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Recommending in Czech

Second-hand Bookshop

 Mostly single item in stock

 Few content-based attributes (low information value)

- Title, author, price, category, textual description

- Hard to define informative attributes

- Title (and author name) in Czech

- No common book identifier

(ISBN mostly inapplicable)

 No explicit feedback

 Page-view, time on page, buys…

 Users identified through cookies

 Approx. 9500 active books

 50-100 visitors / day

 2-4 purchases
WIMS 2015, Limassol
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Challenge

 Recommending for small e-commerce websites

 No explicit feedback

 Very few visited pages

 Low user loyalty (they usually never go back)

 Not enough data for collaborative filtering

 Moreover for Second-hand bookshop

 Single item available in stock => No best-selling objects

 Very few common attributes about books, expensive to fill-in

 Not enough data for content-based filtering

 Difficult navigation, high ratio between number of books vs. 

attributes, data filtration and attribute search is problematical

WIMS 2015, Limassol
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Proposed Solution: use LOD

 Use information from LOD

 Queried by SPARQL

 In a natural way to the recommender systems

 attributes of an object

 Together with Content-based or Hybrid recommender

system

WIMS 2015, Limassol
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Linked Open Data

 Part of Semantic Web movement

 „lightweighted“ SemWeb

 Each resource has unique URI

 You can link resources accross datasets

 Querying language SPARQL available

 DBPedia.org/sparql

WIMS 2015, Limassol
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LOD in RecSys

 Similarity of objects (or users) induced by (subset) of LOD

 Various distance metrics, e.g., 
https://www.insight-centre.org/content/measuring-semantic-distance-linked-open-data-enabled-recommender-systems-0

 Or simply collect relevant attributes and run standard CB algorithm

 You need to have a fallback if no LOD data was found for some objects

 Regular updates of resources

 Another option: build your service on LOD sources

 LM’s bachelor thesis

WIMS 2015, Limassol
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Using LOD in E-Commerce

 No local LOD repository (high maintenance costs)
 Store only relevant information for existing E-shop objects

 Query LOD regulary for updated information and upon creates/updates
 HTTP protocol

WIMS 2015, Limassol

Works independently on 1b LOD Processing Extension
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LOD Datasets Selection

 Necessary conditions
 SPARQL endpoint

 Good coverage of books domain
 With relevant non-trivial attributes

 Czech book names available

 We would really appriciate LOD meta-query language or

LOD statistics
 „Find me datasets with books available in Czech language“

WIMS 2015, Limassol
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Czech and English DBPedia

 Czech DBPedia

- Less evolved in general

- No sameAs links (no link to other languages)

- Many books has no infoboxes -> no type -> keyword search

+ wikiPageLinks even for unrecognized types

+ Names in Czech

 English DBPedia

- Mapped through owl:sameAs links => Czech Wiki page must

exist

- Locally famous authors probably won’t be listed

+ Better information for „blockbusters“

WIMS 2015, Limassol
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Czech and English DBPedia

WIMS 2015, Limassol

Wikipedia

Infobox

Infobox missing



Querying DBPedia

 Simple SPARQL queries for book and author
 With or without check for correct rdf:type

 Processing RDF, finding

 Related genres, books, persons and categories

 Relevant location and language information

 Tokenized abstract

 Publisher, occupation etc.

 Stored as Binary attributes

 E.g. RelatedPerson_Sherlock_Holmes = 1

 Ideal for VSM and CBMF recommender systems
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Query Statistics
Query type Found books Found authors Total triples

EN_typed 2.5% (0.104s) 31.1% (0.247s) 385K

CS_typed 1.0% (0.018s) 21.4% (0.022s) 651K (15K)

CS_keyword 9.2% (0.017s) 34.4% (0.024s) 1.37M (46K)
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Attribute EN_typed CS_typed CS_keyword

Rel. books 5.1% (3K) 4.4% (1.4K) 4.7% (1.4K)

Rel. persons 4.4% (6K) 2.3% (1.2K) 3.2% (1.7K)

Rel. categories 32.5% (312K) 22% (615K) 38.5% (1.3M)

Rel. genres 9.6% (5K) 2.4% (518) 4.8% (1.6K)

Language 1.3% (179) 0.0% (4) 2.1% (356)

Location 26% (47K) 17.9% (15K) 18.3% (14K)

Publisher 0.2% (26) 0.5% (114) 2.7% (1.0K)

Occupation 17.7% (11K) 7.6% (2.7K) 7.6% (2.5K)

• Data in total about 20-40% of e-shop objects, 

however the quality is often questionable

• Categories, genres, (location), related books and persons



Off-line Experiments

 Vector Space Model (VSM) algorithm with TF-IDF

 Train set (2/3 of user data), Test set (1/3)

 Recommender systems tries to predict visited objects

 Presence of visited object in top-k recommended, nDCG
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Concluding Remarques

 Applicability of LOD depends on domain coverage

 Automated querying of whole LOD cloud is still

problematical

 Keep in mind for future

 „Bounded“ applications plausible
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Schema of MovieLens1M Dataset

Extensions

HT 2017, Prague Ladislav Peska: Linking Content Information 

with BPR via Multiple Content Alignments
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