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Deep-Learning Package Zoo
● Torch
● Caffe
● Theano (Keras, Lasagne)
● CuDNN
● Tensorflow
● Mxnet
● Etc.



Deep-Learning Package Design Choices

● Model specification: Configuration file (e.g. Caffe, 
DistBelief, CNTK) versus programmatic generation (e.g. 
Torch, Theano, Tensorflow)

● For programmatic models, choice of high-level language: 
Lua (Torch) vs. Python (Theano, Tensorflow) vs others.

● We chose to work with python because of rich community 
and library infrastructure.



TensorFlow vs. Theano

● Theano is another deep-learning library with python-
wrapper (was inspiration for Tensorflow)

● Theano and TensorFlow are very similar systems. 
TensorFlow has better support for distributed systems 
though, and has development funded by Google, while 
Theano is an academic project.



What is TensorFlow?

● TensorFlow is a deep learning library 
recently open-sourced by Google.

● But what does it actually do? 
○ TensorFlow provides primitives for 

defining functions on tensors and 
automatically computing their derivatives.



But what’s a Tensor? 

● Formally, tensors are multilinear maps from vector spaces 
to the real numbers (   vector space, and     dual space) 

● A scalar is a tensor (                               )
● A vector is a tensor (                                )
● A matrix is a tensor (                                          )
● Common to have fixed basis, so a tensor can be 

represented as a multidimensional array of numbers.



TensorFlow vs. Numpy

● Few people make this comparison, but TensorFlow and 
Numpy are quite similar. (Both are N-d array libraries!)

● Numpy has Ndarray support, but doesn’t offer methods to 
create tensor functions and automatically compute 
derivatives (+ no GPU support).

VS



Simple Numpy Recap

In [23]: import numpy as np

In [24]: a = np.zeros((2,2)); b = np.ones((2,2))

In [25]: np.sum(b, axis=1)

Out[25]: array([ 2.,  2.])

In [26]: a.shape

Out[26]: (2, 2)

In [27]: np.reshape(a, (1,4))

Out[27]: array([[ 0.,  0.,  0.,  0.]])



Repeat in TensorFlow
In [31]: import tensorflow as tf

In [32]: tf.InteractiveSession()

In [33]: a = tf.zeros((2,2)); b = tf.ones((2,2))

In [34]: tf.reduce_sum(b, reduction_indices=1).eval()

Out[34]: array([ 2.,  2.], dtype=float32)

In [35]: a.get_shape()

Out[35]: TensorShape([Dimension(2), Dimension(2)])

In [36]: tf.reshape(a, (1, 4)).eval()

Out[36]: array([[ 0.,  0.,  0.,  0.]], dtype=float32)

TensorShape behaves 
like a python tuple.

More on .eval() 
in a few slides

More on Session 
soon



Numpy to TensorFlow Dictionary
Numpy TensorFlow

a = np.zeros((2,2)); b = np.ones((2,2)) a = tf.zeros((2,2)), b = tf.ones((2,2))

np.sum(b, axis=1) tf.reduce_sum(a,reduction_indices=[1])

a.shape a.get_shape()

np.reshape(a, (1,4)) tf.reshape(a, (1,4))

b * 5 + 1 b * 5 + 1

np.dot(a,b) tf.matmul(a, b)

a[0,0], a[:,0], a[0,:] a[0,0], a[:,0], a[0,:]



TensorFlow requires explicit evaluation!
In [37]: a = np.zeros((2,2))

In [38]: ta = tf.zeros((2,2))

In [39]: print(a)

[[ 0.  0.]

 [ 0.  0.]]

In [40]: print(ta)

Tensor("zeros_1:0", shape=(2, 2), dtype=float32)

In [41]: print(ta.eval())

[[ 0.  0.]

 [ 0.  0.]]

TensorFlow computations define a 
computation graph that has no numerical 
value until evaluated!



TensorFlow Session Object (1)
● “A Session object encapsulates the environment in which 

Tensor objects are evaluated” - TensorFlow Docs
In [20]: a = tf.constant(5.0)

In [21]: b = tf.constant(6.0)

In [22]: c = a * b

In [23]: with tf.Session() as sess:

   ....:     print(sess.run(c))

   ....:     print(c.eval())

   ....:     

30.0

30.0

c.eval() is just syntactic sugar for 
sess.run(c) in the currently active 
session!

https://www.tensorflow.org/versions/r0.8/api_docs/python/client.html#Session


TensorFlow Session Object (2)

● tf.InteractiveSession() is just convenient syntactic 
sugar for keeping a default session open in ipython.

● sess.run(c) is an example of a TensorFlow Fetch. Will 
say more on this soon.



Tensorflow Computation Graph

● “TensorFlow programs are usually structured into a 
construction phase, that assembles a graph, and an 
execution phase that uses a session to execute ops in the 
graph.” - TensorFlow docs

● All computations add nodes to global default graph (docs)

https://www.tensorflow.org/versions/r0.8/get_started/basic_usage.html
https://www.tensorflow.org/versions/r0.8/api_docs/python/framework.html#Graph


TensorFlow Variables (1)

● “When you train a model you use variables to hold and 
update parameters. Variables are in-memory buffers 
containing tensors” - TensorFlow Docs.

● All tensors we’ve used previously have been constant 
tensors, not variables.

https://www.tensorflow.org/versions/r0.8/how_tos/variables/index.html


TensorFlow Variables (2)
In [32]: W1 = tf.ones((2,2))

In [33]: W2 = tf.Variable(tf.zeros((2,2)), name="weights")

In [34]: with tf.Session() as sess:

           print(sess.run(W1))

           sess.run(tf.initialize_all_variables())

           print(sess.run(W2))

   ....:     

[[ 1.  1.]

 [ 1.  1.]]

[[ 0.  0.]

 [ 0.  0.]]

Note the initialization step tf.
initialize_all_variables()



TensorFlow Variables (3)

● TensorFlow variables must be initialized before they have 
values! Contrast with constant tensors.

In [38]: W = tf.Variable(tf.zeros((2,2)), name="weights")

In [39]: R = tf.Variable(tf.random_normal((2,2)), name="random_weights")

In [40]: with tf.Session() as sess:

   ....:     sess.run(tf.initialize_all_variables())

   ....:     print(sess.run(W))

   ....:     print(sess.run(R))

   ....:     

Variable objects can be 
initialized from constants or 
random values

Initializes all variables with 
specified values.



Updating Variable State
In [63]: state = tf.Variable(0, name="counter")

In [64]: new_value = tf.add(state, tf.constant(1))

In [65]: update = tf.assign(state, new_value)

In [66]: with tf.Session() as sess:

   ....:     sess.run(tf.initialize_all_variables())

   ....:     print(sess.run(state))

   ....:     for _ in range(3):

   ....:         sess.run(update)

   ....:         print(sess.run(state))

   ....:         

0

1

2

3

Roughly state = new_value

Roughly new_value = state + 1

Roughly
state = 0

print(state)

for _ in range(3):

  state = state + 1

  print(state)



Fetching Variable State (1)

Calling sess.run(var) on a tf.Session() object 
retrieves its value. Can retrieve multiple variables 
simultaneously with sess.run([var1, var2]) 
(See Fetches in TF docs)

In [82]: input1 = tf.constant(3.0)

In [83]: input2 = tf.constant(2.0)

In [84]: input3 = tf.constant(5.0)

In [85]: intermed = tf.add(input2, input3)

In [86]: mul = tf.mul(input1, intermed)

In [87]: with tf.Session() as sess:

   ....:       result = sess.run([mul, intermed])

   ....:       print(result)

   ....:     

[21.0, 7.0]



Fetching Variable State (2)



Inputting Data

● All previous examples have manually defined tensors. 
How can we input external data into TensorFlow?

● Simple solution: Import from Numpy:

In [93]: a = np.zeros((3,3))

In [94]: ta = tf.convert_to_tensor(a)

In [95]: with tf.Session() as sess:

   ....:     print(sess.run(ta))

   ....:     

[[ 0.  0.  0.]

 [ 0.  0.  0.]

 [ 0.  0.  0.]]



Placeholders and Feed Dictionaries (1)

● Inputting data with tf.convert_to_tensor() is 
convenient, but doesn’t scale.

● Use tf.placeholder variables (dummy nodes that 
provide entry points for data to computational graph). 

● A feed_dict is a python dictionary mapping from tf.
placeholder vars (or their names) to data (numpy arrays, 
lists, etc.).



Placeholders and Feed Dictionaries (2)
In [96]: input1 = tf.placeholder(tf.float32)

In [97]: input2 = tf.placeholder(tf.float32)

In [98]: output = tf.mul(input1, input2)

In [99]: with tf.Session() as sess:

   ....:       print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

   ....:     

[array([ 14.], dtype=float32)]

Fetch value of output 
from computation graph.

Feed data into 
computation graph.

Define tf.placeholder 
objects for data entry.



Placeholders and Feed Dictionaries (3)



Variable Scope (1)

● Complicated TensorFlow models can have hundreds of 
variables. 
○ tf.variable_scope() provides simple name-spacing 

to avoid clashes.
○ tf.get_variable() creates/accesses variables from 

within a variable scope.



Variable Scope (2)

● Variable scope is a simple type of namespacing that adds 
prefixes to variable names within scope

with tf.variable_scope("foo"):

    with tf.variable_scope("bar"):

        v = tf.get_variable("v", [1])

assert v.name == "foo/bar/v:0"



Variable Scope (3)

● Variable scopes control variable (re)use

with tf.variable_scope("foo"):

    v = tf.get_variable("v", [1])

    tf.get_variable_scope().reuse_variables()

    v1 = tf.get_variable("v", [1])

assert v1 == v

● You’ll need to use reuse_variables() to implement RNNs 
in homework



Understanding get_variable (1)

● Behavior depends on whether variable reuse enabled
● Case 1: reuse set to false

○ Create and return new variable
with tf.variable_scope("foo"):

    v = tf.get_variable("v", [1])

assert v.name == "foo/v:0"



Understanding get_variable (2)

● Case 2: Variable reuse set to true
○ Search for existing variable with given name. Raise 

ValueError if none found.
with tf.variable_scope("foo"):

    v = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=True):

    v1 = tf.get_variable("v", [1])

assert v1 == v



Ex: Linear Regression in TensorFlow (1)

import numpy as np

import seaborn

# Define input data

X_data = np.arange(100, step=.1)

y_data = X_data + 20 * np.sin(X_data/10)

# Plot input data

plt.scatter(X_data, y_data)



Ex: Linear Regression in TensorFlow (2)
# Define data size and batch size

n_samples = 1000

batch_size = 100 

# Tensorflow is finicky about shapes, so resize

X_data = np.reshape(X_data, (n_samples,1)) 

y_data = np.reshape(y_data, (n_samples,1))

# Define placeholders for input

X = tf.placeholder(tf.float32, shape=(batch_size, 1)) 

y = tf.placeholder(tf.float32, shape=(batch_size, 1)) 



Ex: Linear Regression in TensorFlow (3)
# Define variables to be learned

with tf.variable_scope("linear-regression"):

  W = tf.get_variable("weights", (1, 1), 

                      initializer=tf.random_normal_initializer())

  b = tf.get_variable("bias", (1,),

                      initializer=tf.constant_initializer(0.0))

  y_pred = tf.matmul(X, W) + b 

  loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Note reuse=False so 
these tensors are 
created anew



Ex: Linear Regression in TensorFlow (4)
# Sample code to run one step of gradient descent

In [136]: opt = tf.train.AdamOptimizer()

In [137]: opt_operation = opt.minimize(loss)

In [138]: with tf.Session() as sess:

   .....:     sess.run(tf.initialize_all_variables())

   .....:     sess.run([opt_operation], feed_dict={X: X_data, y: y_data})

   .....: 

But how does this actually work under the 
hood? Will return to TensorFlow 
computation graphs and explain.

Note TensorFlow scope is 
not python scope! Python 
variable loss is still visible.



Ex: Linear Regression in TensorFlow (4)
# Sample code to run full gradient descent:

# Define optimizer operation

opt_operation = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:

  # Initialize Variables in graph

  sess.run(tf.initialize_all_variables())

  # Gradient descent loop for 500 steps

  for _ in range(500):

    # Select random minibatch

    indices = np.random.choice(n_samples, batch_size)

    X_batch, y_batch = X_data[indices], y_data[indices]

    # Do gradient descent step

    _, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})

Let’s do a deeper. 
graphical dive into 
this operation



Ex: Linear Regression in TensorFlow (5)



Ex: Linear Regression in TensorFlow (6)

Learned model offers nice 
fit to data.



Concept: Auto-Differentiation

● Linear regression example computed L2 loss for a linear 
regression system. How can we fit model to data?
○ tf.train.Optimizer creates an optimizer.
○ tf.train.Optimizer.minimize(loss, var_list) 

adds optimization operation to computation graph. 
● Automatic differentiation computes gradients without user 

input!



TensorFlow Gradient Computation

● TensorFlow nodes in computation graph have attached 
gradient operations.

● Use backpropagation (using node-specific gradient ops) to 
compute required gradients for all variables in graph.



TensorFlow Gotchas/Debugging (1)

● Convert tensors to numpy array and print. 
● TensorFlow is fastidious about types and shapes. Check 

that types/shapes of all tensors match.
● TensorFlow API is less mature than Numpy API. Many 

advanced Numpy operations (e.g. complicated array 
slicing) not supported yet!



TensorFlow Gotchas/Debugging (2)

● If you’re stuck, try making a pure Numpy implementation 
of forward computation.

● Then look for analog of each Numpy function in 
TensorFlow API

● Use tf.InteractiveSession() to experiment in shell. 
Trial and error works!



TensorBoard

● TensorFlow has some neat 
built-in visualization tools 
(TensorBoard).

● We won’t use TensorBoard for 
homework (tricky to set up 
when TensorFlow is running 
remotely), but we encourage 
you to check it out for your 
projects.



TensorFlow at Stanford

● CPU-only version of TensorFlow now available on a 
number of Stanford clusters (Corn, Myth)

● GPU versions of TensorFlow available only on limited 
clusters (Sherlock, Xstream). Feel free to use if you 
already have access.

● CPU-only version sufficient for homework (but will be 
slower than GPU version)



Hint for HW: Defining Embeddings in TensorFlow
# Define Placeholders for inputs

train_inputs = tf.placeholder(tf.int32, shape=[batch_size])

train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

# Look up embeddings for inputs.

# You’ll use this for PSet 2

embeddings = tf.Variable(

    tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

embed = tf.nn.embedding_lookup(embeddings, train_inputs)


