
CS224d:
TensorFlow Tutorial

Bharath Ramsundar

Deep-Learning Package Zoo
● Torch
● Caffe
● Theano (Keras, Lasagne)
● CuDNN
● Tensorflow
● Mxnet
● Etc.

Deep-Learning Package Design Choices

● Model specification: Configuration file (e.g. Caffe,
DistBelief, CNTK) versus programmatic generation (e.g.
Torch, Theano, Tensorflow)

● For programmatic models, choice of high-level language:
Lua (Torch) vs. Python (Theano, Tensorflow) vs others.

● We chose to work with python because of rich community
and library infrastructure.

TensorFlow vs. Theano

● Theano is another deep-learning library with python-
wrapper (was inspiration for Tensorflow)

● Theano and TensorFlow are very similar systems.
TensorFlow has better support for distributed systems
though, and has development funded by Google, while
Theano is an academic project.

What is TensorFlow?

● TensorFlow is a deep learning library
recently open-sourced by Google.

● But what does it actually do?
○ TensorFlow provides primitives for

defining functions on tensors and
automatically computing their derivatives.

But what’s a Tensor?

● Formally, tensors are multilinear maps from vector spaces
to the real numbers (vector space, and dual space)

● A scalar is a tensor ()
● A vector is a tensor ()
● A matrix is a tensor ()
● Common to have fixed basis, so a tensor can be

represented as a multidimensional array of numbers.

TensorFlow vs. Numpy

● Few people make this comparison, but TensorFlow and
Numpy are quite similar. (Both are N-d array libraries!)

● Numpy has Ndarray support, but doesn’t offer methods to
create tensor functions and automatically compute
derivatives (+ no GPU support).

VS

Simple Numpy Recap

In [23]: import numpy as np

In [24]: a = np.zeros((2,2)); b = np.ones((2,2))

In [25]: np.sum(b, axis=1)

Out[25]: array([2., 2.])

In [26]: a.shape

Out[26]: (2, 2)

In [27]: np.reshape(a, (1,4))

Out[27]: array([[0., 0., 0., 0.]])

Repeat in TensorFlow
In [31]: import tensorflow as tf

In [32]: tf.InteractiveSession()

In [33]: a = tf.zeros((2,2)); b = tf.ones((2,2))

In [34]: tf.reduce_sum(b, reduction_indices=1).eval()

Out[34]: array([2., 2.], dtype=float32)

In [35]: a.get_shape()

Out[35]: TensorShape([Dimension(2), Dimension(2)])

In [36]: tf.reshape(a, (1, 4)).eval()

Out[36]: array([[0., 0., 0., 0.]], dtype=float32)

TensorShape behaves
like a python tuple.

More on .eval()
in a few slides

More on Session
soon

Numpy to TensorFlow Dictionary
Numpy TensorFlow

a = np.zeros((2,2)); b = np.ones((2,2)) a = tf.zeros((2,2)), b = tf.ones((2,2))

np.sum(b, axis=1) tf.reduce_sum(a,reduction_indices=[1])

a.shape a.get_shape()

np.reshape(a, (1,4)) tf.reshape(a, (1,4))

b * 5 + 1 b * 5 + 1

np.dot(a,b) tf.matmul(a, b)

a[0,0], a[:,0], a[0,:] a[0,0], a[:,0], a[0,:]

TensorFlow requires explicit evaluation!
In [37]: a = np.zeros((2,2))

In [38]: ta = tf.zeros((2,2))

In [39]: print(a)

[[0. 0.]

 [0. 0.]]

In [40]: print(ta)

Tensor("zeros_1:0", shape=(2, 2), dtype=float32)

In [41]: print(ta.eval())

[[0. 0.]

 [0. 0.]]

TensorFlow computations define a
computation graph that has no numerical
value until evaluated!

TensorFlow Session Object (1)
● “A Session object encapsulates the environment in which

Tensor objects are evaluated” - TensorFlow Docs
In [20]: a = tf.constant(5.0)

In [21]: b = tf.constant(6.0)

In [22]: c = a * b

In [23]: with tf.Session() as sess:

 : print(sess.run(c))

 : print(c.eval())

 :

30.0

30.0

c.eval() is just syntactic sugar for
sess.run(c) in the currently active
session!

https://www.tensorflow.org/versions/r0.8/api_docs/python/client.html#Session

TensorFlow Session Object (2)

● tf.InteractiveSession() is just convenient syntactic
sugar for keeping a default session open in ipython.

● sess.run(c) is an example of a TensorFlow Fetch. Will
say more on this soon.

Tensorflow Computation Graph

● “TensorFlow programs are usually structured into a
construction phase, that assembles a graph, and an
execution phase that uses a session to execute ops in the
graph.” - TensorFlow docs

● All computations add nodes to global default graph (docs)

https://www.tensorflow.org/versions/r0.8/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.8/api_docs/python/framework.html#Graph

TensorFlow Variables (1)

● “When you train a model you use variables to hold and
update parameters. Variables are in-memory buffers
containing tensors” - TensorFlow Docs.

● All tensors we’ve used previously have been constant
tensors, not variables.

https://www.tensorflow.org/versions/r0.8/how_tos/variables/index.html

TensorFlow Variables (2)
In [32]: W1 = tf.ones((2,2))

In [33]: W2 = tf.Variable(tf.zeros((2,2)), name="weights")

In [34]: with tf.Session() as sess:

 print(sess.run(W1))

 sess.run(tf.initialize_all_variables())

 print(sess.run(W2))

 :

[[1. 1.]

 [1. 1.]]

[[0. 0.]

 [0. 0.]]

Note the initialization step tf.
initialize_all_variables()

TensorFlow Variables (3)

● TensorFlow variables must be initialized before they have
values! Contrast with constant tensors.

In [38]: W = tf.Variable(tf.zeros((2,2)), name="weights")

In [39]: R = tf.Variable(tf.random_normal((2,2)), name="random_weights")

In [40]: with tf.Session() as sess:

 : sess.run(tf.initialize_all_variables())

 : print(sess.run(W))

 : print(sess.run(R))

 :

Variable objects can be
initialized from constants or
random values

Initializes all variables with
specified values.

Updating Variable State
In [63]: state = tf.Variable(0, name="counter")

In [64]: new_value = tf.add(state, tf.constant(1))

In [65]: update = tf.assign(state, new_value)

In [66]: with tf.Session() as sess:

 : sess.run(tf.initialize_all_variables())

 : print(sess.run(state))

 : for _ in range(3):

 : sess.run(update)

 : print(sess.run(state))

 :

0

1

2

3

Roughly state = new_value

Roughly new_value = state + 1

Roughly
state = 0

print(state)

for _ in range(3):

 state = state + 1

 print(state)

Fetching Variable State (1)

Calling sess.run(var) on a tf.Session() object
retrieves its value. Can retrieve multiple variables
simultaneously with sess.run([var1, var2])
(See Fetches in TF docs)

In [82]: input1 = tf.constant(3.0)

In [83]: input2 = tf.constant(2.0)

In [84]: input3 = tf.constant(5.0)

In [85]: intermed = tf.add(input2, input3)

In [86]: mul = tf.mul(input1, intermed)

In [87]: with tf.Session() as sess:

 : result = sess.run([mul, intermed])

 : print(result)

 :

[21.0, 7.0]

Fetching Variable State (2)

Inputting Data

● All previous examples have manually defined tensors.
How can we input external data into TensorFlow?

● Simple solution: Import from Numpy:

In [93]: a = np.zeros((3,3))

In [94]: ta = tf.convert_to_tensor(a)

In [95]: with tf.Session() as sess:

 : print(sess.run(ta))

 :

[[0. 0. 0.]

 [0. 0. 0.]

 [0. 0. 0.]]

Placeholders and Feed Dictionaries (1)

● Inputting data with tf.convert_to_tensor() is
convenient, but doesn’t scale.

● Use tf.placeholder variables (dummy nodes that
provide entry points for data to computational graph).

● A feed_dict is a python dictionary mapping from tf.
placeholder vars (or their names) to data (numpy arrays,
lists, etc.).

Placeholders and Feed Dictionaries (2)
In [96]: input1 = tf.placeholder(tf.float32)

In [97]: input2 = tf.placeholder(tf.float32)

In [98]: output = tf.mul(input1, input2)

In [99]: with tf.Session() as sess:

 : print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

 :

[array([14.], dtype=float32)]

Fetch value of output
from computation graph.

Feed data into
computation graph.

Define tf.placeholder
objects for data entry.

Placeholders and Feed Dictionaries (3)

Variable Scope (1)

● Complicated TensorFlow models can have hundreds of
variables.
○ tf.variable_scope() provides simple name-spacing

to avoid clashes.
○ tf.get_variable() creates/accesses variables from

within a variable scope.

Variable Scope (2)

● Variable scope is a simple type of namespacing that adds
prefixes to variable names within scope

with tf.variable_scope("foo"):

 with tf.variable_scope("bar"):

 v = tf.get_variable("v", [1])

assert v.name == "foo/bar/v:0"

Variable Scope (3)

● Variable scopes control variable (re)use

with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1])

 tf.get_variable_scope().reuse_variables()

 v1 = tf.get_variable("v", [1])

assert v1 == v

● You’ll need to use reuse_variables() to implement RNNs
in homework

Understanding get_variable (1)

● Behavior depends on whether variable reuse enabled
● Case 1: reuse set to false

○ Create and return new variable
with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1])

assert v.name == "foo/v:0"

Understanding get_variable (2)

● Case 2: Variable reuse set to true
○ Search for existing variable with given name. Raise

ValueError if none found.
with tf.variable_scope("foo"):

 v = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=True):

 v1 = tf.get_variable("v", [1])

assert v1 == v

Ex: Linear Regression in TensorFlow (1)

import numpy as np

import seaborn

Define input data

X_data = np.arange(100, step=.1)

y_data = X_data + 20 * np.sin(X_data/10)

Plot input data

plt.scatter(X_data, y_data)

Ex: Linear Regression in TensorFlow (2)
Define data size and batch size

n_samples = 1000

batch_size = 100

Tensorflow is finicky about shapes, so resize

X_data = np.reshape(X_data, (n_samples,1))

y_data = np.reshape(y_data, (n_samples,1))

Define placeholders for input

X = tf.placeholder(tf.float32, shape=(batch_size, 1))

y = tf.placeholder(tf.float32, shape=(batch_size, 1))

Ex: Linear Regression in TensorFlow (3)
Define variables to be learned

with tf.variable_scope("linear-regression"):

 W = tf.get_variable("weights", (1, 1),

 initializer=tf.random_normal_initializer())

 b = tf.get_variable("bias", (1,),

 initializer=tf.constant_initializer(0.0))

 y_pred = tf.matmul(X, W) + b

 loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Note reuse=False so
these tensors are
created anew

Ex: Linear Regression in TensorFlow (4)
Sample code to run one step of gradient descent

In [136]: opt = tf.train.AdamOptimizer()

In [137]: opt_operation = opt.minimize(loss)

In [138]: with tf.Session() as sess:

 : sess.run(tf.initialize_all_variables())

 : sess.run([opt_operation], feed_dict={X: X_data, y: y_data})

 :

But how does this actually work under the
hood? Will return to TensorFlow
computation graphs and explain.

Note TensorFlow scope is
not python scope! Python
variable loss is still visible.

Ex: Linear Regression in TensorFlow (4)
Sample code to run full gradient descent:

Define optimizer operation

opt_operation = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:

 # Initialize Variables in graph

 sess.run(tf.initialize_all_variables())

 # Gradient descent loop for 500 steps

 for _ in range(500):

 # Select random minibatch

 indices = np.random.choice(n_samples, batch_size)

 X_batch, y_batch = X_data[indices], y_data[indices]

 # Do gradient descent step

 _, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})

Let’s do a deeper.
graphical dive into
this operation

Ex: Linear Regression in TensorFlow (5)

Ex: Linear Regression in TensorFlow (6)

Learned model offers nice
fit to data.

Concept: Auto-Differentiation

● Linear regression example computed L2 loss for a linear
regression system. How can we fit model to data?
○ tf.train.Optimizer creates an optimizer.
○ tf.train.Optimizer.minimize(loss, var_list)

adds optimization operation to computation graph.
● Automatic differentiation computes gradients without user

input!

TensorFlow Gradient Computation

● TensorFlow nodes in computation graph have attached
gradient operations.

● Use backpropagation (using node-specific gradient ops) to
compute required gradients for all variables in graph.

TensorFlow Gotchas/Debugging (1)

● Convert tensors to numpy array and print.
● TensorFlow is fastidious about types and shapes. Check

that types/shapes of all tensors match.
● TensorFlow API is less mature than Numpy API. Many

advanced Numpy operations (e.g. complicated array
slicing) not supported yet!

TensorFlow Gotchas/Debugging (2)

● If you’re stuck, try making a pure Numpy implementation
of forward computation.

● Then look for analog of each Numpy function in
TensorFlow API

● Use tf.InteractiveSession() to experiment in shell.
Trial and error works!

TensorBoard

● TensorFlow has some neat
built-in visualization tools
(TensorBoard).

● We won’t use TensorBoard for
homework (tricky to set up
when TensorFlow is running
remotely), but we encourage
you to check it out for your
projects.

TensorFlow at Stanford

● CPU-only version of TensorFlow now available on a
number of Stanford clusters (Corn, Myth)

● GPU versions of TensorFlow available only on limited
clusters (Sherlock, Xstream). Feel free to use if you
already have access.

● CPU-only version sufficient for homework (but will be
slower than GPU version)

Hint for HW: Defining Embeddings in TensorFlow
Define Placeholders for inputs

train_inputs = tf.placeholder(tf.int32, shape=[batch_size])

train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

Look up embeddings for inputs.

You’ll use this for PSet 2

embeddings = tf.Variable(

 tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

embed = tf.nn.embedding_lookup(embeddings, train_inputs)

