
Tomáš Horváth

RECOMMENDER SYSTEMS

Tutorial at the conference

Znalosti 2012
October 14-16, 2012, Mikulov, Czech Republic

Institute of Computer Science, Faculty od Science
Pavol Jozef Šafárik University in Košice, Slovak Republic

Information Systems and Machine Learning Lab
University of Hildesheim, Germany

Contents

• Introduction

• Basic concepts

• Knowledge-based techniques

• Content-based techniques

• Collaborative-filtering

• Matrix factorization

• Issues worth to mention

• The MyMedialite library

• Summary

. . . and, if still alive,

• Questions & Answers

Introduction

What is a RS?

Tutorial on Recommender Systems Introduction 1/75

Why do we need RS?

A company wants to

• sell more (diverse) items

• increase users’ satisfaction and fidelity

• better understand users’ needs

A user would like to

• find some (or all, in case of critical domains such as medicine)
good items with a relatively small effort

• express herself by providing ratings or opinions

• help others by contribute with information to the community

Tutorial on Recommender Systems Introduction 2/75

Why do we need RS?

A company wants to

• sell more (diverse) items

• increase users’ satisfaction and fidelity

• better understand users’ needs

A user would like to

• find some (or all, in case of critical domains such as medicine)
good items with a relatively small effort

• express herself by providing ratings or opinions

• help others by contribute with information to the community

Tutorial on Recommender Systems Introduction 2/75

Why do we need RS?

A company wants to

• sell more (diverse) items

• increase users’ satisfaction and fidelity

• better understand users’ needs

A user would like to

• find some (or all, in case of critical domains such as medicine)
good items with a relatively small effort

• express herself by providing ratings or opinions

• help others by contribute with information to the community

Tutorial on Recommender Systems Introduction 2/75

The Big Bang

• Contest begun on October 2, 2006
• 100M ratings (1-5 stars) from 480K users on 18K movies
• decrease RMSE of Cinematch (0.9525) at least with 10% (≤0.8572)

• Grand Prize $1.000.000, Annual Progress Prizes $50.000

Tutorial on Recommender Systems Introduction 3/75

Netflix and Movielens data (1/2)

Netflix Movielens (100K, 1M)

Tutorial on Recommender Systems Introduction 4/75

Netflix and Movielens data (2/2)

Tutorial on Recommender Systems Introduction 5/75

Closely related fields

Information Retrieval

• unstructured data, various topics (IR) vs. repositories focused on
a single topic (RS)

• relevant content for the query (IR) vs. relevant content for the
user (RS)

Data mining & Machine Learning

• hardly measurable, subjective evaluation criteria (RS) besides
some classic, objective evaluation measures (ML)

Human-Computer Interaction

• RS should convince the user to try the recommended items

• clear, transparent and trustworthy system logic

• provide details about recommended items and opportunity to
refine recommendations

Tutorial on Recommender Systems Introduction 6/75

Closely related fields

Information Retrieval

• unstructured data, various topics (IR) vs. repositories focused on
a single topic (RS)

• relevant content for the query (IR) vs. relevant content for the
user (RS)

Data mining & Machine Learning

• hardly measurable, subjective evaluation criteria (RS) besides
some classic, objective evaluation measures (ML)

Human-Computer Interaction

• RS should convince the user to try the recommended items

• clear, transparent and trustworthy system logic

• provide details about recommended items and opportunity to
refine recommendations

Tutorial on Recommender Systems Introduction 6/75

Closely related fields

Information Retrieval

• unstructured data, various topics (IR) vs. repositories focused on
a single topic (RS)

• relevant content for the query (IR) vs. relevant content for the
user (RS)

Data mining & Machine Learning

• hardly measurable, subjective evaluation criteria (RS) besides
some classic, objective evaluation measures (ML)

Human-Computer Interaction

• RS should convince the user to try the recommended items

• clear, transparent and trustworthy system logic

• provide details about recommended items and opportunity to
refine recommendations

Tutorial on Recommender Systems Introduction 6/75

Closely related fields

Information Retrieval

• unstructured data, various topics (IR) vs. repositories focused on
a single topic (RS)

• relevant content for the query (IR) vs. relevant content for the
user (RS)

Data mining & Machine Learning

• hardly measurable, subjective evaluation criteria (RS) besides
some classic, objective evaluation measures (ML)

Human-Computer Interaction

• RS should convince the user to try the recommended items

• clear, transparent and trustworthy system logic

• provide details about recommended items and opportunity to
refine recommendations

Tutorial on Recommender Systems Introduction 6/75

Related conferences

• ACM Recommender Systems (RecSys)

• User Modeling, Adaptation, and Personalization (UMAP)

• ACM Conference on Human Factors in Computing Systems (CHI)

• International World Wide Web Conference (WWW)

• ACM International Conference on Web Search and Data mining
(WSDM)

• International Conference on Research and Development in
Information Retrieval (SIGIR)

• ACM Conference on Information and Knowledge Management
(CIKM)

• . . .

Tutorial on Recommender Systems Introduction 7/75

Textbook (2008)

Tutorial on Recommender Systems Introduction 8/75

Textbook (2009)

Tutorial on Recommender Systems Introduction 9/75

Textbook (2010)

Tutorial on Recommender Systems Introduction 10/75

Textbook (2011)

Tutorial on Recommender Systems Introduction 11/75

Basic concepts

Users, Items and their characteristics

Users

• set of users U
• user attributes Auser ⊂ Rk

• age, income, marital status, education, profession, nationality, . . .
• preferred sport, hobbies, favourite movies, . . .

• user characteristics χuser : U → Auser
• sensitive information, hard to obtain

Items

• set of items I
• item attributes Aitem ⊂ Rl

• movies: title, genre, year, director, actors, budget, nominations, . . .

• item characteristics χitem : I → Aitem
• quite costly to obtain

Tutorial on Recommender Systems Basic concepts 12/75

Users, Items and their characteristics

Users

• set of users U
• user attributes Auser ⊂ Rk

• age, income, marital status, education, profession, nationality, . . .
• preferred sport, hobbies, favourite movies, . . .

• user characteristics χuser : U → Auser
• sensitive information, hard to obtain

Items

• set of items I
• item attributes Aitem ⊂ Rl

• movies: title, genre, year, director, actors, budget, nominations, . . .

• item characteristics χitem : I → Aitem
• quite costly to obtain

Tutorial on Recommender Systems Basic concepts 12/75

Users, Items and their characteristics

Users

• set of users U
• user attributes Auser ⊂ Rk

• age, income, marital status, education, profession, nationality, . . .
• preferred sport, hobbies, favourite movies, . . .

• user characteristics χuser : U → Auser
• sensitive information, hard to obtain

Items

• set of items I
• item attributes Aitem ⊂ Rl

• movies: title, genre, year, director, actors, budget, nominations, . . .

• item characteristics χitem : I → Aitem
• quite costly to obtain

Tutorial on Recommender Systems Basic concepts 12/75

User feedback

φ : D → F
• feedback values F ⊂ R observed on D ⊂ U × I

Implicit feedback

• information obtained about users by watching their natural
interaction with the system
• view, listen, scroll, bookmark, save, purchase, link, copy&paste, . . .

• no burden on the user

Explicit feedback

• rating items on a rating scale (Likert’s scale)

• scoring items

• ranking a collection of items

• pairwise ranking of two presented items

• provide a list of preferred items

Tutorial on Recommender Systems Basic concepts 13/75

User feedback

φ : D → F
• feedback values F ⊂ R observed on D ⊂ U × I

Implicit feedback

• information obtained about users by watching their natural
interaction with the system
• view, listen, scroll, bookmark, save, purchase, link, copy&paste, . . .

• no burden on the user

Explicit feedback

• rating items on a rating scale (Likert’s scale)

• scoring items

• ranking a collection of items

• pairwise ranking of two presented items

• provide a list of preferred items

Tutorial on Recommender Systems Basic concepts 13/75

User feedback

φ : D → F
• feedback values F ⊂ R observed on D ⊂ U × I

Implicit feedback

• information obtained about users by watching their natural
interaction with the system
• view, listen, scroll, bookmark, save, purchase, link, copy&paste, . . .

• no burden on the user

Explicit feedback

• rating items on a rating scale (Likert’s scale)

• scoring items

• ranking a collection of items

• pairwise ranking of two presented items

• provide a list of preferred items

Tutorial on Recommender Systems Basic concepts 13/75

The recommendation task

Given

• U , I and φ

• χuser, χitem

• some background knowledge κ

To learn

• model φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• a set of “unseen” (or future) user-item pairs T ⊆ (U × I) \ D
• acc is the accuracy of φ̂ w.r.t. φ measured on T

It looks as a simple prediction task, however

• χuser, χitem and κ are often unknown

• usually, F = {1} in case of implicit feedback

Tutorial on Recommender Systems Basic concepts 14/75

The recommendation task

Given

• U , I and φ

• χuser, χitem

• some background knowledge κ

To learn

• model φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• a set of “unseen” (or future) user-item pairs T ⊆ (U × I) \ D
• acc is the accuracy of φ̂ w.r.t. φ measured on T

It looks as a simple prediction task, however

• χuser, χitem and κ are often unknown

• usually, F = {1} in case of implicit feedback

Tutorial on Recommender Systems Basic concepts 14/75

The recommendation task

Given

• U , I and φ

• χuser, χitem

• some background knowledge κ

To learn

• model φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• a set of “unseen” (or future) user-item pairs T ⊆ (U × I) \ D
• acc is the accuracy of φ̂ w.r.t. φ measured on T

It looks as a simple prediction task, however

• χuser, χitem and κ are often unknown

• usually, F = {1} in case of implicit feedback

Tutorial on Recommender Systems Basic concepts 14/75

The recommendation task

Given

• U , I and φ

• χuser, χitem

• some background knowledge κ

To learn

• model φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• a set of “unseen” (or future) user-item pairs T ⊆ (U × I) \ D
• acc is the accuracy of φ̂ w.r.t. φ measured on T

It looks as a simple prediction task, however

• χuser, χitem and κ are often unknown

• usually, F = {1} in case of implicit feedback

Tutorial on Recommender Systems Basic concepts 14/75

The recommendation task

Given

• U , I and φ

• χuser, χitem

• some background knowledge κ

To learn

• model φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• a set of “unseen” (or future) user-item pairs T ⊆ (U × I) \ D
• acc is the accuracy of φ̂ w.r.t. φ measured on T

It looks as a simple prediction task, however

• χuser, χitem and κ are often unknown

• usually, F = {1} in case of implicit feedback

Tutorial on Recommender Systems Basic concepts 14/75

Two distinguished tasks

Rating prediction from explicit feedback

• How would Steve rate the movie Titanic more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 4 5 3
Ann 5 1 5 2
Mary 4 1 2 5
Steve ? 3 4 4

• φ̂(u, i) – predicted rating of the user u for an item i

Item recommendation from implicit feedback

• Which movie(s) would does Steve see/buy more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 1 1 1
Ann 1 1 1 1
Mary 1 1 1 1
Steve ? 1 1 ? 1

• φ̂(u, i) – predicted likelihood of a “positive” implicit feedback
(ranking score) of the user u for an item i

Tutorial on Recommender Systems Basic concepts 15/75

Two distinguished tasks

Rating prediction from explicit feedback

• How would Steve rate the movie Titanic more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 4 5 3
Ann 5 1 5 2
Mary 4 1 2 5
Steve ? 3 4 4

• φ̂(u, i) – predicted rating of the user u for an item i

Item recommendation from implicit feedback

• Which movie(s) would does Steve see/buy more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 1 1 1
Ann 1 1 1 1
Mary 1 1 1 1
Steve ? 1 1 ? 1

• φ̂(u, i) – predicted likelihood of a “positive” implicit feedback
(ranking score) of the user u for an item i

Tutorial on Recommender Systems Basic concepts 15/75

Two distinguished tasks

Rating prediction from explicit feedback

• How would Steve rate the movie Titanic more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 4 5 3
Ann 5 1 5 2
Mary 4 1 2 5
Steve ? 3 4 4

• φ̂(u, i) – predicted rating of the user u for an item i

Item recommendation from implicit feedback

• Which movie(s) would does Steve see/buy more likely?

Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Joe 1 1 1 1
Ann 1 1 1 1
Mary 1 1 1 1
Steve ? 1 1 ? 1

• φ̂(u, i) – predicted likelihood of a “positive” implicit feedback
(ranking score) of the user u for an item i

Tutorial on Recommender Systems Basic concepts 15/75

Types of RS

Knowledge-based

• recommendations are based on knowledge about users’ needs and
preferences
• χitem, κ, χuser

Content-based

• learn user’s interests based on the features of items previously
rated by the user, using supervised machine learning techniques
• χitem, φ

Collaborative-filtering

• recognize similarities between users according to their feedbacks
and recommend objects preferred by the like-minded users
• φ (also χitem and/or χuser can be utilized)

Hybrid

Tutorial on Recommender Systems Basic concepts 16/75

Types of RS

Knowledge-based

• recommendations are based on knowledge about users’ needs and
preferences
• χitem, κ, χuser

Content-based

• learn user’s interests based on the features of items previously
rated by the user, using supervised machine learning techniques
• χitem, φ

Collaborative-filtering

• recognize similarities between users according to their feedbacks
and recommend objects preferred by the like-minded users
• φ (also χitem and/or χuser can be utilized)

Hybrid

Tutorial on Recommender Systems Basic concepts 16/75

Types of RS

Knowledge-based

• recommendations are based on knowledge about users’ needs and
preferences
• χitem, κ, χuser

Content-based

• learn user’s interests based on the features of items previously
rated by the user, using supervised machine learning techniques
• χitem, φ

Collaborative-filtering

• recognize similarities between users according to their feedbacks
and recommend objects preferred by the like-minded users
• φ (also χitem and/or χuser can be utilized)

Hybrid

Tutorial on Recommender Systems Basic concepts 16/75

Types of RS

Knowledge-based

• recommendations are based on knowledge about users’ needs and
preferences
• χitem, κ, χuser

Content-based

• learn user’s interests based on the features of items previously
rated by the user, using supervised machine learning techniques
• χitem, φ

Collaborative-filtering

• recognize similarities between users according to their feedbacks
and recommend objects preferred by the like-minded users
• φ (also χitem and/or χuser can be utilized)

Hybrid

Tutorial on Recommender Systems Basic concepts 16/75

Types of RS

Knowledge-based

• recommendations are based on knowledge about users’ needs and
preferences
• χitem, κ, χuser

Content-based

• learn user’s interests based on the features of items previously
rated by the user, using supervised machine learning techniques
• χitem, φ

Collaborative-filtering

• recognize similarities between users according to their feedbacks
and recommend objects preferred by the like-minded users
• φ (also χitem and/or χuser can be utilized)

Hybrid

Tutorial on Recommender Systems Basic concepts 16/75

Knowledge-based techniques

Knowledge

user requirements

• value ranges
• “the maximal accepted price should be lower than 8K EUR”

• functionality
• “the car should be safe and suited for a family”

• interactive recommendation process needed
• conversational systems

dependencies

• between user requirements and product properties
• “a family car should have big trunk size”

• between different user requirements
• “if a safe family car is required the maximal accepted price must be

higher than 2000 EUR”

Tutorial on Recommender Systems Knowledge-based techniques 17/75

Knowledge

user requirements

• value ranges
• “the maximal accepted price should be lower than 8K EUR”

• functionality
• “the car should be safe and suited for a family”

• interactive recommendation process needed
• conversational systems

dependencies

• between user requirements and product properties
• “a family car should have big trunk size”

• between different user requirements
• “if a safe family car is required the maximal accepted price must be

higher than 2000 EUR”

Tutorial on Recommender Systems Knowledge-based techniques 17/75

Knowledge

user requirements

• value ranges
• “the maximal accepted price should be lower than 8K EUR”

• functionality
• “the car should be safe and suited for a family”

• interactive recommendation process needed
• conversational systems

dependencies

• between user requirements and product properties
• “a family car should have big trunk size”

• between different user requirements
• “if a safe family car is required the maximal accepted price must be

higher than 2000 EUR”

Tutorial on Recommender Systems Knowledge-based techniques 17/75

Knowledge

user requirements

• value ranges
• “the maximal accepted price should be lower than 8K EUR”

• functionality
• “the car should be safe and suited for a family”

• interactive recommendation process needed
• conversational systems

dependencies

• between user requirements and product properties
• “a family car should have big trunk size”

• between different user requirements
• “if a safe family car is required the maximal accepted price must be

higher than 2000 EUR”

Tutorial on Recommender Systems Knowledge-based techniques 17/75

Representation

possible user requirements Vuser

• max-price (0,. . . , 10K), usage (family, . . .), safety (small, medium, big)

possible item characteristics Vitem

• price (0,. . . , 100K), doors (3, 4, 5), terrain (yes, no), airbags (1, . . . , 12)

compatibility constraints κC
• allowed instantiations of user properties

• safety = big → max-price ≥ 2000

filter conditions κF
• item-specific selection criteriae

• safety = big → airbags > 4

item characteristics χitem

• “item constraints”
• (id=1 ∧ price=4K ∧ doors=3 ∧ terrain=no ∧ airbags=2) ∨ . . .

. . .∨ (id=100 ∧ price=6K ∧ doors=5 ∧ terrain=no ∧ airbags=6)

Tutorial on Recommender Systems Knowledge-based techniques 18/75

Recommendation

identifying products matching user’s requirements REQ

• can be viewed as a kind of χuser

• REQ = max-price=7000 ∧ usage=family ∧ safety=big

Constraint-based
• RES = CSP (Vuser ∪ Vitem, D, κC ∪ κF ∪ χitem ∪REQ)

• a set D of finite domains for Vuser and Vitem
• RES = {max-price=7000, usage=family, safety=big, id=100,

price=6K, doors=5, terrain=no, airbags=6)}

Conjunctive queries

• σ[airbags≥4∧price≤8000](χ
item)

Case-based
• similarity(i, REQ) =

∑
r∈REQwr.sim(i, r)/

∑
r∈REQwr

• weight wr for requirements r
• similarity sim(i, r) of items i ∈ χitem to requirements r ∈ REQ

• different types of sim(i, r)
• user might maximize (e.g. safety) or minimize (e.g. price)

Tutorial on Recommender Systems Knowledge-based techniques 19/75

Recommendation

identifying products matching user’s requirements REQ

• can be viewed as a kind of χuser

• REQ = max-price=7000 ∧ usage=family ∧ safety=big

Constraint-based
• RES = CSP (Vuser ∪ Vitem, D, κC ∪ κF ∪ χitem ∪REQ)

• a set D of finite domains for Vuser and Vitem
• RES = {max-price=7000, usage=family, safety=big, id=100,

price=6K, doors=5, terrain=no, airbags=6)}

Conjunctive queries

• σ[airbags≥4∧price≤8000](χ
item)

Case-based
• similarity(i, REQ) =

∑
r∈REQwr.sim(i, r)/

∑
r∈REQwr

• weight wr for requirements r
• similarity sim(i, r) of items i ∈ χitem to requirements r ∈ REQ

• different types of sim(i, r)
• user might maximize (e.g. safety) or minimize (e.g. price)

Tutorial on Recommender Systems Knowledge-based techniques 19/75

Recommendation

identifying products matching user’s requirements REQ

• can be viewed as a kind of χuser

• REQ = max-price=7000 ∧ usage=family ∧ safety=big

Constraint-based
• RES = CSP (Vuser ∪ Vitem, D, κC ∪ κF ∪ χitem ∪REQ)

• a set D of finite domains for Vuser and Vitem
• RES = {max-price=7000, usage=family, safety=big, id=100,

price=6K, doors=5, terrain=no, airbags=6)}

Conjunctive queries

• σ[airbags≥4∧price≤8000](χ
item)

Case-based
• similarity(i, REQ) =

∑
r∈REQwr.sim(i, r)/

∑
r∈REQwr

• weight wr for requirements r
• similarity sim(i, r) of items i ∈ χitem to requirements r ∈ REQ

• different types of sim(i, r)
• user might maximize (e.g. safety) or minimize (e.g. price)

Tutorial on Recommender Systems Knowledge-based techniques 19/75

Recommendation

identifying products matching user’s requirements REQ

• can be viewed as a kind of χuser

• REQ = max-price=7000 ∧ usage=family ∧ safety=big

Constraint-based
• RES = CSP (Vuser ∪ Vitem, D, κC ∪ κF ∪ χitem ∪REQ)

• a set D of finite domains for Vuser and Vitem
• RES = {max-price=7000, usage=family, safety=big, id=100,

price=6K, doors=5, terrain=no, airbags=6)}

Conjunctive queries

• σ[airbags≥4∧price≤8000](χ
item)

Case-based
• similarity(i, REQ) =

∑
r∈REQwr.sim(i, r)/

∑
r∈REQwr

• weight wr for requirements r
• similarity sim(i, r) of items i ∈ χitem to requirements r ∈ REQ

• different types of sim(i, r)
• user might maximize (e.g. safety) or minimize (e.g. price)

Tutorial on Recommender Systems Knowledge-based techniques 19/75

Interaction – default requirement values

static defaults for each user property

• default(usage)=family

dependent defaults on combinations of user requirements

• default(usage=family, max-price=6000)

derived defaults from user requirements log

• the known requirement of the current user is REQ={price=6000}
• nearest-neighbor

• 1-NN: REQ={price=6000, doors=5, terrain=no, airbags=6}
• 3-NN: REQ={price=6000, doors=4, terrain=no, airbags=4}

user id price doors terrain airbags

1 6000 5 no 6
2 2000 3 yes 2
3 5500 4 yes 4
4 6500 4 no 4

Tutorial on Recommender Systems Knowledge-based techniques 20/75

Interaction – default requirement values

static defaults for each user property

• default(usage)=family

dependent defaults on combinations of user requirements

• default(usage=family, max-price=6000)

derived defaults from user requirements log

• the known requirement of the current user is REQ={price=6000}
• nearest-neighbor

• 1-NN: REQ={price=6000, doors=5, terrain=no, airbags=6}
• 3-NN: REQ={price=6000, doors=4, terrain=no, airbags=4}

user id price doors terrain airbags

1 6000 5 no 6
2 2000 3 yes 2
3 5500 4 yes 4
4 6500 4 no 4

Tutorial on Recommender Systems Knowledge-based techniques 20/75

Interaction – default requirement values

static defaults for each user property

• default(usage)=family

dependent defaults on combinations of user requirements

• default(usage=family, max-price=6000)

derived defaults from user requirements log

• the known requirement of the current user is REQ={price=6000}
• nearest-neighbor

• 1-NN: REQ={price=6000, doors=5, terrain=no, airbags=6}
• 3-NN: REQ={price=6000, doors=4, terrain=no, airbags=4}

user id price doors terrain airbags

1 6000 5 no 6
2 2000 3 yes 2
3 5500 4 yes 4
4 6500 4 no 4

Tutorial on Recommender Systems Knowledge-based techniques 20/75

Interaction – default requirement values

static defaults for each user property

• default(usage)=family

dependent defaults on combinations of user requirements

• default(usage=family, max-price=6000)

derived defaults from user requirements log

• the known requirement of the current user is REQ={price=6000}
• nearest-neighbor

• 1-NN: REQ={price=6000, doors=5, terrain=no, airbags=6}
• 3-NN: REQ={price=6000, doors=4, terrain=no, airbags=4}

user id price doors terrain airbags

1 6000 5 no 6
2 2000 3 yes 2
3 5500 4 yes 4
4 6500 4 no 4

Tutorial on Recommender Systems Knowledge-based techniques 20/75

Interaction – unsatisfiable requirements

Which of the requirements should be changed?

• the MinRelax1 algorithm

REQ={r1:price≤6000, r2:doors=5,

r3:terrain=no, r4:airbags≥6}
• σ[r1∧r2∧r3∧r4](χ

item) = ∅

• partial query results PQRS

req i1 i2 i3 i4
1 1 0 1 0
2 0 1 0 1
3 0 0 1 0
4 1 1 0 1

• product-specific relaxation
• PSX(REQ,i1)={r2,r3}

1
D. Jannach (2006). Finding Preferred Query Relaxations in Content-based Recommenders.

IEEE Int. Conf. on Intelligent Systems, pp.355-360.

Tutorial on Recommender Systems Knowledge-based techniques 21/75

Interaction – unsatisfiable requirements

Which of the requirements should be changed?

• the MinRelax1 algorithm

REQ={r1:price≤6000, r2:doors=5,

r3:terrain=no, r4:airbags≥6}
• σ[r1∧r2∧r3∧r4](χ

item) = ∅

• partial query results PQRS

req i1 i2 i3 i4
1 1 0 1 0
2 0 1 0 1
3 0 0 1 0
4 1 1 0 1

• product-specific relaxation
• PSX(REQ,i1)={r2,r3}

1
D. Jannach (2006). Finding Preferred Query Relaxations in Content-based Recommenders.

IEEE Int. Conf. on Intelligent Systems, pp.355-360.

Tutorial on Recommender Systems Knowledge-based techniques 21/75

Interaction – unsatisfiable requirements

Which of the requirements should be changed?

• the MinRelax1 algorithm

REQ={r1:price≤6000, r2:doors=5,

r3:terrain=no, r4:airbags≥6}
• σ[r1∧r2∧r3∧r4](χ

item) = ∅

• partial query results PQRS

req i1 i2 i3 i4
1 1 0 1 0
2 0 1 0 1
3 0 0 1 0
4 1 1 0 1

• product-specific relaxation
• PSX(REQ,i1)={r2,r3}

1
D. Jannach (2006). Finding Preferred Query Relaxations in Content-based Recommenders.

IEEE Int. Conf. on Intelligent Systems, pp.355-360.

Tutorial on Recommender Systems Knowledge-based techniques 21/75

Interaction – repairs for unsatisfiable requirements

How should the unsatisfiable requirements be changed?

• derive repair actions using MinRS

for each r ∈MinRS derive π[attributes(r)]σ[REQ−r](χ
item)

REQ={r1:price≤3000, r2:doors=5, r3:terrain=yes, r4:airbags≥6}
• MinRS = {{r2, r4}, {r2, r3}}

• π[doors,airbags]σ[r1,r3](χ
item) =

{(doors = 3, airbags = 4), (doors = 4, airbags = 2)}
• π[doors,terrain]σ[r1,r4](χ

item) =
{(doors = 4, terrain = no)}

• repair alternatives
• REQ={r1:price≤3000, r2:doors=3, r3:terrain=yes, r4:airbags=4}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=yes, r4:airbags=2}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=no, r4:airbags=6}

Tutorial on Recommender Systems Knowledge-based techniques 22/75

Interaction – repairs for unsatisfiable requirements

How should the unsatisfiable requirements be changed?

• derive repair actions using MinRS

for each r ∈MinRS derive π[attributes(r)]σ[REQ−r](χ
item)

REQ={r1:price≤3000, r2:doors=5, r3:terrain=yes, r4:airbags≥6}
• MinRS = {{r2, r4}, {r2, r3}}

• π[doors,airbags]σ[r1,r3](χ
item) =

{(doors = 3, airbags = 4), (doors = 4, airbags = 2)}
• π[doors,terrain]σ[r1,r4](χ

item) =
{(doors = 4, terrain = no)}

• repair alternatives
• REQ={r1:price≤3000, r2:doors=3, r3:terrain=yes, r4:airbags=4}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=yes, r4:airbags=2}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=no, r4:airbags=6}

Tutorial on Recommender Systems Knowledge-based techniques 22/75

Interaction – repairs for unsatisfiable requirements

How should the unsatisfiable requirements be changed?

• derive repair actions using MinRS

for each r ∈MinRS derive π[attributes(r)]σ[REQ−r](χ
item)

REQ={r1:price≤3000, r2:doors=5, r3:terrain=yes, r4:airbags≥6}
• MinRS = {{r2, r4}, {r2, r3}}

• π[doors,airbags]σ[r1,r3](χ
item) =

{(doors = 3, airbags = 4), (doors = 4, airbags = 2)}
• π[doors,terrain]σ[r1,r4](χ

item) =
{(doors = 4, terrain = no)}

• repair alternatives
• REQ={r1:price≤3000, r2:doors=3, r3:terrain=yes, r4:airbags=4}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=yes, r4:airbags=2}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=no, r4:airbags=6}

Tutorial on Recommender Systems Knowledge-based techniques 22/75

Interaction – repairs for unsatisfiable requirements

How should the unsatisfiable requirements be changed?

• derive repair actions using MinRS

for each r ∈MinRS derive π[attributes(r)]σ[REQ−r](χ
item)

REQ={r1:price≤3000, r2:doors=5, r3:terrain=yes, r4:airbags≥6}
• MinRS = {{r2, r4}, {r2, r3}}

• π[doors,airbags]σ[r1,r3](χ
item) =

{(doors = 3, airbags = 4), (doors = 4, airbags = 2)}
• π[doors,terrain]σ[r1,r4](χ

item) =
{(doors = 4, terrain = no)}

• repair alternatives
• REQ={r1:price≤3000, r2:doors=3, r3:terrain=yes, r4:airbags=4}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=yes, r4:airbags=2}
• REQ={r1:price≤3000, r2:doors=4, r3:terrain=no, r4:airbags=6}

Tutorial on Recommender Systems Knowledge-based techniques 22/75

Interaction – ranking the retrieved items (1/2)

Contributions

• pre-defined set of dimensions

value quality economy safety
price 〈0, 3000) 2 3 3

〈3000, 7000) 3 2 4
≥ 7000 5 1 5

terrain yes 3 2 3
no 2 4 2

airbags 0 1 5 1
2 2 4 2

.
doors 3 3 5 2

.

• contribution(item, dimension)
• i = (price=4000 ∧ terrain=no ∧ airbags=2 ∧ doors=3)
• contribution(i,quality) = 3+2+2+3 = 10, . . .

Tutorial on Recommender Systems Knowledge-based techniques 23/75

Interaction – ranking the retrieved items (1/2)

Contributions

• pre-defined set of dimensions

value quality economy safety
price 〈0, 3000) 2 3 3

〈3000, 7000) 3 2 4
≥ 7000 5 1 5

terrain yes 3 2 3
no 2 4 2

airbags 0 1 5 1
2 2 4 2

.
doors 3 3 5 2

.

• contribution(item, dimension)
• i = (price=4000 ∧ terrain=no ∧ airbags=2 ∧ doors=3)
• contribution(i,quality) = 3+2+2+3 = 10, . . .

Tutorial on Recommender Systems Knowledge-based techniques 23/75

Interaction – ranking the retrieved items (2/2)

Interest of the user in pre-defined dimensions

• user-defined
• interest(quality) = 0.3
• interest(economy) = 0.6
• interest(safety) = 0.1

• derived from requirements
• REQ = {price=4000 ∧ airbags=2}

• contribution(req,quality) = 3+2 = 5
• contribution(req,economy) = 2+4 = 6
• contribution(req,safety) = 4+2 = 6

• interest(quality) = 5/(5+6+6) = 5/17 = 0.3
• interest(economy) = interest(safety) = 6/17 = 0.35

• other approaches

utility(i) =
∑

d∈dimensions
interest(d).contribution(i, d)

Tutorial on Recommender Systems Knowledge-based techniques 24/75

Interaction – ranking the retrieved items (2/2)

Interest of the user in pre-defined dimensions

• user-defined
• interest(quality) = 0.3
• interest(economy) = 0.6
• interest(safety) = 0.1

• derived from requirements
• REQ = {price=4000 ∧ airbags=2}

• contribution(req,quality) = 3+2 = 5
• contribution(req,economy) = 2+4 = 6
• contribution(req,safety) = 4+2 = 6

• interest(quality) = 5/(5+6+6) = 5/17 = 0.3
• interest(economy) = interest(safety) = 6/17 = 0.35

• other approaches

utility(i) =
∑

d∈dimensions
interest(d).contribution(i, d)

Tutorial on Recommender Systems Knowledge-based techniques 24/75

Interaction – ranking the retrieved items (2/2)

Interest of the user in pre-defined dimensions

• user-defined
• interest(quality) = 0.3
• interest(economy) = 0.6
• interest(safety) = 0.1

• derived from requirements
• REQ = {price=4000 ∧ airbags=2}

• contribution(req,quality) = 3+2 = 5
• contribution(req,economy) = 2+4 = 6
• contribution(req,safety) = 4+2 = 6

• interest(quality) = 5/(5+6+6) = 5/17 = 0.3
• interest(economy) = interest(safety) = 6/17 = 0.35

• other approaches

utility(i) =
∑

d∈dimensions
interest(d).contribution(i, d)

Tutorial on Recommender Systems Knowledge-based techniques 24/75

Interaction – Critiquing

a browsing-based approach used in case-based systems
• requirements refined w.r.t. the recommended item

• “Show me cheaper cars” . . . “cars with more airbags” . . .
• unit vs. compound critiques

• static (user wants more airbags but there are no such cars)

Dynamic critiquing
• suggests critique patterns according to the candidate items

• association rules (>price→<doors)
• compound critique patterns (>price ∧ <doors)

price doors terrain airbags
entry item 3600 5 no 4

candidate item 1 4500 3 no 4
candidate item 2 5600 4 yes 6

.
critique pattern 1 > < 6= =
critique pattern 2 > < = >

.

Tutorial on Recommender Systems Knowledge-based techniques 25/75

Interaction – Critiquing

a browsing-based approach used in case-based systems
• requirements refined w.r.t. the recommended item

• “Show me cheaper cars” . . . “cars with more airbags” . . .

• unit vs. compound critiques
• static (user wants more airbags but there are no such cars)

Dynamic critiquing
• suggests critique patterns according to the candidate items

• association rules (>price→<doors)
• compound critique patterns (>price ∧ <doors)

price doors terrain airbags
entry item 3600 5 no 4

candidate item 1 4500 3 no 4
candidate item 2 5600 4 yes 6

.
critique pattern 1 > < 6= =
critique pattern 2 > < = >

.

Tutorial on Recommender Systems Knowledge-based techniques 25/75

Interaction – Critiquing

a browsing-based approach used in case-based systems
• requirements refined w.r.t. the recommended item

• “Show me cheaper cars” . . . “cars with more airbags” . . .
• unit vs. compound critiques

• static (user wants more airbags but there are no such cars)

Dynamic critiquing
• suggests critique patterns according to the candidate items

• association rules (>price→<doors)
• compound critique patterns (>price ∧ <doors)

price doors terrain airbags
entry item 3600 5 no 4

candidate item 1 4500 3 no 4
candidate item 2 5600 4 yes 6

.
critique pattern 1 > < 6= =
critique pattern 2 > < = >

.

Tutorial on Recommender Systems Knowledge-based techniques 25/75

Interaction – Critiquing

a browsing-based approach used in case-based systems
• requirements refined w.r.t. the recommended item

• “Show me cheaper cars” . . . “cars with more airbags” . . .
• unit vs. compound critiques

• static (user wants more airbags but there are no such cars)

Dynamic critiquing
• suggests critique patterns according to the candidate items

• association rules (>price→<doors)
• compound critique patterns (>price ∧ <doors)

price doors terrain airbags
entry item 3600 5 no 4

candidate item 1 4500 3 no 4
candidate item 2 5600 4 yes 6

.
critique pattern 1 > < 6= =
critique pattern 2 > < = >

.

Tutorial on Recommender Systems Knowledge-based techniques 25/75

Content-based techniques

Content

Item features/characteristics (χitem)

• explicitly defined
• attributes (price, airbags, doors, . . .)

• implicitly computed from the document d ∈ D
• keywords w, boolean vector space model . . .

TF − IDF (w, d) = TF (w, d) . IDF (w,D)

• term frequency

TF (w, d) =
freq(w, d)

max{freq(w′, d)|w′ 6= w}

• inverse document frequency

IDF (w,D) = log
|D|

|{d ∈ D|w ∈ d}|

• χitem = (TF − IDF (w1, item), . . . , TF − IDF (wk, item))

Tutorial on Recommender Systems Content-based techniques 26/75

Content

Item features/characteristics (χitem)

• explicitly defined
• attributes (price, airbags, doors, . . .)

• implicitly computed from the document d ∈ D
• keywords w, boolean vector space model . . .

TF − IDF (w, d) = TF (w, d) . IDF (w,D)

• term frequency

TF (w, d) =
freq(w, d)

max{freq(w′, d)|w′ 6= w}

• inverse document frequency

IDF (w,D) = log
|D|

|{d ∈ D|w ∈ d}|

• χitem = (TF − IDF (w1, item), . . . , TF − IDF (wk, item))

Tutorial on Recommender Systems Content-based techniques 26/75

Content

Item features/characteristics (χitem)

• explicitly defined
• attributes (price, airbags, doors, . . .)

• implicitly computed from the document d ∈ D
• keywords w, boolean vector space model . . .

TF − IDF (w, d) = TF (w, d) . IDF (w,D)

• term frequency

TF (w, d) =
freq(w, d)

max{freq(w′, d)|w′ 6= w}

• inverse document frequency

IDF (w,D) = log
|D|

|{d ∈ D|w ∈ d}|

• χitem = (TF − IDF (w1, item), . . . , TF − IDF (wk, item))

Tutorial on Recommender Systems Content-based techniques 26/75

Content

Item features/characteristics (χitem)

• explicitly defined
• attributes (price, airbags, doors, . . .)

• implicitly computed from the document d ∈ D
• keywords w, boolean vector space model . . .

TF − IDF (w, d) = TF (w, d) . IDF (w,D)

• term frequency

TF (w, d) =
freq(w, d)

max{freq(w′, d)|w′ 6= w}

• inverse document frequency

IDF (w,D) = log
|D|

|{d ∈ D|w ∈ d}|

• χitem = (TF − IDF (w1, item), . . . , TF − IDF (wk, item))

Tutorial on Recommender Systems Content-based techniques 26/75

Similarity-based recommendation

How to check if a user would like an item?

• If she liked similar items in the past. . .
• feedback and similarity measures needed

cosine vector similarity

simcv(χ
i, χj) =

χi . χj

‖χi‖.‖χj‖
=

∑n
k=1 χ

i
k χ

j
k√∑n

k=1 χ
i
k

2
√∑n

k=1 χ
j
k

2

k-nearest-neighbors

• k most similar items user has got feedback on
• recommend an item according to majority vote/average/etc.

• reflects on short-term preferences
• considering only recent feedbacks

• simple to implement, small number of feedbacks is enough

Tutorial on Recommender Systems Content-based techniques 27/75

Similarity-based recommendation

How to check if a user would like an item?

• If she liked similar items in the past. . .
• feedback and similarity measures needed

cosine vector similarity

simcv(χ
i, χj) =

χi . χj

‖χi‖.‖χj‖
=

∑n
k=1 χ

i
k χ

j
k√∑n

k=1 χ
i
k

2
√∑n

k=1 χ
j
k

2

k-nearest-neighbors

• k most similar items user has got feedback on
• recommend an item according to majority vote/average/etc.

• reflects on short-term preferences
• considering only recent feedbacks

• simple to implement, small number of feedbacks is enough

Tutorial on Recommender Systems Content-based techniques 27/75

Similarity-based recommendation

How to check if a user would like an item?

• If she liked similar items in the past. . .
• feedback and similarity measures needed

cosine vector similarity

simcv(χ
i, χj) =

χi . χj

‖χi‖.‖χj‖
=

∑n
k=1 χ

i
k χ

j
k√∑n

k=1 χ
i
k

2
√∑n

k=1 χ
j
k

2

k-nearest-neighbors

• k most similar items user has got feedback on
• recommend an item according to majority vote/average/etc.

• reflects on short-term preferences
• considering only recent feedbacks

• simple to implement, small number of feedbacks is enough

Tutorial on Recommender Systems Content-based techniques 27/75

Similarity-based recommendation

How to check if a user would like an item?

• If she liked similar items in the past. . .
• feedback and similarity measures needed

cosine vector similarity

simcv(χ
i, χj) =

χi . χj

‖χi‖.‖χj‖
=

∑n
k=1 χ

i
k χ

j
k√∑n

k=1 χ
i
k

2
√∑n

k=1 χ
j
k

2

k-nearest-neighbors

• k most similar items user has got feedback on
• recommend an item according to majority vote/average/etc.

• reflects on short-term preferences
• considering only recent feedbacks

• simple to implement, small number of feedbacks is enough

Tutorial on Recommender Systems Content-based techniques 27/75

Relevance feedback

Rocchio’s method

• find a prototype of “user’s ideal item”

• user-defined queries refined iteratively
• good results already after the first iteration

• vector space model and similarity measure

input for i+ 1-th iteration

• D− – documents with negative user feedback

• D+ – documents with positive user feedback

• Qi – actual query (vector) in the iteration i

• α, β, γ – parameters

Qi+1 = αQi + β
(1

|D+|
∑

d+∈D+

d+
)

+ γ
(1

|D−|
∑

d−∈D−
d−
)

Tutorial on Recommender Systems Content-based techniques 28/75

Relevance feedback

Rocchio’s method

• find a prototype of “user’s ideal item”

• user-defined queries refined iteratively
• good results already after the first iteration

• vector space model and similarity measure

input for i+ 1-th iteration

• D− – documents with negative user feedback

• D+ – documents with positive user feedback

• Qi – actual query (vector) in the iteration i

• α, β, γ – parameters

Qi+1 = αQi + β
(1

|D+|
∑

d+∈D+

d+
)

+ γ
(1

|D−|
∑

d−∈D−
d−
)

Tutorial on Recommender Systems Content-based techniques 28/75

Relevance feedback

Rocchio’s method

• find a prototype of “user’s ideal item”

• user-defined queries refined iteratively
• good results already after the first iteration

• vector space model and similarity measure

input for i+ 1-th iteration

• D− – documents with negative user feedback

• D+ – documents with positive user feedback

• Qi – actual query (vector) in the iteration i

• α, β, γ – parameters

Qi+1 = αQi + β
(1

|D+|
∑

d+∈D+

d+
)

+ γ
(1

|D−|
∑

d−∈D−
d−
)

Tutorial on Recommender Systems Content-based techniques 28/75

Machine learning

learn a mapping φ̂ : Aitem → R from

• item features/characteristics χitem

• user’s feedback φ

with approppriate classification/regression techniques

• nearest-neighbor

• probabilistic methods

• decision trees, SVM

• . . .

item Ai φ(u, item)
i1 χitem(i1) φ(u, i1)
i2 χitem(i2) φ(u, i2)
...

...
...

in χitem(in) φ(u, in)

Tutorial on Recommender Systems Content-based techniques 29/75

A little commercial ;)

A fuzzy recommender system

First prototype developed during the NAZOU1 project (2006 – 2008)

• 2009 – 2012, developed without funding (BSc, MSc theses)

• 2012 – now, development within the CEZIS project

Main characteristics of the UPRE recommender module2

• fuzzy preference models
• on attributes (local)
• aggregated (global)
• top-k item retrieval

• explicit user feedback

• conversational

A hybrid of content-based and knowledge-based techniques. . .

• collaborative-filtering is planned

1
http://nazou.fiit.stuba.sk/

2
P. Gurský et al. (2008). Knowledge Processing for Web Search – An Integrated Model and

Experiments. SCALABLE COMPUTING: PRACTICE AND EXPERIMENTS Vol. 9 (1).

Tutorial on Recommender Systems The UPRE framework 30/75

A fuzzy recommender system

First prototype developed during the NAZOU1 project (2006 – 2008)

• 2009 – 2012, developed without funding (BSc, MSc theses)

• 2012 – now, development within the CEZIS project

Main characteristics of the UPRE recommender module2

• fuzzy preference models
• on attributes (local)
• aggregated (global)
• top-k item retrieval

• explicit user feedback

• conversational

A hybrid of content-based and knowledge-based techniques. . .

• collaborative-filtering is planned

1
http://nazou.fiit.stuba.sk/

2
P. Gurský et al. (2008). Knowledge Processing for Web Search – An Integrated Model and

Experiments. SCALABLE COMPUTING: PRACTICE AND EXPERIMENTS Vol. 9 (1).

Tutorial on Recommender Systems The UPRE framework 30/75

A fuzzy recommender system

First prototype developed during the NAZOU1 project (2006 – 2008)

• 2009 – 2012, developed without funding (BSc, MSc theses)

• 2012 – now, development within the CEZIS project

Main characteristics of the UPRE recommender module2

• fuzzy preference models
• on attributes (local)
• aggregated (global)
• top-k item retrieval

• explicit user feedback

• conversational

A hybrid of content-based and knowledge-based techniques. . .

• collaborative-filtering is planned
1
http://nazou.fiit.stuba.sk/

2
P. Gurský et al. (2008). Knowledge Processing for Web Search – An Integrated Model and

Experiments. SCALABLE COMPUTING: PRACTICE AND EXPERIMENTS Vol. 9 (1).

Tutorial on Recommender Systems The UPRE framework 30/75

Preferences on attributes

defined by the user

computed from explicit feedback

Tutorial on Recommender Systems The UPRE framework 31/75

Preferences on attributes

defined by the user

computed from explicit feedback

Tutorial on Recommender Systems The UPRE framework 31/75

Preferences on attributes

defined by the user

computed from explicit feedback

Tutorial on Recommender Systems The UPRE framework 31/75

Aggregated preferences

computed1 with monotone prediction techniques

preference rules integrated2 with top-k search

• fast computation of pareto-optimal values
• implicit ranking of items in the resulting list

1
T. Horváth(2009). A Model of User Preference Learning for Content-Based Recommender

Systems. COMPUTING AND INFORMATICS Vol. 28 (4).
2
Gurský et al. (2008). Fuzzy User Preference Model for Top-k Search. IEEE World

Congress on Computational Intelligence.

Tutorial on Recommender Systems The UPRE framework 32/75

Aggregated preferences

computed1 with monotone prediction techniques

preference rules integrated2 with top-k search

• fast computation of pareto-optimal values
• implicit ranking of items in the resulting list

1
T. Horváth(2009). A Model of User Preference Learning for Content-Based Recommender

Systems. COMPUTING AND INFORMATICS Vol. 28 (4).
2
Gurský et al. (2008). Fuzzy User Preference Model for Top-k Search. IEEE World

Congress on Computational Intelligence.

Tutorial on Recommender Systems The UPRE framework 32/75

Iterative recommendation

Tutorial on Recommender Systems The UPRE framework 33/75

Collaborative filtering

Neighborhood-based CF

Recommendation φ̂(u, i) for user u on item i using φ

• user-based
• φ̂(u, i) computed using feedback given by k most similar users

N u,k
i = arg max

U ′

∑
v∈U ′,v 6=u
U ′⊆Ui,|U ′|=k

sim(u, v)

• Ui = {v ∈ U | φ(v, i) is defined on D}

• item-based
• φ̂(u, i) computed using feedback given by k most similar items

N i,k
u = arg max

I′

∑
j∈I′,j 6=i

I′⊆Iu,|I′|=k

sim(i, j)

• Iu = {j ∈ I | φ(u, j) is defined on D}

Tutorial on Recommender Systems Collaborative filtering 34/75

Neighborhood-based CF

Recommendation φ̂(u, i) for user u on item i using φ

• user-based
• φ̂(u, i) computed using feedback given by k most similar users

N u,k
i = arg max

U ′

∑
v∈U ′,v 6=u
U ′⊆Ui,|U ′|=k

sim(u, v)

• Ui = {v ∈ U | φ(v, i) is defined on D}

• item-based
• φ̂(u, i) computed using feedback given by k most similar items

N i,k
u = arg max

I′

∑
j∈I′,j 6=i

I′⊆Iu,|I′|=k

sim(i, j)

• Iu = {j ∈ I | φ(u, j) is defined on D}

Tutorial on Recommender Systems Collaborative filtering 34/75

Neighborhood-based CF

Recommendation φ̂(u, i) for user u on item i using φ

• user-based
• φ̂(u, i) computed using feedback given by k most similar users

N u,k
i = arg max

U ′

∑
v∈U ′,v 6=u
U ′⊆Ui,|U ′|=k

sim(u, v)

• Ui = {v ∈ U | φ(v, i) is defined on D}

• item-based
• φ̂(u, i) computed using feedback given by k most similar items

N i,k
u = arg max

I′

∑
j∈I′,j 6=i

I′⊆Iu,|I′|=k

sim(i, j)

• Iu = {j ∈ I | φ(u, j) is defined on D}

Tutorial on Recommender Systems Collaborative filtering 34/75

Item recommendation

What is the likelihood of an item i being liked by the user u?

• a simple k-nearest-neighbor approach1

• user-based
• an average similarity of most similar users which liked the item i

φ̂ui =

∑
v∈Nu,ki

sim(u, v)

k

• item-based

• an average similarity of most similar items liked by the user u

φ̂ui =

∑
j∈N i,ku sim(i, j)

k

assume that only (implicit) feedback φ is available

• users and items represented by sparse vectors
• cosine-vector similarity simcv

1
Simplified notation: φ(u, i) φui, Iu ∩ Iv Iuv, Ui ∩ Uj Uij

Tutorial on Recommender Systems Collaborative filtering 35/75

Item recommendation

What is the likelihood of an item i being liked by the user u?

• a simple k-nearest-neighbor approach1

• user-based
• an average similarity of most similar users which liked the item i

φ̂ui =

∑
v∈Nu,ki

sim(u, v)

k

• item-based

• an average similarity of most similar items liked by the user u

φ̂ui =

∑
j∈N i,ku sim(i, j)

k

assume that only (implicit) feedback φ is available

• users and items represented by sparse vectors
• cosine-vector similarity simcv

1
Simplified notation: φ(u, i) φui, Iu ∩ Iv Iuv, Ui ∩ Uj Uij

Tutorial on Recommender Systems Collaborative filtering 35/75

Item recommendation

What is the likelihood of an item i being liked by the user u?

• a simple k-nearest-neighbor approach1

• user-based

• an average similarity of most similar users which liked the item i

φ̂ui =

∑
v∈Nu,ki

sim(u, v)

k

• item-based

• an average similarity of most similar items liked by the user u

φ̂ui =

∑
j∈N i,ku sim(i, j)

k

assume that only (implicit) feedback φ is available

• users and items represented by sparse vectors
• cosine-vector similarity simcv

1
Simplified notation: φ(u, i) φui, Iu ∩ Iv Iuv, Ui ∩ Uj Uij

Tutorial on Recommender Systems Collaborative filtering 35/75

Item recommendation

What is the likelihood of an item i being liked by the user u?

• a simple k-nearest-neighbor approach1

• user-based

• an average similarity of most similar users which liked the item i

φ̂ui =

∑
v∈Nu,ki

sim(u, v)

k

• item-based

• an average similarity of most similar items liked by the user u

φ̂ui =

∑
j∈N i,ku sim(i, j)

k

assume that only (implicit) feedback φ is available

• users and items represented by sparse vectors
• cosine-vector similarity simcv

1
Simplified notation: φ(u, i) φui, Iu ∩ Iv Iuv, Ui ∩ Uj Uij

Tutorial on Recommender Systems Collaborative filtering 35/75

Item recommendation

What is the likelihood of an item i being liked by the user u?

• a simple k-nearest-neighbor approach1

• user-based

• an average similarity of most similar users which liked the item i

φ̂ui =

∑
v∈Nu,ki

sim(u, v)

k

• item-based

• an average similarity of most similar items liked by the user u

φ̂ui =

∑
j∈N i,ku sim(i, j)

k

assume that only (implicit) feedback φ is available

• users and items represented by sparse vectors
• cosine-vector similarity simcv

1
Simplified notation: φ(u, i) φui, Iu ∩ Iv Iuv, Ui ∩ Uj Uij

Tutorial on Recommender Systems Collaborative filtering 35/75

Item recommendation – example

simcv(i, j) Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Titanic 1.0 0.87 0.67 0.82 0.67

Pulp Fiction – 1.0 0.87 0.71 0.87
Iron Man – – 1.0 0.41 0.67

Forrest Gump – – – 1.0 0.41
The Mummy – – – – 1.0

simcv(u, v) Joe Ann Mary Steve
Joe 1.0 0.75 0.75 0.87
Ann – 1.0 0.75 0.58
Mary – – 1.0 0.58
Steve – – – 1.0

user-based1

• NSteve,2
Titanic

= {Joe,Ann}, φ̂ST =
scv(S,J)+scv(S,M)

2
= 0.87+0.58

2
= 0.725

• NSteve,2
ForrestGump

= {Ann,Mary}, φ̂ST =
scv(S,A)+scv(S,M)

2
= 0.58+0.58

2
= 0.58

item-based
• NTitanic,2

Steve
= {PulpFiction, IronMan}, φ̂ST =

scv(T,P)+scv(T,I)
2

= 0.87+0.67
2

= 0.77

• NForrestGump,2
Steve

= {PulpFiction, IronMan}, φ̂ST =
scv(F,P)+scv(F,I)

2
= 0.71+0.41

2
= 0.56

1
scv – cosine–vector similarity

Tutorial on Recommender Systems Collaborative filtering 36/75

Rating prediction

How would the user rate an item?

• user’s/item’s ratings are biased
• optimistic, pessimistic users
• items rated above or below average

mean-centered rating prediction

• user-based

φ̂ui = φu +

∑
v∈Nu,ki

sim(u, v) · (φvi − φv)∑
v∈Nu,ki

|sim(u, v)|

• φu =
∑
i∈Iu φ(u,i)

|Iu|
• item-based

φ̂ui = φi +

∑
j∈N i,ku

sim(i, j) · (φuj − φj)∑
v∈N i,ku

|sim(i, j)|

• φi =
∑
u∈Ui

φ(u,i)

|Ui|

Tutorial on Recommender Systems Collaborative filtering 37/75

Rating prediction

How would the user rate an item?
• user’s/item’s ratings are biased

• optimistic, pessimistic users
• items rated above or below average

mean-centered rating prediction

• user-based

φ̂ui = φu +

∑
v∈Nu,ki

sim(u, v) · (φvi − φv)∑
v∈Nu,ki

|sim(u, v)|

• φu =
∑
i∈Iu φ(u,i)

|Iu|
• item-based

φ̂ui = φi +

∑
j∈N i,ku

sim(i, j) · (φuj − φj)∑
v∈N i,ku

|sim(i, j)|

• φi =
∑
u∈Ui

φ(u,i)

|Ui|

Tutorial on Recommender Systems Collaborative filtering 37/75

Rating prediction

How would the user rate an item?
• user’s/item’s ratings are biased

• optimistic, pessimistic users
• items rated above or below average

mean-centered rating prediction

• user-based

φ̂ui = φu +

∑
v∈Nu,ki

sim(u, v) · (φvi − φv)∑
v∈Nu,ki

|sim(u, v)|

• φu =
∑
i∈Iu φ(u,i)

|Iu|
• item-based

φ̂ui = φi +

∑
j∈N i,ku

sim(i, j) · (φuj − φj)∑
v∈N i,ku

|sim(i, j)|

• φi =
∑
u∈Ui

φ(u,i)

|Ui|

Tutorial on Recommender Systems Collaborative filtering 37/75

Pearson-correlation similarity

What similarity measure to use?

• simcv doesn’t take into account the mean and variances of ratings

pearson-correlation similarity

simpc(u, v) =

∑
i∈Iuv (φui − φu)(φvi − φv)√∑

i∈Iuv(φui − φu)2
∑

i∈Iuv(φvi − φv)2

simpc(i, j) =

∑
u∈Uij (φui − φi)(φuj − φj)√∑

u∈Uij (φui − φi)
2
∑

i∈Uij (φuj − φj)
2

Tutorial on Recommender Systems Collaborative filtering 38/75

Pearson-correlation similarity

What similarity measure to use?

• simcv doesn’t take into account the mean and variances of ratings

pearson-correlation similarity

simpc(u, v) =

∑
i∈Iuv (φui − φu)(φvi − φv)√∑

i∈Iuv(φui − φu)2
∑

i∈Iuv(φvi − φv)2

simpc(i, j) =

∑
u∈Uij (φui − φi)(φuj − φj)√∑

u∈Uij (φui − φi)
2
∑

i∈Uij (φuj − φj)
2

Tutorial on Recommender Systems Collaborative filtering 38/75

Rating prediction – example

simpc(i, j) Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Titanic 1.0 -0.956 -0.815 NaN -0.581

Pulp Fiction – 1.0 0.948 NaN 0.621
Iron Man – – 1.0 NaN 0.243

Forrest Gump – – – 1.0 NaN
The Mummy – – – – 1.0

NaN values are usually converted to zero (rare in case of enough data)

simpc(u, v) Joe Ann Mary Steve
Joe 1.0 -0.716 -0.762 -0.005
Ann – 1.0 0.972 0.565
Mary – – 1.0 0.6
Steve – – – 1.0

user-based
• UTitanic = {Joe,Ann,Mary}, NSteve,2

Titanic
= {Mary,Ann}

• φSteve = 11
3

= 3.67, φMary = 12
4

= 3, φAnn = 13
4

= 3.25

• φ̂ST = φS+
spc(S,M)·(φMT−φM)+spc(S,A)·(φAT−φA)

|spc(S,M)|+|spc(S,A)| = 3.67+
0.6·(4−3)+0.565·(5−3.25)

0.6+0.565
= 1.36

item-based
• ISteve = {Pulp Fiction, Iron Man,The Mummy}, NTitanic,2

Steve
= {Iron Man,The Mummy}

• φT = 10
3

= 3.34, φI = 11
3

= 3.67, φM = 9
3

= 3

• φ̂ST = φT +
spc(T,I)·(φSI−φI)+spc(T,M)·(φSM−φM)

|spc(T,I)|+|spc(T,M)| = 3.34+
−.815·(4−3.67)−.581·(4−3)

0.815+0.581
= 2.73

Tutorial on Recommender Systems Collaborative filtering 39/75

Matrix factorization

A latent space representation

Map users and items to a common latent space
• where dimensions or factors represent

• items’ implicit properties
• users’ interest in items’ hidden properties

1

1
The picture is taken from Y. Koren et al. (2009). Matrix Factorization Techniques for

Recommender Systems. Computer 42 (8).

Tutorial on Recommender Systems Matrix factorization 40/75

Known factorization models (1/2)

φ represented as a user-item matrix Φn×m

• n users, m items

Principal Component Analysis (PCA)

• transform data to a new coordinate system

• variances by any projection of the data lies on coordinates in
decreasing order

2

2
The picture is taken from wikipedia.

Tutorial on Recommender Systems Matrix factorization 41/75

Known factorization models (1/2)

φ represented as a user-item matrix Φn×m

• n users, m items

Principal Component Analysis (PCA)

• transform data to a new coordinate system

• variances by any projection of the data lies on coordinates in
decreasing order

2

2
The picture is taken from wikipedia.

Tutorial on Recommender Systems Matrix factorization 41/75

Known factorization models (2/2)

Singular Value Decomposition (SVD)

Φ = Wn×kΣk×kHn×kT

• WTW = I, HTH = I

• column vectors of W are orthonormal eigenvectors of ΦΦT

• column vectors of H are orthonormal eigenvectors of ΦTΦ

• Σ contains eigenvallues of W in descending order

PCA, SVD computed algebraically

• Φ is a big and sparse matrix
• approximations of PCA1, SVD2

1
T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data.

Neural Information Processing, LNCS. 4984.
2
A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value

Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).

Tutorial on Recommender Systems Matrix factorization 42/75

Known factorization models (2/2)

Singular Value Decomposition (SVD)

Φ = Wn×kΣk×kHn×kT

• WTW = I, HTH = I

• column vectors of W are orthonormal eigenvectors of ΦΦT

• column vectors of H are orthonormal eigenvectors of ΦTΦ

• Σ contains eigenvallues of W in descending order

PCA, SVD computed algebraically

• Φ is a big and sparse matrix
• approximations of PCA1, SVD2

1
T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data.

Neural Information Processing, LNCS. 4984.
2
A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value

Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).

Tutorial on Recommender Systems Matrix factorization 42/75

MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal

• acc is the expected accuracy on T
• training φ̂ on D such that the empirical loss err(φ̂, φ,D) is minimal

a simple, approximative MF model

• only Wn×k and Hm×k

• k – the number of factors

Φn×m ≈ Φ̂n×m = WHT

• predicted rating φ̂ui of the user u for the item i

φ̂ui = wuh
T
i

Tutorial on Recommender Systems Matrix factorization 43/75

MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• acc is the expected accuracy on T
• training φ̂ on D such that the empirical loss err(φ̂, φ,D) is minimal

a simple, approximative MF model

• only Wn×k and Hm×k

• k – the number of factors

Φn×m ≈ Φ̂n×m = WHT

• predicted rating φ̂ui of the user u for the item i

φ̂ui = wuh
T
i

Tutorial on Recommender Systems Matrix factorization 43/75

MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T) is maximal
• acc is the expected accuracy on T
• training φ̂ on D such that the empirical loss err(φ̂, φ,D) is minimal

a simple, approximative MF model

• only Wn×k and Hm×k

• k – the number of factors

Φn×m ≈ Φ̂n×m = WHT

• predicted rating φ̂ui of the user u for the item i

φ̂ui = wuh
T
i

Tutorial on Recommender Systems Matrix factorization 43/75

MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2
ui =

∑
(u,i)∈D

(φui−φ̂ui)2 =
∑

(u,i)∈D

(φui−wuhTi)2

the objective function

• regularization term λ ≥ 0 to prevent overfitting
• penalizing the magnitudes of parameters

f(φ̂, φ,D) =
∑

(u,i)∈D

(φui − wuhTi)2 + λ(‖W‖2 + ‖H‖2)

The task is to find parameters W and H such that, given λ, the
objective function f(φ̂, φ,D) is minimal.

Tutorial on Recommender Systems Matrix factorization 44/75

MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2
ui =

∑
(u,i)∈D

(φui−φ̂ui)2 =
∑

(u,i)∈D

(φui−wuhTi)2

the objective function

• regularization term λ ≥ 0 to prevent overfitting
• penalizing the magnitudes of parameters

f(φ̂, φ,D) =
∑

(u,i)∈D

(φui − wuhTi)2 + λ(‖W‖2 + ‖H‖2)

The task is to find parameters W and H such that, given λ, the
objective function f(φ̂, φ,D) is minimal.

Tutorial on Recommender Systems Matrix factorization 44/75

MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2
ui =

∑
(u,i)∈D

(φui−φ̂ui)2 =
∑

(u,i)∈D

(φui−wuhTi)2

the objective function

• regularization term λ ≥ 0 to prevent overfitting
• penalizing the magnitudes of parameters

f(φ̂, φ,D) =
∑

(u,i)∈D

(φui − wuhTi)2 + λ(‖W‖2 + ‖H‖2)

The task is to find parameters W and H such that, given λ, the
objective function f(φ̂, φ,D) is minimal.

Tutorial on Recommender Systems Matrix factorization 44/75

Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT

Gradient descent

input: f, α,Σ2, stopping criteria
initialize Θ ∼ N (0,Σ2)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ

stopping criteria

• |Θold −Θ| < ε

• maximum number of iterations reached

• a combination of both

Tutorial on Recommender Systems Matrix factorization 45/75

Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT

Gradient descent

input: f, α,Σ2, stopping criteria
initialize Θ ∼ N (0,Σ2)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ

stopping criteria

• |Θold −Θ| < ε

• maximum number of iterations reached

• a combination of both

Tutorial on Recommender Systems Matrix factorization 45/75

Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT

Gradient descent

input: f, α,Σ2, stopping criteria
initialize Θ ∼ N (0,Σ2)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ

stopping criteria

• |Θold −Θ| < ε

• maximum number of iterations reached

• a combination of both

Tutorial on Recommender Systems Matrix factorization 45/75

Stochastic gradient descent

if f can be written as

f(Θ) =

n∑
i=1

fi(Θ)

Stochastic gradient descent (SGD)

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

for all i in random order do
Θ← Θ− α∂fi∂Θ (Θ)

end for
until approximate minimum is reached
return Θ

Tutorial on Recommender Systems Matrix factorization 46/75

Stochastic gradient descent

if f can be written as

f(Θ) =

n∑
i=1

fi(Θ)

Stochastic gradient descent (SGD)

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

for all i in random order do
Θ← Θ− α∂fi∂Θ (Θ)

end for
until approximate minimum is reached
return Θ

Tutorial on Recommender Systems Matrix factorization 46/75

MF with SGD

updating parameters iteratively for each data point φui in the
opposite direction of the gradient of the objective function at the
given point until a convergence criterion is fulfilled.

• updating the vectors wu and hi for the data point (u, i) ∈ D

∂f

∂wu
(u, i) = −2(euihi − λwu)

∂f

∂hi
(u, i) = −2(euiwu − 2λhi)

wu(u, i)← wu − α
∂f

∂wu
(u, i) = wu + α(euihi − λwu)

hi(u, i)← hi − α
∂f

∂hi
(u, i) = hi + α(euiwu − λhi)

where α > 0 is a learning rate.

Tutorial on Recommender Systems Matrix factorization 47/75

MF with SGD

updating parameters iteratively for each data point φui in the
opposite direction of the gradient of the objective function at the
given point until a convergence criterion is fulfilled.

• updating the vectors wu and hi for the data point (u, i) ∈ D

∂f

∂wu
(u, i) = −2(euihi − λwu)

∂f

∂hi
(u, i) = −2(euiwu − 2λhi)

wu(u, i)← wu − α
∂f

∂wu
(u, i) = wu + α(euihi − λwu)

hi(u, i)← hi − α
∂f

∂hi
(u, i) = hi + α(euiwu − λhi)

where α > 0 is a learning rate.

Tutorial on Recommender Systems Matrix factorization 47/75

MF with SGD – Algorithm

Hyper-parameters: k, iters (the max number of iteration), α, λ,Σ2

W ← N (0,Σ2)
H ← N (0,Σ2)
for iter ← 1, . . . , iters · |D| do

draw randomly (u, i) from D
φ̂ui ← 0
for j ← 1, . . . , k do

φ̂ui ← φ̂ui +W [u][j] ·H[i][j]
end for
eui = φui − φ̂ui
for j ← 1, . . . , k do

W [u][j]←W [u][j] + α ∗ (eui ∗H[i][j]− λ ∗W [u][j])
H[i][j]← H[i][j] + α ∗ (eui ∗W [u][j]− λ ∗H[i][j])

end for
end for
return {W , H}

Tutorial on Recommender Systems Matrix factorization 48/75

MF with SGD – Example2

Let’s have the following hyper-parameters:
K = 2, α = 0.1, λ = 0.15, iter = 150, σ2 = 0.01

Φ =
1 4 5 3
5 1 5 2
4 1 2 5

3 4 4

Results are:

W =
1.1995242 1.1637173
1.8714619 -0.02266505
2.3267753 0.27602595
2.033842 0.539499

HT = 1.6261001 1.1259034 2.131041 2.2285593 1.6074764
-0.40649664 0.7055319 1.0405376 0.39400166 0.49699315

Results1 are:

Φ̂ =
1.477499 2.171588 3.767126 3.131717 2.506566
3.052397 2.091094 3.964578 4.161733 2.997066
3.671365 2.814469 5.245668 5.294111 3.877419
3.087926 2.670543 4.895569 4.745101 3.537480

1
Note, that these hyper-parameters are just picked up in an ad-hoc manner. One should

search for the “best” hyper-parameter combinations using e.g. grid-search (a brute-force
approach).

2
Thanks to my colleague Thai-Nghe Nguyen for computing an example.

Tutorial on Recommender Systems Matrix factorization 49/75

Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′
u + b

′′
i

• µ – average rating across the whole D
• b

′
, b
′′

– vectors of user and item biases, respectively

prediction
φ̂ui = µ+ b

′
u + b

′′
i + wuhi

objective function to minimize

f(φ, φ̂,D) =
∑

(u,i)∈D

(φui−µ−b
′
u−b

′′
i −wuhi)2+λ(‖W‖2+‖H‖2+b

′2
+b
′′2

)

Tutorial on Recommender Systems Matrix factorization 50/75

Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′
u + b

′′
i

• µ – average rating across the whole D
• b

′
, b
′′

– vectors of user and item biases, respectively

prediction
φ̂ui = µ+ b

′
u + b

′′
i + wuhi

objective function to minimize

f(φ, φ̂,D) =
∑

(u,i)∈D

(φui−µ−b
′
u−b

′′
i −wuhi)2+λ(‖W‖2+‖H‖2+b

′2
+b
′′2

)

Tutorial on Recommender Systems Matrix factorization 50/75

Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′
u + b

′′
i

• µ – average rating across the whole D
• b

′
, b
′′

– vectors of user and item biases, respectively

prediction
φ̂ui = µ+ b

′
u + b

′′
i + wuhi

objective function to minimize

f(φ, φ̂,D) =
∑

(u,i)∈D

(φui−µ−b
′
u−b

′′
i −wuhi)2+λ(‖W‖2+‖H‖2+b

′2
+b
′′2

)

Tutorial on Recommender Systems Matrix factorization 50/75

Biased MF with SGD

similar to unbiased MF

• initialize average and biases

µ =

∑
(u,i)∈D

|D|

b
′ ← (φu1

, . . . , φun)

b
′′ ← (φi1 , . . . , φim)

• update average and biases

µ← µ− ∂f

∂µ
(u, i) = µ+ αeui

b
′ ← b

′ − ∂f

∂b′
(u, i) = b

′
+ α(eui − λb

′
)

b
′′ ← b

′′ − ∂f

∂b′′
(u, i) = b

′′
+ α(eui − λb

′′
)

Tutorial on Recommender Systems Matrix factorization 51/75

Biased MF with SGD

similar to unbiased MF

• initialize average and biases

µ =

∑
(u,i)∈D

|D|

b
′ ← (φu1

, . . . , φun)

b
′′ ← (φi1 , . . . , φim)

• update average and biases

µ← µ− ∂f

∂µ
(u, i) = µ+ αeui

b
′ ← b

′ − ∂f

∂b′
(u, i) = b

′
+ α(eui − λb

′
)

b
′′ ← b

′′ − ∂f

∂b′′
(u, i) = b

′′
+ α(eui − λb

′′
)

Tutorial on Recommender Systems Matrix factorization 51/75

MF – item recommendation

to predict a personalized ranking score1 φ̂ui

• how the item i is preferred to other items for the user u

• to find W and H such that Φ̂ = WHT

φ̂ui = wuh
T
i

problem: positive feedback only

• pairwise ranking data

Dp = {(u, i, j) ∈ D|i ∈ Iu ∧ j ∈ I \ Iu}

1
S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback.

25th Conference on Uncertainty in Artificial Intelligence.

Tutorial on Recommender Systems Matrix factorization 52/75

MF – item recommendation

to predict a personalized ranking score1 φ̂ui

• how the item i is preferred to other items for the user u

• to find W and H such that Φ̂ = WHT

φ̂ui = wuh
T
i

problem: positive feedback only

• pairwise ranking data

Dp = {(u, i, j) ∈ D|i ∈ Iu ∧ j ∈ I \ Iu}

1
S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback.

25th Conference on Uncertainty in Artificial Intelligence.

Tutorial on Recommender Systems Matrix factorization 52/75

MF – Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

• � – the unknown preference structure (ordering)
• we use the derived pairwise ranking data Dp

• Θ – parameters of an arbitrary prediction model
• in case of MF, Θ = W ∪H

p(Θ| �) ∝ p(� |Θ)p(Θ)

prior probability

• assume independence of parameters

• assume, Θ ∼ N(0, 1
λI)

p(Θ) =
∏
θ∈Θ

√
λ

2π
e−

1
2
λθ2

Tutorial on Recommender Systems Matrix factorization 53/75

MF – Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

• � – the unknown preference structure (ordering)
• we use the derived pairwise ranking data Dp

• Θ – parameters of an arbitrary prediction model
• in case of MF, Θ = W ∪H

p(Θ| �) ∝ p(� |Θ)p(Θ)

prior probability

• assume independence of parameters

• assume, Θ ∼ N(0, 1
λI)

p(Θ) =
∏
θ∈Θ

√
λ

2π
e−

1
2
λθ2

Tutorial on Recommender Systems Matrix factorization 53/75

MF – Bayesian Personalized Ranking (2/3)

likelihood

• assume users’ feedbacks are independent

• assume, ordering of each pair is independent

p(� |Θ) =
∏
u∈U

p(�u |Θ) =
∏

(u,i,j)∈Dp

p(i �u j|Θ)

• using the ranking scores φ̂

p(i �u j|Θ) = p(φ̂ui − φ̂uj > 0) = σ(φ̂ui − φ̂uj) =
1

1 + e−(φ̂ui−φ̂uj)

Tutorial on Recommender Systems Matrix factorization 54/75

MF – Bayesian Personalized Ranking (2/3)

likelihood

• assume users’ feedbacks are independent

• assume, ordering of each pair is independent

p(� |Θ) =
∏
u∈U

p(�u |Θ) =
∏

(u,i,j)∈Dp

p(i �u j|Θ)

• using the ranking scores φ̂

p(i �u j|Θ) = p(φ̂ui − φ̂uj > 0) = σ(φ̂ui − φ̂uj) =
1

1 + e−(φ̂ui−φ̂uj)

Tutorial on Recommender Systems Matrix factorization 54/75

MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

arg max
Θ

p(Θ,�) =

arg max
Θ

p(� |Θ)p(Θ) =

arg max
Θ

ln p(� |Θ)p(Θ) =

arg max
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)
√

λ

2π
e−

1
2
λθ2

arg max
Θ

∑
(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2︸ ︷︷ ︸
BPR−OPT

Tutorial on Recommender Systems Matrix factorization 55/75

MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

arg max
Θ

p(Θ,�) =

arg max
Θ

p(� |Θ)p(Θ) =

arg max
Θ

ln p(� |Θ)p(Θ) =

arg max
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)
√

λ

2π
e−

1
2
λθ2

arg max
Θ

∑
(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2︸ ︷︷ ︸
BPR−OPT

Tutorial on Recommender Systems Matrix factorization 55/75

MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

arg max
Θ

p(Θ,�) =

arg max
Θ

p(� |Θ)p(Θ) =

arg max
Θ

ln p(� |Θ)p(Θ) =

arg max
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)
√

λ

2π
e−

1
2
λθ2

arg max
Θ

∑
(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2︸ ︷︷ ︸
BPR−OPT

Tutorial on Recommender Systems Matrix factorization 55/75

MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

arg max
Θ

p(Θ,�) =

arg max
Θ

p(� |Θ)p(Θ) =

arg max
Θ

ln p(� |Θ)p(Θ) =

arg max
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)
√

λ

2π
e−

1
2
λθ2

arg max
Θ

∑
(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2︸ ︷︷ ︸
BPR−OPT

Tutorial on Recommender Systems Matrix factorization 55/75

MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

arg max
Θ

p(Θ,�) =

arg max
Θ

p(� |Θ)p(Θ) =

arg max
Θ

ln p(� |Θ)p(Θ) =

arg max
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)
√

λ

2π
e−

1
2
λθ2

arg max
Θ

∑
(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2︸ ︷︷ ︸
BPR−OPT

Tutorial on Recommender Systems Matrix factorization 55/75

Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT
∂Θ

∝
∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ

∂

∂θ
(φ̂ui − φ̂uj) =


(hi − hj) if θ = wu
wu if θ = hi
−wu if θ = hj
0 else

LearnBPR

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

draw (u, i, j) ∈ Dp randomly
Θ← Θ + α∂BPR−OPT∂Θ (Θ)

until approximate maximum is reached
return Θ

Tutorial on Recommender Systems Matrix factorization 56/75

Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT
∂Θ

∝
∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ

∂

∂θ
(φ̂ui − φ̂uj) =


(hi − hj) if θ = wu
wu if θ = hi
−wu if θ = hj
0 else

LearnBPR

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

draw (u, i, j) ∈ Dp randomly
Θ← Θ + α∂BPR−OPT∂Θ (Θ)

until approximate maximum is reached
return Θ

Tutorial on Recommender Systems Matrix factorization 56/75

Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT
∂Θ

∝
∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ

∂

∂θ
(φ̂ui − φ̂uj) =


(hi − hj) if θ = wu
wu if θ = hi
−wu if θ = hj
0 else

LearnBPR

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

draw (u, i, j) ∈ Dp randomly
Θ← Θ + α∂BPR−OPT∂Θ (Θ)

until approximate maximum is reached
return Θ

Tutorial on Recommender Systems Matrix factorization 56/75

BPR-OPT vs AUC

Area under the ROC curve (AUC)

• probability that the ranking of a randomly drawn pair is correct

AUC =
∑
u∈U

AUC(u) =
1

|U|
1

|Iu| |I \ Iu|
∑

(u,i,j)∈Dp

δ(φ̂ui � φ̂uj)

• δ(φ̂ui � φ̂uj) = 1 if φ̂ui � φ̂uj , and 0, else

Smoothed AUC objective function with regularization of parameters

AUC −OPT =
∑

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)− λ‖Θ‖2

BPR−OPT =
∑

(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2

Tutorial on Recommender Systems Matrix factorization 57/75

BPR-OPT vs AUC

Area under the ROC curve (AUC)

• probability that the ranking of a randomly drawn pair is correct

AUC =
∑
u∈U

AUC(u) =
1

|U|
1

|Iu| |I \ Iu|
∑

(u,i,j)∈Dp

δ(φ̂ui � φ̂uj)

• δ(φ̂ui � φ̂uj) = 1 if φ̂ui � φ̂uj , and 0, else

Smoothed AUC objective function with regularization of parameters

AUC −OPT =
∑

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)− λ‖Θ‖2

BPR−OPT =
∑

(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2

Tutorial on Recommender Systems Matrix factorization 57/75

BPR-OPT vs AUC

Area under the ROC curve (AUC)

• probability that the ranking of a randomly drawn pair is correct

AUC =
∑
u∈U

AUC(u) =
1

|U|
1

|Iu| |I \ Iu|
∑

(u,i,j)∈Dp

δ(φ̂ui � φ̂uj)

• δ(φ̂ui � φ̂uj) = 1 if φ̂ui � φ̂uj , and 0, else

Smoothed AUC objective function with regularization of parameters

AUC −OPT =
∑

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)− λ‖Θ‖2

BPR−OPT =
∑

(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2

Tutorial on Recommender Systems Matrix factorization 57/75

More info on ranking with factorization models

Tutorial on Recommender Systems Matrix factorization 58/75

Issues worth to mention

The cold-start problem

arises when not enough collaborative information is available

• new user or new item

possible solutions

• recommend popular items, “predict” global average, . . .
• utilize item attributes1

1
Z. Gantner et al. (2010). Learning Attribute-to-Feature Mappings for Cold-Start

Recommendations. 10th IEEE International Conference on Data Mining.

Tutorial on Recommender Systems Issues worth to mention 59/75

The cold-start problem

arises when not enough collaborative information is available

• new user or new item

possible solutions

• recommend popular items, “predict” global average, . . .

• utilize item attributes1

1
Z. Gantner et al. (2010). Learning Attribute-to-Feature Mappings for Cold-Start

Recommendations. 10th IEEE International Conference on Data Mining.

Tutorial on Recommender Systems Issues worth to mention 59/75

The cold-start problem

arises when not enough collaborative information is available

• new user or new item

possible solutions

• recommend popular items, “predict” global average, . . .
• utilize item attributes1

1
Z. Gantner et al. (2010). Learning Attribute-to-Feature Mappings for Cold-Start

Recommendations. 10th IEEE International Conference on Data Mining.

Tutorial on Recommender Systems Issues worth to mention 59/75

Context-aware recommendation

Context is any additional information, besides χuser, χitem, φ and κ,
that is relevant for the recommendation1

• time, location, companion (when, where and with whom the user
wants to watch some movie)

1
Picture from G. Adomavicius and A. Tuzhilin: Context-Aware Recommender Systems.

Tutorial on the 2nd ACM International Conference on Recommender Systems, 2008.
http://ids.csom.umn.edu/faculty/gedas/talks/RecSys2008-tutorial.pdf

Tutorial on Recommender Systems Issues worth to mention 60/75

Context-aware recommendation

Context is any additional information, besides χuser, χitem, φ and κ,
that is relevant for the recommendation1

• time, location, companion (when, where and with whom the user
wants to watch some movie)

1
Picture from G. Adomavicius and A. Tuzhilin: Context-Aware Recommender Systems.

Tutorial on the 2nd ACM International Conference on Recommender Systems, 2008.
http://ids.csom.umn.edu/faculty/gedas/talks/RecSys2008-tutorial.pdf

Tutorial on Recommender Systems Issues worth to mention 60/75

Evaluating RS (1/3)

experiments

• offline
• no interaction with real users, need to simulate user behaviour
• low cost, short time
• answers only a few questions, e.g. the predictive power of techniques

• user studies
• observing test subjects’ behaviour in the system
• questionnaries
• expensive, small scale,

• online evaluation
• redirect a small part of the traffic to an alternative recommendation

engine
• risky – we can loose some customers
• good to do after an offline testing of an recommendation engine

showes good results

Tutorial on Recommender Systems Issues worth to mention 61/75

Evaluating RS (1/3)

experiments

• offline
• no interaction with real users, need to simulate user behaviour
• low cost, short time
• answers only a few questions, e.g. the predictive power of techniques

• user studies
• observing test subjects’ behaviour in the system
• questionnaries
• expensive, small scale,

• online evaluation
• redirect a small part of the traffic to an alternative recommendation

engine
• risky – we can loose some customers
• good to do after an offline testing of an recommendation engine

showes good results

Tutorial on Recommender Systems Issues worth to mention 61/75

Evaluating RS (1/3)

experiments

• offline
• no interaction with real users, need to simulate user behaviour
• low cost, short time
• answers only a few questions, e.g. the predictive power of techniques

• user studies
• observing test subjects’ behaviour in the system
• questionnaries
• expensive, small scale,

• online evaluation
• redirect a small part of the traffic to an alternative recommendation

engine
• risky – we can loose some customers
• good to do after an offline testing of an recommendation engine

showes good results

Tutorial on Recommender Systems Issues worth to mention 61/75

Evaluating RS (1/3)

experiments

• offline
• no interaction with real users, need to simulate user behaviour
• low cost, short time
• answers only a few questions, e.g. the predictive power of techniques

• user studies
• observing test subjects’ behaviour in the system
• questionnaries
• expensive, small scale,

• online evaluation
• redirect a small part of the traffic to an alternative recommendation

engine
• risky – we can loose some customers
• good to do after an offline testing of an recommendation engine

showes good results

Tutorial on Recommender Systems Issues worth to mention 61/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (2/3)

properties of a recommender system

• user preference
• Which one from different RS users prefer more?

• prediction accuracy
• How precise recommendations does a RS provide?

• coverage
• What proportion of all items can a RS ever recommend? To what

proportion of users can a system recommend? How rich a user
profile should be for making recommendation?

• cold-start as a subproblem (“coldness” of an item)

• confidence
• How confident the system is with its recommendation? (e.g.

depends on amount of data in CF. . .)

• novelty
• Does the system recommends items the user did not know about?

• trust
• What is the users’ trust in recommendation?

Tutorial on Recommender Systems Issues worth to mention 62/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

Evaluating RS (3/3)

• serendipity
• How surprising the recommendations are? (e.g. a new movie with

the user’s favourite actor can be novel but not surprising)

• diversity
• How “colorful” the recommendations are?

• utility
• How useful a RS is for the provider/user? (e.g. generated revenue)

• robustness
• How stable a RS is in presence of fake information?

• privacy
• How users’ privacy is retained in a RS ?

• adaptivity
• How does a RS adapt to changes in the item collection?

• scalability
• How scalable a RS is?

Tutorial on Recommender Systems Issues worth to mention 63/75

The MyMediaLite library

MyMediaLite Recommendation Algorithm Library

MyMediaLite

• is lightweight, multi-purpose library

• is mainly a library, meant to be used by other applications

• is free software (under the terms of the GNU General Public
License)

• was developed by Zeno Gantner, Steffen Rendle, and Christoph
Freudenthaler at University of Hildesheim

http://ismll.de/mymedialite

Tutorial on Recommender Systems The MyMediaLite library 64/75

MyMediaLite features

major

• scalable implementations of many state-of-the-art
recommendation methods

• evaluation framework for reproducible research

• ready to be used: command line tools, not programming
necessary

using for

• rating prediction

• item recommendation

• group recommendation

next features

• usable from C#, Python,
Ruby, F#

• Java ports available

• written in C#, runs on Mono

• regular releases (ca. 1 every 2
months)

Tutorial on Recommender Systems The MyMediaLite library 65/75

MyMediaLite features

major

• scalable implementations of many state-of-the-art
recommendation methods

• evaluation framework for reproducible research

• ready to be used: command line tools, not programming
necessary

using for

• rating prediction

• item recommendation

• group recommendation

next features

• usable from C#, Python,
Ruby, F#

• Java ports available

• written in C#, runs on Mono

• regular releases (ca. 1 every 2
months)

Tutorial on Recommender Systems The MyMediaLite library 65/75

MyMediaLite features

major

• scalable implementations of many state-of-the-art
recommendation methods

• evaluation framework for reproducible research

• ready to be used: command line tools, not programming
necessary

using for

• rating prediction

• item recommendation

• group recommendation

next features

• usable from C#, Python,
Ruby, F#

• Java ports available

• written in C#, runs on Mono

• regular releases (ca. 1 every 2
months)

Tutorial on Recommender Systems The MyMediaLite library 65/75

Methods in MyMediaLite

State-of-the-art recommendation methods in MyMediaLite:

• kNN variants

• Online-Updating Regularized Kernel Matrix Factorization [Rendle
and Schmidt-Thieme, RecSys 2009]

• SocialMF [Jamali and Ester, RecSys 2010] Freudenthaler at
University of Hildesheim

• Asymmetric Factor Models (AFM) [Paterek, KDD Cup 2007]

• SVD++ [Koren, KDD 2008]

• Weighted Regularized Matrix Factorization (WR-MF) [Hu and
Koren, ICDM 2008], [Pan et al., ICDM 2008]

• BPR-MF [Rendle et al., UAI 2009]

Tutorial on Recommender Systems The MyMediaLite library 66/75

Data

e.g. MovieLens, Netflix

user ID item ID rating timestamp
196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923

Remarks

• user and item IDs can be (almost) arbitrary strings

• separator: whitespace, tab, comma, ::

• alternative date and time format: yyyy-mm-dd

• rating and date and time fields are optional

• import script; Unix tools, Perl, Python . . .

Tutorial on Recommender Systems The MyMediaLite library 67/75

Data

e.g. MovieLens, Netflix

user ID item ID rating timestamp
196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923

Remarks

• user and item IDs can be (almost) arbitrary strings

• separator: whitespace, tab, comma, ::

• alternative date and time format: yyyy-mm-dd

• rating and date and time fields are optional

• import script; Unix tools, Perl, Python . . .

Tutorial on Recommender Systems The MyMediaLite library 67/75

Usage: Explicit Feedback I

Getting Help

• rating prediction --help

Data sets

• rating prediction --training-file=u1.base

--test-file=u1.test

Recommender Options

• rating prediction --training-file=u.data

--test-ratio=0.2

Fixing the Random Seed

• rating prediction ... --random-seed=1

Choosing a Recommender (algorithm)

• rating prediction ... --recommender=UserAverage

• rating prediction ... --recommender=UserItemBaseline

Tutorial on Recommender Systems The MyMediaLite library 68/75

Usage: Explicit Feedback II

Iterative Recommenders

• rating prediction

... --recommender=BiasedMatrixFactorization

--find-iter=1 --max-iter=30

Recommender Options (Hyperparameters)

• rating prediction

... --recommender-options=’’num factors=5’’

• rating prediction ...

--recommender-options=’’num factors=5 reg=0.05’’

SVD++

• rating prediction ... --recommender=SVDPlusPlus

--recommender-options=’’num factors=5 reg=0.1

learn rate=0.01’’

Tutorial on Recommender Systems The MyMediaLite library 69/75

Example: rating prediction

1 1 5

1 2 3

1 3 4

1 4 3

1 5 3

1 7 4

input data

• user id item id rating

where user id and item id are integers referring to
users and items, respectively, and rating is a
floating-point number expressing how much a user likes
an item

• separator: either spaces, tabs, or commas

• only three columns, all additional columns will be
ignored

usage of the rating prediction program
rating prediction --training-file=TRAINING FILE

--test-file=TEST FILE --recommender=METHOD [OPTIONS]

Tutorial on Recommender Systems The MyMediaLite library 70/75

Example: rating prediction

1 1 5

1 2 3

1 3 4

1 4 3

1 5 3

1 7 4

input data

• user id item id rating

where user id and item id are integers referring to
users and items, respectively, and rating is a
floating-point number expressing how much a user likes
an item

• separator: either spaces, tabs, or commas

• only three columns, all additional columns will be
ignored

usage of the rating prediction program
rating prediction --training-file=TRAINING FILE

--test-file=TEST FILE --recommender=METHOD [OPTIONS]

Tutorial on Recommender Systems The MyMediaLite library 70/75

Example: simple and advanced recommender

simple recommender

• run: rating prediction --training-file=u1.base

--test-file=u1.test --recommender=UserAverage

• output: UserAverage training time 00:00:00.000098 RMSE

1.063 MAE 0.85019 testing time 00:00:00.032326

advanced recommender

• run: rating prediction --training-file=u1.base

--test-file=u1.test

--recommender=BiasedMatrixFactorization

• output: BiasedMatrixFactorization num factors=10

regularization=0.015 learn rate=0.01 num iter=30

init mean=0 init stdev=0.1 training time

00:00:03.3575780 RMSE 0.96108 MAE 0.75124 testing time

00:00:00.0159740

Tutorial on Recommender Systems The MyMediaLite library 71/75

Example: simple and advanced recommender

simple recommender

• run: rating prediction --training-file=u1.base

--test-file=u1.test --recommender=UserAverage

• output: UserAverage training time 00:00:00.000098 RMSE

1.063 MAE 0.85019 testing time 00:00:00.032326

advanced recommender

• run: rating prediction --training-file=u1.base

--test-file=u1.test

--recommender=BiasedMatrixFactorization

• output: BiasedMatrixFactorization num factors=10

regularization=0.015 learn rate=0.01 num iter=30

init mean=0 init stdev=0.1 training time

00:00:03.3575780 RMSE 0.96108 MAE 0.75124 testing time

00:00:00.0159740

Tutorial on Recommender Systems The MyMediaLite library 71/75

Example: hyperparameter search

• run: rating prediction --training-file=u1.base

--test-file=u1.test

--recommender=BiasedMatrixFactorization

--recomender-options="num factors=20 num iter=0"

--max-iter=25 --num-iter=0

• output:
...

RMSE 1.17083 MAE 0.96918 iteration 0

RMSE 1.01383 MAE 0.8143 iteration 1

RMSE 0.98742 MAE 0.78742 iteration 2

RMSE 0.97672 MAE 0.77668 iteration 3

RMSE 0.9709 MAE 0.77078 iteration 4

RMSE 0.96723 MAE 0.76702 iteration 5

RMSE 0.96466 MAE 0.76442 iteration 6

RMSE 0.96269 MAE 0.76241 iteration 7

RMSE 0.96104 MAE 0.76069 iteration 8

RMSE 0.95958 MAE 0.75917 iteration 9

RMSE 0.95825 MAE 0.75783 iteration 10

RMSE 0.95711 MAE 0.75667 iteration 11

RMSE 0.95626 MAE 0.75569 iteration 12

RMSE 0.95578 MAE 0.75501 iteration 13

RMSE 0.95573 MAE 0.75467 iteration 14

RMSE 0.95611 MAE 0.75467 iteration 15

RMSE 0.9569 MAE 0.75499 iteration 16

RMSE 0.95802 MAE 0.75551 iteration 17

RMSE 0.95942 MAE 0.75623 iteration 18

RMSE 0.96102 MAE 0.7571 iteration 19

RMSE 0.96277 MAE 0.75806 iteration 20

RMSE 0.96463 MAE 0.75909 iteration 21

RMSE 0.96656 MAE 0.76017 iteration 22

RMSE 0.96852 MAE 0.7613 iteration 23

RMSE 0.9705 MAE 0.76246 iteration 24

RMSE 0.97247 MAE 0.76364 iteration 25

Tutorial on Recommender Systems The MyMediaLite library 72/75

Example: hyperparameter search

• run: rating prediction --training-file=u1.base

--test-file=u1.test

--recommender=BiasedMatrixFactorization

--recomender-options="num factors=20 num iter=0"

--max-iter=25 --num-iter=0

• output:
...

RMSE 1.17083 MAE 0.96918 iteration 0

RMSE 1.01383 MAE 0.8143 iteration 1

RMSE 0.98742 MAE 0.78742 iteration 2

RMSE 0.97672 MAE 0.77668 iteration 3

RMSE 0.9709 MAE 0.77078 iteration 4

RMSE 0.96723 MAE 0.76702 iteration 5

RMSE 0.96466 MAE 0.76442 iteration 6

RMSE 0.96269 MAE 0.76241 iteration 7

RMSE 0.96104 MAE 0.76069 iteration 8

RMSE 0.95958 MAE 0.75917 iteration 9

RMSE 0.95825 MAE 0.75783 iteration 10

RMSE 0.95711 MAE 0.75667 iteration 11

RMSE 0.95626 MAE 0.75569 iteration 12

RMSE 0.95578 MAE 0.75501 iteration 13

RMSE 0.95573 MAE 0.75467 iteration 14

RMSE 0.95611 MAE 0.75467 iteration 15

RMSE 0.9569 MAE 0.75499 iteration 16

RMSE 0.95802 MAE 0.75551 iteration 17

RMSE 0.95942 MAE 0.75623 iteration 18

RMSE 0.96102 MAE 0.7571 iteration 19

RMSE 0.96277 MAE 0.75806 iteration 20

RMSE 0.96463 MAE 0.75909 iteration 21

RMSE 0.96656 MAE 0.76017 iteration 22

RMSE 0.96852 MAE 0.7613 iteration 23

RMSE 0.9705 MAE 0.76246 iteration 24

RMSE 0.97247 MAE 0.76364 iteration 25

Tutorial on Recommender Systems The MyMediaLite library 72/75

Why use MyMediaLite?

• simple

• free

• scalable

• well-documented

• well-tested

possibility of using extra features

• Item Recommendation Tool (very similar usage like
rating prediction)

• --cross-validation=K

• --chronological-split=2012-01-01

• --online-evaluation

• --save-model=FILE --load-model=FILE

• --measure=RMSE --epsilon=0.001

• ...

Tutorial on Recommender Systems The MyMediaLite library 73/75

Why use MyMediaLite?

• simple

• free

• scalable

• well-documented

• well-tested

possibility of using extra features

• Item Recommendation Tool (very similar usage like
rating prediction)

• --cross-validation=K

• --chronological-split=2012-01-01

• --online-evaluation

• --save-model=FILE --load-model=FILE

• --measure=RMSE --epsilon=0.001

• ...

Tutorial on Recommender Systems The MyMediaLite library 73/75

Summary

Types of RS (1/2)

Knowledge-based

• pros: no cold-start, deterministic

• cons: knowledge-engineering needed, static

Content-based

• pros: no collaborative information needed

• cons: content is needed, cold-start for new users, no serendipity

Collaborative-filtering

• pros: no user nor item attributes needed, serendipity

• cons: cold-start for new users and items

Tutorial on Recommender Systems Summary 74/75

Types of RS (2/2)

Tutorial on Recommender Systems Summary 75/75

Many thanks go to

• Štefan Pero for his great help

• Zeno Gantner for providing materials and help regarding
MyMediaLite

• Artus Krohn-Grimberghe for a picture from his PhD defense
presentation

• all my colleagues and friends from ICS, UPJŠ and the ISMLL,
UHI as well as other institutes for helping me to understand these
things ;)

. . . also,

• all the people providing their materials (funny pictures, graphs,
leaderboards, . . .) on the web

. . . and, last but not least

• YOU for your attention!

Questions?

Tomas.Horvath@upjs.sk

http://www.ics.upjs.sk/~horvath

http://www.ics.upjs.sk/~horvath

