ 𝑤.,8𝑣.N
.=%

– 𝑝 𝑣. = 1 ℎ = 𝜎 𝑏.O + ∑ 𝑤.,8ℎ8P
8=%

– Training
• Set	visible	units	based	on	data
• Sample	hidden	units
• Sample	visible	units
• Modify	weights	to	approach	the	configuration	of	visible	units	to	the	data

• In	recommenders	[Salakhutdinov	et.	al,	2007]
– Visible	units:	ratings	on	the	movie

• Softmax	unit
– Vector	of	length	5	(for	each	rating	value)	in	each	unit
– Ratings	are	one-hot	encoded

• Units	correnponding	to	users	who	not	rated	the	movie	are	ignored
– Hidden	binary	units
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Deep	Boltzmann	Machines	(DBM)
• Layer-wise	training
– Train	weights	between	
visible	and	hidden	units	in	
an	RBM

– Add	a	new	layer	of	hidden	
units

– Train	weights	connecting	
the	new	layer	to	the	
network
• All	other	weights	(e.g.	
visible-hidden	weights)	are	
fixed
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Autoencoders

• Autoencoder
– One	hidden	layer
– Same	number	of	input	and	output	units
– Try	to	reconstruct	the	input	on	the	output
– Hidden	layer:	compressed	representation	of	the	data

• Constraining	the	model:	improve	generalization
– Sparse	autoencoders

• Activations	of	units are limited
• Activation	penalty
• Requires	the	whole	train	set	to	compute

– Denoising	autoencoders	[Vincent	et.	al,	2008]
• Corrupt	the	input	(e.g.	set	random	values	to	zero)
• Restore	the	original	on	the	output

• Deep	version
– Stacked	autoencoders
– Layerwise	training	(historically)
– End-to-end	training	(more	recently)
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Autoencoders	for	recommendation

• Reconstruct	corrupted	user	interaction	vectors
– CDL	[Wang	et.	al,	2015]
Collaborative Deep	Learning
Uses Bayesian	stacked denoising autoencoders
Uses tags/metadata	instead	of	the	item ID



Autoencoders	for	recommendation

• Reconstruct	corrupted	user	interaction	vectors
– CDAE	[Wu	et.	al,	2016]
Collaborative Denoising Auto-Encoder

Additional user	node	on the
input	and	bias	node beside
the hidden layer



Recurrent	autoencoder

• CRAE	[Wang	et.	al,	2016]
– Collaborative	Recurrent	Autoencoder
– Encodes	text	(e.g.	movie	plot,	review)
– Autoencoding	with	RNNs
• Encoder-decoder	architecture
• The	input	is	corrupted	by	replacing	words	with	a	
deisgnated	BLANK	token

– CDL	model	+	text	encoding	simultaneously
• Joint	learning



DeepCF methods

• MV-DNN	[Elkahky	et.	al,	2015]
– Multi-domain	recommender
– Separate	feedforward	networks	for	user	and	items per	domain

(D+1	networks)
• Features	first	are	embedded
• Run through several layers



DeepCF methods

• TDSSM	[Song	et.	al,	2016]
• Temporal Deep	Semantic Structured Model
• Similar to MV-DNN
• User features	are	the	combination	of	a	static	and	a	temporal part
• The	time	dependent	part	is	modeled	by	an	RNN



DeepCF methods

• Coevolving features	[Dai	et.	al,	2016]
• Users’	taste	and	items’	audiences	change	over	time
• User/item features	depend	on time and	are composed	of

• Time	drift	vector
• Self	evolution
• Co-evolution	with	items/users
• Interaction vector
Feature vectors	are	learned	by	RNNs
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Feature	Extraction	from	Content



Content	features	in	recommenders
• Hybrid	CF+CBF	systems

– Interaction	data	+	metadata
• Model	based	hybrid	solutions

– Initiliazing
• Obtain	item	representation	based	on	metadata
• Use	this	representation	as	initial	item	features

– Regularizing
• Obtain	metadata	based	representations
• The	interaction	based	representation	should	be	close	to	the	metadata	based
• Add	regularizing	term	to	loss	of	this	difference

– Joining
• Obtain	metadata	based	representations
• Have	the	item	feature	vector	be	a	concatenation

– Fixed	metadata	based	part
– Learned	interaction	based	part



Feature	extraction	from	content
• Deep	learning	is	capable	of	direct	feature	extraction

– Work	with	content	directly
– Instead	(or	beside)	metadata

• Images
– E.g.:	product	pictures,	video	thumbnails/frames
– Extraction:	convolutional	networks
– Applications	(e.g.):

• Fashion
• Video

• Text
– E.g.:	product	description,	content	of	the	product,	reviews
– Extraction

• RNNs
• 1D	convolution	networks
• Weighted	word	embeddings
• Paragraph	vectors

– Applications	(e.g.):
• News
• Books
• Publications

• Music/audio
– Extraction:	convolutional	networks	(or	RNNs)



Convolutional	Neural	Networks	(CNN)

• Speciality	of	images
– Huge	amount	of	information
• 3	channels	(RGB)
• Lots	of	pixels
• Number	of	weights	required	to	fully	connect	a	320x240	
image	to	2048	hidden	units:
– 3*320*240*2048	=	471,859,200

– Locality
• Objects’	presence	are	independent	of	their	location	or	
orientation
• Objects	are	spatially	restricted



Images	in	recommenders
• [McAuley	et.	Al,	2015]
– Learns	a	parameterized	distance	metric	over	visual	
features
• Visual	features	are	extracted	from	a	pretrained	CNN
• Distance	function:	Eucledian	distance	of	„embedded”	visual	
features
– Embedding	here:	multiplication	with	a	weight	matrix	to	reduce	
the	number	of	dimensions

– Personalized	distance
• Reweights	the	distance	with	a	user	specific	weight	vector

– Training:	maximizing	likelihood	of	an	existing	
relationship	with	the	target	item	
• Over	uniformly	sampled	negative	items



Images	in	recommenders
• Visual	BPR	[He	&	McAuley,	2016]

– Model	composed	of
• Bias	terms
• MF	model
• Visual	part

– Pretrained	CNN	features
– Dimension	reduction	through	„embedding”
– The	product	of	this	visual	item	feature	and	a	learned	user	feature	vector	is	used	in	the	

model
• Visual	bias

– Product	of	the	pretrained	CNN	features	and	a	global	bias	vector	over	its	features

– BPR	loss
– Tested	on	clothing	datasets	(9-25%	improvement)



Music	representations
• [Oord	et.	al,	2013]

– Extends	iALS/WMF	with	audio	
features
• To	overcome	cold-start

– Music	feature	extraction
• Time-frequency	representation
• Applied	CNN	on	3	second	

samples
• Latent	factor	of	the	clip:	average	

predictions	on	consecutive	
windows	of	the	clip

– Integration	with	MF
• (a)	Minimize	distance	between	

music	features	and	the	MF’s	
feature	vectors

• (b)	Replace	the	item	features	
with	the	music	features	
(minimize	original	loss)



Textual	information	improving	
recommendations

• [Bansal	et.	al,	2016]
– Paper	recommendation
– Item	representation

• Text	representation
– Two	layer	GRU	(RNN):	bidirectional	layer	followed	by	a	unidirectional	layer
– Representation	is	created	by	pooling	over	the	hidden	states	of	the	sequence

• ID	based	representation	(item	feature	vector)
• Final	representation:	ID	+	text	added

– Multi-task	learning
• Predict	both	user	scores
• And	likelihood	of	tags

– End-to-end	training
• All	parameters	are	trained	simultaneously	(no	pretraining)
• Loss

– User	scores:	weighted	MSE	(like	in	iALS)
– Tags:	weighted	log	likelihood	(unobserved	tags	are	downweighted)
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Session-based	Recommendations	with	
RNNs



Recurrent	Neural	Networks

• Input:	sequential	information	( 𝑥: :=%
g )

• Hidden	state	(ℎ:):	
– representation	of	the	sequence	so	far
– influenced	by	every	element	of	the	sequence	up	
to	t

• ℎ: = 𝑓 𝑊𝑥: + 𝑈ℎ:;% + 𝑏



RNN-based	machine	learning
• Sequence	to	value

– Encoding,	labeling
– E.g.:	time	series	classification

• Value	to	sequence
– Decoding,	generation
– E.g.:	sequence	generation

• Sequence	to	sequence
– Simultaneous

• E.g.:	next-click	prediction
– Encoder-decoder	architecture

• E.g.:	machine	translation
• Two	RNNs	(encoder	&	decoder)

– Encoder	produces	a	vector	describing	the	sequence
» Last	hidden	state
» Combination	of	hidden	states	(e.g.	mean	pooling)
» Learned	combination	of	hidden	states

– Decoder	receives	the	summary	and	generates	a	new	sequence
» The	generated	symbol	is	usually	fed	back	to	the	decoder
» The	summary	vector	can	be	used	to	initialize	the	decoder
» Or	can	be	given	as	a	global	context

• Attention	mechanism	(optionally)
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Exploding/Vanishing	gradients

• ℎ: = 𝑓 𝑊𝑥: + 𝑈ℎ:;% + 𝑏
• Gradient	of	ℎ: wrt.	𝑥%
– Simplification:	linear	activations

• In	reality:	bounded

– kLl
km7

= kLl
kLln7

kLln7
kLlnc

⋯ kLc
kL7

kL7
km7

= 𝑈:;%𝑊
• 𝑈 & < 1à vanishing	gradients

– The	effect	of	values	further	in	the	past	is	neglected
– The	network	forgets

• 𝑈 & > 1à exploding	gradients
– Gradients	become	very	large	on	longer	sequences
– The	network	becomes	unstable



Handling	exploding	gradients
• Gradient	clipping
– If	the	gradient	is	larger	than	a	threshold,	scale	it	back	to	
the	threshold

– Updates	are	not	accurate
– Vanishing	gradients	are	not	solved

• Enforce	 𝑈 & = 1
– Unitary	RNN
– Unable	to	forget

• Gated	networks
– Long-Short	Term	Memory	(LSTM)
– Gated	Recurrent	Unit	(GRU)
– (and	a	some	other	variants)



Long-Short	Term	Memory	(LSTM)
• [Hochreiter	&	Schmidhuber,	1999]
• Instead	of	rewriting	the	hidden	state	during	update,	

add	a	delta
– 𝑠: = 𝑠:;% + Δ𝑠:
– Keeps	the	contribution	of	earlier	inputs	relevant

• Information	flow	is	controlled	by	gates
– Gates	depend	on	input	and	the	hidden	state
– Between	0	and	1
– Forget	gate	(f):	0/1	à reset/keep	hidden	state
– Input	gate	(i):	0/1	à don’t/do	consider	the	contribution	of	

the	input
– Output	gate	(o):	how	much	of	the	memory	is	written	to	the	

hidden	state
• Hidden	state	is	separated	into	two	(read	before	you	

write)
– Memory	cell	(c):	internal	state	of	the	LSTM	cell
– Hidden	state	(h):	influences	gates,	updated	from	the	

memory	cell

𝑓: = 𝜎 𝑊s𝑥: + 𝑈sℎ:;% + 𝑏s
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Gated	Recurrent	Unit	(GRU)
• [Cho	et.	al,	2014]
• Simplified	information	flow

– Single	hidden	state
– Input	and	forget	gate	merged	à

update	gate	(z)
– No	output	gate
– Reset	gate	(r)	to	break	

information	flow	from	previous	
hidden	state

• Similar	performance	to	LSTM ℎ
r

IN

OUT

z

+
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Session-based	recommendations
• Sequence	of	events
– User	identification	problem
– Disjoint	sessions	(instead	of	consistent	user	history)

• Tasks
– Next	click	prediction
– Predicting	intent

• Classic	algorithms	can’t	cope	with	it	well
– Item-to-item	recommendations	as	approximation	in	
live	systems

• Area	revitalized	by	RNNs



GRU4Rec	(1/3)
• [Hidasi	et.	al,	2015]
• Network	structure

– Input:	one	hot	encoded	item	ID
– Optional	embedding	layer
– GRU	layer(s)
– Output:	scores	over	all	items
– Target:	the	next	item	in	the	session

• Adapting	GRU	to	session-based	
recommendations
– Sessions	of	(very)	different	length	&	lots	of	short	

sessions:	session-parallel	mini-batching
– Lots	of	items	(inputs,	outputs):	sampling	on	the	

output
– The	goal	is	ranking:	listwise	loss	functions	on	

pointwise/pairwise	scores

GRU	layer

One-hot	vector

Weighted	output

Scores	on	items

f()

One-hot	vector

ItemID	(next)

ItemID



GRU4Rec	(2/3)
• Session-parallel	mini-batches

– Mini-batch	is	defined	over	sessions
– Update	with	one	step	BPTT

• Lots	of	sessions	are	very	short
• 2D	mini-batching,	updating	on	longer	

sequences	(with	or	without	padding)	didn’t	
improve	accuracy

• Output	sampling
– Computing	scores	for	all	items	(100K	– 1M)	in	

every	step	is	slow
– One	positive	item	(target)	+	several	samples
– Fast	solution:	scores	on	mini-batch	targets

• Items	of	the	other	mini-batch	are	negative	
samples	for	the	current	mini-batch

• Loss	functions
– Cross-entropy	+	softmax
– Average	of	BPR	scores
– TOP1	score	(average	of	ranking	error	+	

regularization	over	score	values)
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GRU4Rec	(3/3)
• Observations
– Similar	accuracy	with/without	embedding
– Multiple	layers	rarely	help

• Sometimes	slight	improvement	with	2	layers
• Sessions	span	over	short	time,	no	need	for	multiple	time	scales

– Quick	conversion:	only	small	changes	after	5-10	epochs
– Upper	bound	for	model	capacity

• No	improvement	when	adding	additional	units	after	a	certain	
threshold

• This	threshold	can	be	lowered	with	some	techniques
• Results
– 20-30%	improvement	over	item-to-item	recommendations



Improving	GRU4Rec
• Recall@20	on	RSC15	by	GRU4Rec:	0.6069 (100	units),	0.6322 (1000	units)
• Data	augmentation	[Tan	et.	al,	2016]

– Generate	additional	sessions	by	taking	every	possible	sequence	starting	from	the	end	of	a	session
– Randomly	remove	items	from	these	sequences
– Long	training	times
– Recall@20	on	RSC15	(using	the	full	training	set	for	training):	~0.685 (100	units)

• Bayesian	version	(ReLeVar)	[Chatzis	et.	al,	2017]
– Bayesian	formulation	of	the	model
– Basically	additional	regularization	by	adding	random	noise	during	sampling

– Recall@20	on	RSC15:	0.6507 (1500	units)
• New	losses	and	additional	sampling	[Hidasi	&	Karatzoglou,	2017]

– Use	additional	samples	beside	minibatch	samples
– Design	better	loss	functions

• BPR��� = − log ∑ 𝑠8𝜎 𝑟. − 𝑟8
>�
8=% + 𝜆∑ 𝑟8&

>�
8=%

– Recall@20	on	RSC15:	0.7119 (100	units)



Extensions
• Multi-modal	information	(p-RNN	model)	[Hidasi	et.	al,	2016]

– Use	image	and	description	besides	the	item	ID
– One	RNN	per	information	source
– Hidden	states	concatenated
– Alternating	training

• Item	metadata	[Twardowski,	2016]
– Embed	item	metadata
– Merge	with	the	hidden	layer	of	the	RNN	(session	representation)
– Predict	compatibility	using	feedforward	layers

• Contextualization	[Smirnova	&	Vasile,	2017]
– Merging	both	current	and	next	context
– Current	context	on	the	input	module
– Next	context	on	the	output	module
– The	RNN	cell	is	redefined	to	learn	context-aware	transitions

• Personalizing	by	inter-session	modeling
– Hierarchical	RNNs	[Quadrana	et.	al,	2017],	[Ruocco	et.	al,	2017]

• One	RNN	works	within	the	session	(next	click	prediction)
• The	other	RNN	predicts	the	transition	between	the	sessions	of	the	user
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Conclusions
• Deep	Learning	is	now	in	RecSys
• Huge	potential,	but	lot	to	do
– E.g.	Explore	more	advanced	DL	techniques	

• Current	research	directions
– Item	embeddings
– Deep	collaborative	filtering
– Feature	extraction	from	content
– Session-based	recommendations	with	RNNs

• Scalability	should	be	kept	in	mind
• Don’t	fall	for	the	hype	BUT	don’t	disregard	the	
achievements	of	DL	and	its	potential	for	RecSys



Thank	you!


