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Why Deep Learning?
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Why Deep Learning?
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Complex Architectures
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Neural Networks are Universal Function
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Inspiration for Neural Learning




Neural Model
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Feedforward Multilayered Network
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Learning

hidden layer 1 hidden layer 2 hidden layer 3

input laver
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Stochastic Gradient Descent

* Generalization of (Stochastic) Gradient Descent
1
b= §(f - y)°
f=w'x

for 1=12,...,n
wWi=w—-1nVEx



Stochastic Gradient Descent




Backpropagation
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Backpropagation

* Does not work well in plain a
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Modern Deep Networks

* Ingredients:

e Rectified Linear Activation
function a.k.a. RelLu

o(x) =max(0, )

o(z) =maz(az,z) a<l
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Modern Deep Networks

* |ngredients:

* Mini-batches:
— Stochastic Gradient Descent

— Compute gradient over many (50 -100) data points
(minibatch) and update.



Modern Feedforward Networks

* |ngredients:

 Adagrad a.k.a. adaptive learning rates

Decrease step size In a factor-wise
over time fashion

o= SGD
- : = Momentum
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Deep Learning for RecSys

* Feature extraction directly from the content
* Image, text, audio, etc.
* Instead of metadata
* For hybrid algorithms

e Heterogenous data handled easily
e Dynamic/Sequential behaviour modeling with RNNs

* More accurate representation learning of users and items
* Natural extension of CF & more

* RecSys is a complex domain
* Deep learning worked well in other complex domains
 Worth a try



Research directions in DL-RecSys

* As of 2017 summer, main topics:
* Learning item embeddings
e Deep collaborative filtering
* Feature extraction directly from content
* Session-based recommendations with RNN

* And their combinations



Best practices

 Start simple
* Add improvements later

* Optimize code
* GPU/CPU optimizations may differ

 Scalability is key

* Opensource code

* Experiment (also) on public datasets

* Don’t use very small datasets

* Don’t work on irrelevant tasks, e.g. rating prediction



ltem embeddings & 2vec models




Embeddings

* Embedding: a (learned) real value vector
representing an entity

— Also known as:
e Latent feature vector
 (Latent) representation

— Similar entities’ embeddings are similar
e Use in recommenders:

— Initialization of item representation in more advanced
algorithms

— Item-to-item recommendations



Matrix factorization as learning

embeddings

* MF: user & item embedding learning |

— Similar feature vectors R
* Twoitems are similar
* Two users are similar
* User prefers item

— MF representation as a simplictic neural
network
* Input: one-hot encoded user ID CTubTu2 - Tum

* Input to hidden weights: user feature
matrix W

* Hidden layer: user feature vector

* Hidden to output weights: item feature u
matrix

* QOutput: preference (of the user) over the Wy
items

Q
-




Word2Vec

[Mikolov et. al, 2013a]
* Representation learning of words
Shallow model

Data: (target) word + context pairs
— Sliding window on the document

— Context = words near the target
* Insliding window "

Word’s Context (Window = 3)

 1-5 words in both directions [where there's afwilllthere's a way.
e Two models
— Continous Bag of Words (CBOW) Target Word

— Skip-gram



Word2Vec - CBOW

word(t
* Continuous Bag of Words 1*( )
* Maximalizes the probability of the target word given the Classifier
context
* Model ,Fake”
— Input: one-hot encoded words Prediction

— Input to hidden weights
*  Embedding matrix of words

Wy _ W
— Hidden layer _'TL / _%L /

* Sum of the embeddings of the words in the context E E E E
— Hidden to output weights
— Softmax transformation ) 1 1 1
* Smooth approximation of the max operator word(t-2) word(t-1) word(t+1) word(t+2)

* Highlights the highest value

"i N
.= et . wilc)t;
S ST (rj: scores) =
— Output: likelihood of words of the corpus given the context softmax

 Embeddings are taken from the input to hidden matrix {r},

— Hidden to output matrix also has item representations (but not
used) w

Our TRUE target - earning
embedings E
0,1,0,0,1,0,0,1,0.1

Shared input/output

weights for thesame
words




Word2Vec — Skip-gram

word(t-2) word(t-1) word(t+1) word(t+2)

* Maximalizes the probability of the Y
context, given the target word Fake* R
 Model Prediction Wy

— Input: one-hot encoded word
— Input to hidden matrix: embeddings E

— Hidden state 7
* Item embedding of target word(t)

— Softmax transformation

— Output: likelihood of context words
(given the input word)

{p(wilf)}i-"51

softmax

v
* Reported to be more accurate o
Learning w
pairwise
prediction E

0,0,00,1,0,0,0,0,0




Word2Vec — Skip-gram

Source Text
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http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Word2Vec — Skip-gram

Output Layer
Softmax Classifier

Hidden Layer

Probability that the word at a

Linear Neurons ; ——= randomly chosen, nearby
Input Vector position is “abandon”
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Word2Vec — Skip-gram

e Shared weights for the same input and output word
* Afterwards, apply softmax to get a probability distribution

* Still, too many weights -> sample negative elements to be updated
o Negative sampling, http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Output weights for “car”

softmax
Word vector for “ants” 3 . _
§ Probability that if you
e X8 ) = randomly pick a word
300 features § nearby “ants”, that it is “car”

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Geometry of the Embedding Space
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Paragraph2vec, doc2vec

[Le & Mikolov, 2014]

Learns representation of
paragraph/document

Based on CBOW model

Paragraph/document
embedding added to the
model as global context

paragraph ID word(t-2) word(t-1) word(t+1) word(t+2)



..2vec for Recommendations

Replace words with items in a session/user profile

item(t)

rr 1T 1

item(t-2) item(t-1) item(t+1l) item(t+2)



Prod2Vec

e [Grbovicet. al, 2015]

e Skip-gram model on products
— Input: i-th product purchased by the user
— Context: the other purchases of the user
* Bagged prod2vec model

— Input: products purchased in one basket by the user
* Basket: sum of product embeddings

— Context: other baskets of the user
* Learning user representation
— Follows paragraph2vec
— User embedding added as global context
— Input: user + products purchased except for the i-th
— Target: i-th product purchased by the user
 [Barkan & Koenigstein, 2016] proposed the same model later as item2vec
— Skip-gram with Negative Sampling (SGNS) is applied to event data



Prod2Vec

[Grbovic et. al, 2015]
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Bagged Prod2Vec

[Grbovic et. al, 2015]

emails of user Un
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m-th email

bagged-prod2vec model updates



User-Prod2Vec

[Grbovic et. al, 2015]
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Utilizing more information

meta(t-1) item(t-1) item(t) meta(t+l) item(t+2)

* Meta-Prod2vec |Vasile et. al, 2016]
— Based on the prod2vec model

— Uses item metadata
* Embedded metadata
* Added to both the input and the context \(\
— Losses between: target/context item/metadata
* Final loss is the combination of 5 of these losses 7

 Content2vec [Nedelec et. al, 2017]

— Separate modules for multimodel information I
* CF: Prod2vec
* Image: AlexNet (a type of CNN) T
* Text: Word2Vec and TextCNN

— Learns pairwise similarities
* Likelihood of two items being bought together

Classifier

Classifier Classifier

Classifier Classifier

item(t) meta(t)
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