#### course: **Retrieval of Multimedia Content on the Web** (NDBlo34) © Tomáš Skopal, 2017

#### Iecture 8: Semantic descriptors – deep learning

doc. RNDr. Tomáš Skopal, Ph.D. Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague

#### Semantic-visual words

- domain-specific high-level
  - eigenfaces (PCA)



"eigenhouses" (SVD)



global match, restricted input (canonic form)

### Semantic-visual words

- often complex scene
  - unlimited camera settings, 3D projection, occlusion, abstract, sketch
- hierarchical decomposition
  - object-wise segmentation?
    - extremely difficult in general
    - good for 3D scene reconstruction, etc.
    - not a solution for retrieval



#### Semantic-visual words

- where to get the high-level semantics?
  - human annotators  $\rightarrow$  ground truth (data in classes)
  - how?

Iet the neural networks do this dirty job "somehow"!

- supervised learning (also unsupervised for some tasks)
- a sort of perceptron neural network (NN)
  - back-propagation (gradient descent)
  - training image example + annotation provided by human user
     = the NN "magically" connects the semantics with visual features!
  - well, not that easy <sup>(3)</sup>

## Learning in information retrieval

- history = failure@large-scale
  - fully-connected layers
  - limited number of neurons per layer (n<sup>2</sup> parameters)
    - because of computation power
  - therefore, shallow neural networks
  - small training data = overfitting
- today = success@large-scale
  - convolutional and fully-connected networks
  - more neurons per layer (but below n<sup>2</sup> parameters!)
  - GPU technology enabling fast vector parallelism
  - therefore, deep networks
  - large training data
    - e.g., ImageNet, 1.2M training images, 1000 classes

## Semantic-visual words in CNN

- convolutional deep neural networks (CNN)
  - by LeCun 1989
  - convolution is hard-wired mechanism in human cognition (visual cortex)
    - where cells in retina ("pixels") is the input layer
  - inspired by this, CNN mimic the visual cortex
    - deep architecture: convolutional layers + fully connected layers
    - training example: raw image (no preprocessing, just scaling) + multiclass annotation
  - hierarchy of visual words
    - from low-level to high-level
    - fully connected layers on the top lead to semantic classes (as the output)

## Semantic-visual words in CNN

- convolutional deep neural networks (CNN), cont.
  - the visual words (coded in neuron connection weights) arranged in the CNN such that they are activated regardless of
    - locality
    - scale
  - the last layer = semantic annotation
  - a (last k)<sub>th</sub> layer = semantic-visual descriptor
    - the smaller k, the more semantic/less visual
    - the greater k, the more visual/less semantic



[Fig source: http://visiono3.csail.mit.edu/cnn\_art/index.html ]

example: AlexNet



**GPU1** 

- why not traditional fully-connected perceptron layers?
  - not fit to image recognition needs
  - too many weights (parameters) vs. too few neurons (feature detectors)
    - prone to overfitting
    - bad recognition effectiveness/resolution
    - computationally expensive
  - global vs. local receptive field
    - not translation-invariant
- convolutional network
  - actually IS the traditional multi-layer perceptron network!
  - but constrained and designed for image recognition (annotation) task
    - not fully-connected, receptive fields introduced, shared weight banks (filters), etc.



- back-propagation (learning)
  - looks for the minimum of the error (loss) function in weight space using the method of gradient descent
    - applying partial derivative of the loss function w.r.t. *w<sub>i</sub>* or bias
  - requires differentiable activation functions
    - like sigmoid, or treating the indifferentiable points (ReLU)
  - finds local extremes
  - note that in convolutional layers the convolution filters are learned!
    - compare to static convolution filters used for edge detection, etc.

#### types of layers

- data layers (input, output)
- vision layers
  - convolutional layers, pooling layers
- activation layers
  - ReLU, Sigmoid, …
- common layers
  - inner product (fully connected layer), ...
- Ioss layers
  - softmax, Euclidean, ...

# **Convolutional layer**

- neurons arranged in 3D block (3D layer)
  - width x height x depth
- each neuron is classic perceptron
  - connected to a set of neurons in the previous layer arranged in receptive field (3D block of neurons)
    - receptive field depth
       = previous layer depth
    - weights w<sub>i</sub> of the connections
       = 3D block (filter) of the same volume as the receptive field
  - neuron is activated as usual
    - computing dot-product of activations x<sub>i</sub> of neurons from the receptive field and the filter



# **Convolutional layer**

#### depth slice

- neurons in the same depth of layer
  - share the same filter
    - assuming same features may appear regardless of the position in image
- for each neuron the receptive field slides (in width, height)
  - stride = parameter of sliding
    - 1 is by 1 pixel, 2 is by 2 pixels, so smaller output

 1
 2
 2
 3

 6
 8
 1
 8

 0
 1
 0
 0

 2
 5
 1
 0

- zero-padding = thickness of borders filled with zeros
  - extends the sliding region





# **Pooling layer**

- reduces the spatial size of input
  - reason: performance, overfitting
  - placed in between convolutional layers
  - could be omitted
- for every depth slice
  - usually 2x2 filter applied and stride 2
  - usually max pooling (max value taken), could be also avg, L2-norm
- backpropagation
  - routing the gradient to input with the highest value





V

6 8

3 4

#### **ReLU (Rectified Linear Unit) layer**

- elementwise activation function f(x) = max(o,x)
- most popular activation function for deep networks
  - computationally cheap
  - scale-invariant
  - efficient gradient propagation
  - biologically plausible

## Fully connected and loss layers

- fully connected layers
  - as in regular networks, neurons connected to all neurons in previous layer
  - activation computed as inner product
- Ioss layer
  - usually the last layer (in very deep CNNs also in the middle)
  - determines the penalization of predicted and true labels
    - softmax predicting one class out of k (sums to 1)
    - sigmoid cross-entropy k independent probabilities in [0,1]

$$L_i = -\log \Biggl( rac{e^{f_{y_i}}}{\sum_j e^{f_j}} \Biggr)$$

or equivalently

$$L_i = -f_{y_i} + \log \sum_j e^{f_j} \qquad \qquad f_j(z) = rac{e^{z_j}}{\sum_k e^{z_k}}$$

#### **Basic use case – classification**

vector of weights/ probabilities to classes (loss layer) ----- --- Prediction for ../../../examples/images/bike.jpg -----0.5061 - "n03792782 mountain bike, all-terrain bike, off-roader" 0.4462 - "n09193705 alp" 0.0104 - "n09468604 valley, vale" 0.0079 - "n09246464 cliff, drop, drop-off" 0.0065 - "n09472597 volcano"



#### **Basic use case – classification**

- models (trained CNN) rapidly evolving
  - ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
  - going deeper...



| Year | CNN               | Developed<br>by                                              | Place | Top-5 error<br>rate | No. of<br>parameters |
|------|-------------------|--------------------------------------------------------------|-------|---------------------|----------------------|
| 1998 | LeNet(8)          | Yann LeCun<br>et al                                          |       |                     | 60 thousand          |
| 2012 | AlexNet(7)        | Alex<br>Krizhevsky,<br>Geoffrey<br>Hinton, Ilya<br>Sutskever | 1st   | 15.3%               | 60 million           |
| 2013 | ZFNet()           | Matthew<br>Zeiler and<br>Rob Fergus                          | 1st   | 14.8%               |                      |
| 2014 | GoogLeNet(1<br>9) | Google                                                       | 1st   | 6.67%               | 4 million            |
| 2014 | VGG Net(16)       | Simonyan,<br>Zisserman                                       | 2nd   | 7.3%                | 138 million          |
| 2015 | ResNet(152)       | Kaiming He                                                   | 1st   | 3.6%                |                      |

#### **Basic use case – similarity**

 Use results of (some layer of) CNN to calculate similarity of objects

Recommend
 for police lineups



Current Suspect

Lineup Members



#### **Basic use case – similarity**



## **Transfer learning in CNN**

- light-weighed transfer learning
  - fine-tuned CNN taking an already learned model, adapting the architecture, and resuming training from the already learned model weights



# **Transfer learning in CNN**

- example Flickr style fine-tuning
  - take AlexNet model (trained on 1.3M generic images)
  - replace classification layer (1000 class Long Exposure neuron) by another (20 style class neurons) + random init.
  - train (fine-tune) by smaller training data (80K Flickr images, 20 style classes)

Max

pooling

Max

Stride of 4

224

pooling







Noir





dense

Max pooling densé

Romantic





HDR

Vintage

Minimal