
- 1 -

NSWI166 – Introduction to Recommender Systems

Ladislav Peska
peska@ksi.mff.cuni.cz

2/1, ZK+Z, 4 credits

- 2 -

Problem domain

 Recommendation systems (RS) help to match users with items

– Ease information overload

– Sales assistance (guidance, advisory, persuasion,…)

RS are software agents that elicit the interests and preferences of individual
consumers […] and make recommendations accordingly.

They have the potential to support and improve the quality of the
decisions consumers make while searching for and selecting products online.

» (Xiao & Benbasat 20071)

 Different system designs / paradigms

– Based on availability of exploitable data

– Implicit and explicit user feedback

– Domain characteristics

(1) Xiao and Benbasat, E-commerce product recommendation agents: Use, characteristics, and impact, MIS Quarterly 31 (2007), no. 1, 137–209

- 3 -

Paradigms of recommender systems

Hybrid: combinations of various inputs
and/or composition of different
mechanism

Current user context
(location, opened page,…)

- 4 -

- 5 -

Paradigms of recommender systems

Hybrid: combinations of various inputs
and/or composition of different
mechanism

Current user context
(location, opened page,…)

- 6 -

Agenda

 Collaborative Filtering (CF)

– Pure CF approaches

– User-based nearest-neighbor

– The Pearson Correlation similarity measure

– Memory-based and model-based approaches

– Item-based nearest-neighbor

– The cosine similarity measure

– Data sparsity problems

– Recent methods (SVD, Association Rule Mining, Slope One, RF-Rec, …)

– The Google News personalization engine

– Discussion and summary

– Literature

- 7 -

Collaborative Filtering (CF)

 The most prominent approach to generate recommendations

– used by large, commercial e-commerce sites

– well-understood, various algorithms and variations exist

– applicable in many domains (book, movies, DVDs, ..)

 Approach

– use the "wisdom of the crowd" to recommend items

 Basic assumption and idea

– Users give ratings to catalog items (implicitly or explicitly)

– Customers who had similar tastes in the past, will have similar tastes in the
future

- 8 -

Pure CF Approaches

 Input

– Only a matrix of given user–item ratings

 Output types

– A (numerical) prediction indicating to what degree the current user will like or
dislike a certain item

 Less relevant nowadays

– A top-N list of recommended items

- 9 -

User-based nearest-neighbor collaborative filtering (1)

 The basic technique
– Given an "active user" (Alice) and an item 𝑖 not yet seen by Alice

 find a set of users (peers/nearest neighbors) who liked the same items as Alice
in the past and who have rated item 𝑖

 use, e.g. the average of their ratings to predict, if Alice will like item 𝑖

 do this for all items Alice has not seen and recommend the best-rated

 Basic assumption and idea
– If users had similar tastes in the past they will have similar tastes in the future

– User preferences remain stable and consistent over time

- 10 -

User-based nearest-neighbor collaborative filtering (1)

 The basic technique
– Given an "active user" (Alice) and an item 𝑖 not yet seen by Alice

 find a set of users (peers/nearest neighbors) who liked the same items as Alice
in the past and who have rated item 𝑖

 use, e.g. the average of their ratings to predict, if Alice will like item 𝑖

 do this for all items Alice has not seen and recommend the best-rated

 Basic assumption and idea
– If users had similar tastes in the past they will have similar tastes in the future

– User preferences remain stable and consistent over time

 This might be a problem for long-deployed services

– Apply decay of relevance or remove old data

– Detect changes of preference

- 11 -

User-based nearest-neighbor collaborative filtering (2)

 Example

– A database of ratings of the current user, Alice, and some other users is given:

– Determine whether Alice will like or dislike Item5, which Alice has not yet
rated or seen

– Underlined assumption: user provides explicit rating

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 12 -

User-based nearest-neighbor collaborative filtering (3)

 Some first questions

– How do we measure similarity?

– How many neighbors should we consider?

– How do we generate a prediction from the neighbors' ratings?

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 13 -

Measuring user similarity (1)

 A (once upon time) popular similarity measure in KNN: Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

𝒔𝒊𝒎 𝒂, 𝒃 =
 𝒑 ∈𝑷(𝒓𝒂,𝒑 − 𝒓𝒂)(𝒓𝒃,𝒑 − 𝒓𝒃)

 𝒑 ∈𝑷 𝒓𝒂,𝒑 − 𝒓𝒂
𝟐
 𝒑 ∈𝑷 𝒓𝒃,𝒑 − 𝒓𝒃

𝟐

- 14 -

Measuring user similarity (1)

 A popular similarity measure in user-based KNN : Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

– Underlined assumption: User dislikes what he/she rated below average

 Often not true in reality (we rate only what we liked or highly disliked)

𝒔𝒊𝒎 𝒂, 𝒃 =
 𝒑 ∈𝑷(𝒓𝒂,𝒑 − 𝒓𝒂)(𝒓𝒃,𝒑 − 𝒓𝒃)

 𝒑 ∈𝑷 𝒓𝒂,𝒑 − 𝒓𝒂
𝟐
 𝒑 ∈𝑷 𝒓𝒃,𝒑 − 𝒓𝒃

𝟐
+ 𝜺

Deviation from average rating on shared items

!!! Will be zero in case of uniform rating !!!

- 15 -

Measuring user similarity (2)

 A popular similarity measure in user-based KNN : Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0,85

sim = 0,00

sim = 0,70

sim = -0,79

- 16 -

Pearson correlation

 Takes differences in rating behavior into account

 Works well in usual domains, compared with alternative measures

– such as cosine similarity

– Cannot handle uniform feedback well

0

1

2

3

4

5

6

Item1 Item2 Item3 Item4

Ratings

Alice

User
1

User
4

- 17 -

Making predictions

 A common prediction function:

 Calculate, whether the neighbors' ratings for the unseen item 𝑖 are higher
or lower than their average

 Combine the rating differences – use the similarity with 𝑎 as a weight

 Add/subtract the neighbors' bias from the active user's average and use
this as a prediction

𝒑𝒓𝒆𝒅 𝒂, 𝒑 = 𝒓𝒂 +
 𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃 ∗ (𝒓𝒃,𝒑 − 𝒓𝒃)

 𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃

- 18 -

Improving the metrics / prediction function

 Not all neighbor ratings might be equally "valuable"

– Agreement on commonly liked items is not so informative as agreement on
controversial items

– Possible solution: Give more weight to items that have a higher variance

 Value of number of co-rated items

– Use "significance weighting", by e.g., linearly reducing the weight when the number of
co-rated items is low

– Incorporate all items rated by users, not just the shared ones

 Case amplification

– Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is
close to 1.

– 𝑠𝑖𝑚(𝑎, 𝑏)2 etc.

 Neighborhood selection

– Use similarity threshold or fixed number of neighbors

- 19 -

Memory-based and model-based approaches

 User-based KNN is said to be "memory-based"

– the rating matrix is directly used to find neighbors / make predictions

 Everything is calculated at the time of the request

– does not scale for most real-world scenarios

– large e-commerce sites / social networks have tens of millions of customers
and millions of items

 Model-based approaches

– based on an offline pre-processing or "model-learning" phase

– at run-time, only the learned model is used to make predictions

– models are updated / re-trained periodically

– large variety of techniques used

– model-building and updating can be computationally expensive

– item-based KNN is an example for model-based approaches

- 20 -

Item-based collaborative filtering

 Basic idea:

– Use the similarity between items (and not users) to make predictions

 Tends to be a bit more stable

 Example:

– Look for items that are similar to Item5

– Take Alice's ratings for these items to predict the rating for Item5

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

- 21 -

The cosine similarity measure

 Produces better results in item-to-item filtering

 Ratings are seen as vector in n-dimensional space

 Similarity is calculated based on the angle between the vectors

 Adjusted cosine similarity

– take average user ratings into account, transform the original ratings

– 𝑈: set of users who have rated both items 𝑎 and 𝑏

𝒔𝒊𝒎 𝒂, 𝒃 =
𝒂 ∙ 𝒃

𝒂 ∗ |𝒃|

𝒔𝒊𝒎 𝒂, 𝒃 =
 𝒖∈𝑼(𝒓𝒖,𝒂 − 𝒓𝒖)(𝒓𝒖,𝒃 − 𝒓𝒖)

 𝒖∈𝑼 𝒓𝒖,𝒂 − 𝒓𝒖
𝟐
 𝒖∈𝑼 𝒓𝒖,𝒃 − 𝒓𝒖

𝟐

- 22 -

Making predictions

 A common prediction function:

 Neighborhood size is typically also limited to a specific size

 Not all neighbors are taken into account for the prediction

 An analysis of the MovieLens dataset indicates that "in most real-world
situations, a neighborhood of 20 to 50 neighbors seems reasonable"
(Herlocker et al. 2002)

𝒑𝒓𝒆𝒅 𝒖, 𝒑 =
 𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒖) 𝒔𝒊𝒎 𝒊, 𝒑 ∗ 𝒓𝒖,𝒊

 𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒖) 𝒔𝒊𝒎 𝒊, 𝒑

- 23 -

Pre-processing for item-based filtering

 Item-based filtering does not solve the scalability problem itself

 Pre-processing approach by Amazon.com (in 2003)

– Calculate all pair-wise item similarities in advance

– The neighborhood to be used at run-time is typically rather small, because
only items are taken into account which the user has rated

– Item similarities are supposed to be more stable than user similarities

 Memory requirements

– Up to N2 pair-wise similarities to be memorized (N = number of items) in
theory

– In practice, this is significantly lower (items with no co-ratings)

– Further reductions possible

 Minimum threshold for co-ratings

 Limit the neighborhood size (might affect recommendation accuracy)

- 24 -

More on ratings – Explicit ratings

 Probably the most precise ratings

 Most commonly used (1 to 5, 1 to 7 Likert response scales, likes/dislikes)

 Research topics

– Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.

 Different domains addopted other common scales

– Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)

 Booking.com rating

 Main problems

– Users not always willing to rate many items

 number of available ratings could be too small → sparse rating matrices → poor recommendation
quality

– How to stimulate users to rate more items?

– What else to use?

- 25 -

More on ratings – Implicit ratings

 Typically collected by the web shop or application in which the recommender system
is embedded

 When a customer buys an item, for instance, many recommender systems interpret
this behavior as a positive rating

 Clicks, page views, time spent on some page, demo downloads …

 Implicit ratings can be collected constantly and do not require additional efforts from
the side of the user

 Main problem

– One cannot be sure whether the user behavior is correctly interpreted

– For example, a user might not like all the books he or she has bought; the user also might
have bought a book for someone else

 Implicit ratings can be used in addition to explicit ones; question of correctness of
interpretation

- 26 -

Data sparsity problems

 Cold start problem

– How to recommend new items? What to recommend to new users?

 Straightforward approaches

– Ask/force users to rate a set of items

– Use another method (e.g., content-based, demographic or simply non-
personalized) in the initial phase

– Default voting: assign default values to items that only one of the two users to
be compared has rated (Breese et al. 1998)

 Alternatives

– Use better algorithms (beyond nearest-neighbor approaches)

– Example:

 In nearest-neighbor approaches, the set of sufficiently similar neighbors might
be too small to make good predictions

 Assume "transitivity" of neighborhoods

- 27 -

Data sparsity problem for nearest neighbors

 Which user is closer to the current one?

 Which object is closer to the current one?

– among the rated objects

- 28 -

KNN Models for Sparse Datasets and Ranking Prediction

 Calculating estimated rating for each object is time-consuming and unnecessary

– Often, we do not need object’s rating, but only ranking of a top-k objects

 For many objects, there are no similar user who rated this object

– No way to reliably estimate rating

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?

N
o
 s

h
a
re

d
o
b
je

c
ts

N
e
g
a
ti
v
e
 s

im
il
a
ri
ty

- 29 -

KNN Models for Sparse Datasets and Ranking Prediction

 Calculating estimated rating for each object is time-consuming and unnecessary

– Often, we do not need object’s rating, but only ranking of a top-k objects

 For many objects, there are no similar user who rated this object

– No way to reliably estimate rating

=> Forget about Item3, we have plenty of others to recommend

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?

N
o
 s

h
a
re

d
o
b
je

c
ts

N
e
g
a
ti
v
e
 s

im
il
a
ri
ty

- 30 -

KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other item

– Sum scores for all unknown items rated by the neighbors

– Return items with highest scores

– Sum object’s score instead of average to prefer items on which multiple neighbors
agreed

- 31 -

KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other item

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 1 ?

User2 ? 4 ? ? 5 5 4

User3 ? ? 1 ? ? 1 4

User4 1 ? 4 2 ? 5 ?

0.5

0.35

NaN/0

-0.45

𝒔𝒊𝒎 𝒂, 𝒃 =
 𝒑 ∈𝑷(𝒓𝒂,𝒑 − 𝒓𝒂)(𝒓𝒃,𝒑 − 𝒓𝒃)

 𝒑 ∈𝑷 𝒓𝒂,𝒑 − 𝒓𝒂
𝟐
 𝒑 ∈𝑷 𝒓𝒃,𝒑 − 𝒓𝒃

𝟐

- 32 -

KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other item

– Sum scores for all unknown items rated by the neighbors

– Return items with highest scores

 Item5, Item6,…

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 1 ?

User2 ? 4 ? ? 5 5 4

0.5

0.35

?/0 3.25 2.25 1.4

𝒔𝒄𝒐𝒓𝒆 𝒂, 𝒑 =
𝒃 ∈𝑵
𝒔𝒊𝒎 𝒂, 𝒃 ∗ (𝒓𝒃,𝒑 − 𝒓𝒃)

- 33 -

Item-based KNN for Ranking Prediction

 2003 paper: Amazon.com Recommendations Item-to-Item Collaborative Filtering

– https://dl.acm.org/citation.cfm?id=642471

 Recommend items that are similar (based on other user ratings) to the items
already liked by Alice

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?

- 34 -

Item-based KNN for Ranking Prediction

 Recommend items that are similar (based on other user ratings) to the items
already liked by Alice

 Offline preprocessing:

 Output: similarity matrix of all objects (or top-k most similar)

 Online:

– For each rated object 𝑜𝑎 add 𝑠𝑖𝑚 𝑜𝑎 , 𝑜𝑏 ∗ (𝑟𝑎,𝑢 − 𝑟𝑢) to the score of object 𝑜𝑏

– Recommend objects with highest scores

For each item in product catalog, I1

For each customer C who purchased I1

For each item I2 purchased by customer C

Record that a customer purchased I1 and I2

For each item I2

Compute the similarity between I1 and I2 (i.e. Jaccard)

- 35 -

Example algorithms for sparse datasets

 Recursive CF (Zhang and Pu 2007)

– Assume there is a very close neighbor 𝑛 of 𝑢 who however has not rated the
target item 𝑖 yet.

– Idea:

 Apply CF-method recursively and predict a rating for item 𝑖 for the neighbor

 Use this predicted rating instead of the rating of a more distant direct
neighbor

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 ?

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0.85

Predict
rating for
User1

- 36 -

Graph-based methods (1)

 "Spreading activation" (Huang et al. 2004)
– Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix

with additional information

– Assume that we are looking for a recommendation for User1

– When using a standard CF approach, User2 will be considered a peer for User1 because
they both bought Item2 and Item4

– Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also
bought or liked it

- 37 -

Graph-based methods (2)

 "Spreading activation" (Huang et al. 2004)
– In a standard user-based or item-based CF approach, paths of length 3 will be

considered – that is, Item3 is relevant for User1 because there exists a three-step path
(User1–Item2–User2–Item3) between them

– Because the number of such paths of length 3 is small in sparse rating databases, the
idea is to also consider longer paths (indirect associations) to compute
recommendations

– Using path length 5, for instance

- 38 -

Graph-based methods (3)

 "Spreading activation" (Huang et al. 2004)

– Idea: Use paths of lengths > 3
to recommend items

– Length 3: Recommend Item3 to User1

– Length 5: Item1 also recommendable

- 39 -

More model-based approaches

 Plethora of different techniques proposed in the last years, e.g.,

– Matrix factorization techniques, statistics

 singular value decomposition, principal component analysis

– Association rule mining

 compare: shopping basket analysis

– Probabilistic models

 clustering models, Bayesian networks, probabilistic Latent Semantic Analysis

– Various other machine learning approaches

 Costs of pre-processing

– Usually not discussed

– Incremental updates possible?

 if not, training should be fast enough

- 40 -

Association rule mining

 Commonly used for shopping behavior analysis

– aims at detection of rules such as

"If a customer purchases beer then he also buys diapers
in 70% of the cases"

 Association rule mining algorithms

– can detect rules of the form X → Y (e.g., beer → diapers) from a set of sales
transactions D = {t1, t2, … tn}

– measure of quality: support, confidence

 used e.g. as a threshold to cut off unimportant rules

– let σ(X)=
|{x|x ti, ti D}|

|𝐷|

– support =
σ(X ∪Y)
|𝐷|

, confidence =
σ(X ∪Y)
σ(𝑋)

- 41 -

Recommendation based on Association Rule Mining

 Simplest approach

– transform 5-point ratings into binary
ratings (1 = above user average)

 Mine rules such as

– Item1 → Item5

 support (2/4), confidence (2/2) (without Alice)

 Make recommendations for Alice (basic method)

– Determine "relevant" rules based on Alice's transactions
(the above rule will be relevant as Alice bought Item1)

– Determine items not already bought by Alice

– Sort the items based on the rules' confidence values

 Different variations possible

– dislike statements, user associations ..

Item1 Item2 Item3 Item4 Item5

Alice 1 0 0 0 ?

User1 1 0 1 0 1

User2 1 0 1 0 1

User3 0 0 0 1 1

User4 0 1 1 0 0

Market Basket Analysis

- 42 -

Probabilistic methods

 Basic idea (simplistic version for illustration):

– given the user/item rating matrix

– determine the probability that user Alice will like an item 𝑖

– base the recommendation on such these probabilities

 Calculation of rating probabilities based on Bayes Theorem

– How probable is rating value "1" for Item5 given Alice's previous ratings?

– Corresponds to conditional probability P(Item5=1 | X), where

 X = Alice's previous ratings = (Item1 =1, Item2=3, Item3= …)

– Can be estimated based on Bayes' Theorem

– Assumption: Ratings are independent (?)

𝑷 𝒀 𝑿 =
𝑷 𝑿 𝒀 × 𝑷(𝒀)

𝑷(𝑿)
𝑷 𝒀 𝑿 =

 𝒊=𝟏
𝒅 𝑷 𝑿𝒊 𝒀 × 𝑷(𝒀)

𝑷(𝑿)

- 43 -

Calculation of probabilities in simplistic approach

Item1 Item2 Item3 Item4 Item5

Alice 1 3 3 2 ?

User1 2 4 2 2 4

User2 1 3 3 5 1

User3 4 5 2 3 3

User4 1 1 5 2 1

 More to consider
 Zeros (smoothing required)
 like/dislike simplification possible

𝑷 𝑿 𝑰𝒕𝒆𝒎𝟓 = 𝟏
= 𝑷 𝑰𝒕𝒆𝒎𝟏 = 𝟏 𝑰𝒕𝒆𝒎𝟓 = 𝟏 × 𝑷 𝑰𝒕𝒆𝒎𝟐 = 𝟑 𝑰𝒕𝒆𝒎𝟓 = 𝟏

× 𝑷 𝑰𝒕𝒆𝒎𝟑 = 𝟑 𝑰𝒕𝒆𝒎𝟓 = 𝟏 × 𝑷 𝑰𝒕𝒆𝒎𝟒 = 𝟐 𝑰𝒕𝒆𝒎𝟓 = 𝟏 =
𝟐

𝟐
×
𝟏

𝟐
×
𝟏

𝟐
×
𝟏

𝟐
≈ 𝟎. 𝟏𝟐𝟓
𝑷 𝑿 𝑰𝒕𝒆𝒎𝟓 = 𝟐
= 𝑷 𝑰𝒕𝒆𝒎𝟏 = 𝟏 𝑰𝒕𝒆𝒎𝟓 = 𝟐 × 𝑷 𝑰𝒕𝒆𝒎𝟐 = 𝟑 𝑰𝒕𝒆𝒎𝟓 = 𝟐

× 𝑷 𝑰𝒕𝒆𝒎𝟑 = 𝟑 𝑰𝒕𝒆𝒎𝟓 = 𝟐 × 𝑷 𝑰𝒕𝒆𝒎𝟒 = 𝟐 𝑰𝒕𝒆𝒎𝟓 = 𝟐 =
𝟎

𝟎
×⋯×⋯×⋯

= 𝟎

X = (Item1 =1, Item2=3, Item3= …)

- 44 -

Practical probabilistic approaches

 Use a cluster-based approach (Breese et al. 1998)

– assume users fall into a small number of subgroups (clusters)

– Make predictions based on estimates

 probability of Alice falling into cluster 𝑐

 probability of Alice liking item i given a certain cluster and her previous ratings

 𝑃 𝐶 = 𝑐, 𝑣1, … , 𝑣𝑛 = 𝑃(𝐶 = 𝑐) 𝑖=1
𝑛 𝑃(𝑣𝑖|𝐶 = 𝑐)

– Based on model-based clustering (mixture model)

 Number of classes and model parameters have to be learned from data in
advance (EM algorithm)

 Others:

– Bayesian Networks, Probabilistic Latent Semantic Analysis, ….

 Empirical analysis shows:

– Probabilistic methods lead to relatively good results (movie domain)

– No consistent winner; small memory-footprint of network model

- 45 -

RF-Rec predictors (Gedikli et al. 2011) a.k.a. Baseline predictors

 Idea: Take rating frequencies into account for computing a prediction

 Basic scheme: 𝑟𝑢,𝑖 = arg max
𝑣∈𝑅
𝑓𝑢𝑠𝑒𝑟 𝑢, 𝑣 ∗ 𝑓𝑖𝑡𝑒𝑚(𝑖, 𝑣)

– 𝑅: Set of all rating values, e.g., 𝑅 = {1,2,3,4,5} on a 5-point rating scale

– 𝑓𝑢𝑠𝑒𝑟 𝑢, 𝑣 and 𝑓𝑖𝑡𝑒𝑚 𝑖, 𝑣 basically describe how often a rating 𝑣 was
assigned by user 𝑢 and to item 𝑖 resp.

 Example:

 p(Alice, Item3) =

Item1 Item2 Item3 Item4 Item5

Alice 1 1 ? 5 4

User1 2 5 5 5

User2 1 1

User3 5 2 2

User4 3 1 1

User5 1 2 2 4

1

- 46 -

Summarizing recent methods

 Recommendation is concerned with learning from noisy
observations (x,y), where
has to be determined such that
is minimal.

 A huge variety of different learning strategies have been
applied trying to estimate f(x)
– Non parametric neighborhood models

– MF models, SVMs, Neural Networks, Bayesian Networks,…

yxf ˆ)(

y

yy
ˆ

2)ˆ(

- 47 -

Collaborative Filtering Issues

 Pros:
– well-understood, works well in some domains, no knowledge engineering required

 Cons:
– requires user community, sparsity problems, no integration of other knowledge sources,

no explanation of results

 What is the best CF method?
– In which situation and which domain? Inconsistent findings; always the same domains

and data sets; differences between methods are often very small (1/100)

 How to evaluate the prediction quality?
– MAE / RMSE: What does an MAE of 0.7 actually mean?

– Serendipity (novelty and surprising effect of recommendations)

 Not yet fully understood (still true)

 What about multi-dimensional ratings?

- 48 -

Matrix Completion

(Matrix factorization)

- 49 -

• Given a sparse matrix
• We want to fill-in the
• unknown values
• The values of the matrix
• are dependent on
• each other

• Approaches
 Search for similar rows/columns
 (nearest neighbour collaborative filtering)
 Matrix factorization
 Restricted Boltzmann Machines (RBM)
 ...

Matrix completion

5 ? 1 ? ? ...

? ? 5 ? 4 ...

5 4 2 ? ? ...

? 3 ? 2 5 ...

1 ? 5 ? 4 ...

5 4 ? ? 2 ...

...

- 50 -

Example: Nearest neighbor collaborative filtering
for movie-rating prediction (recommender

systems)

5 ? 1 ? ? ...

? ? 5 ? 4 ...

5 4 2 ? ? ...

? 3 ? 2 5 ...

1 ? 5 ? 4 ...

5 4 ? ? 2 ...

...

M
o

v
ie

 1

M
o

v
ie

 2

M
o

v
ie

 3

M
o

v
ie

 4

M
o

v
ie

 5

User 1

User 2

User 3

User 4

User 5

User 6

- 51 -

Quiz question: How would you fill in
this question mark?

5 ? 1 ? ? ...

? ? 5 ? 4 ...

5 4 2 ? ? ...

? 3 ? 2 5 ...

1 ? 5 ? 4 ...

5 4 ? ? 2 ...

...

M
o

v
ie

 1

M
o

v
ie

 2

M
o

v
ie

 3

M
o

v
ie

 4

M
o

v
ie

 5

User 1

User 2

User 3

User 4

User 5

User 6

- 52 -

Matrix factorization

• We estimate matrix M as the product of two
matrices U and V.

• Based on the known values of M, we search for U
and V so that their product best estimates the
(known) values of M

<

z

á

p

a

t

í

>

- 53 -

Problem formulation

• Target function:
• sum of squared errors + regularization
•

•

• where λ is the weight of the regularization term
• (i. e., a constant giving the importance of the
• regularization term)
• Minimization of the above loss function using stochastic

gradient descent (or any other optimization algorithms)

<

z

á

p

a

t

í

>

- 54 -

Matrix Factorization Algorithm

Input: matrix M with n rows and m columns, integer K,

real number eps, real number lambda

1. Create U and V matrices and initialize their values randomly

2. (U has n rows, K columns; V has K rows, m columns)

3. While U x V does not approximate M well enough

4. (or the maximal number of iterations is not reached)

5. For each known element x of M

6. Let i and j denote the row and column of x

7. Let x’ be the dot product of the corresponding

8. row of U and column of V

9. err = x’ – x

10. for (k=0; k < K; k++)

11. u

i,k

 u

i,k

- eps*err*v

k,j

– lambda*u

i,k12. v

k,j

 v

k,j

– eps*err*u

i,k

– lambda*v

k,j13. // simultaneous update!

14. end for

15. end for

16. end while

<

z

á

p

a

t

í

>

- 55 -

High-level view of matrix factorization
algorithm

• Random initialization of U and V
• While U x V does not approximate the known values
• of M well enough

– Choose a known value of M, we denote it by x
– Adjust the values of the corresponding row and column of U and V

respectively, so that the approximation becomes better

<

z

á

p

a

t

í

>

- 56 -

Example for an adjustment step

(2*2)+(1*1) = 5 which equals to the selected value
we do not do anything

<

z

á

p

a

t

í

>

- 57 -

Example for an adjustment step
<

z

á

p

a

t

í

>

(3*1)+(2*3) = 9
9 > 4 we decrease the values of the
corresponding rows so that their products will be
closer to 4

- 58 -

Example for an adjustment step
<

z

á

p

a

t

í

>

(3*1)+(2*3) = 9
9 > 4 we decrease the values of the
corresponding rows so that their products will be
closer to 4

- 59 -

Why is the algorithm „good”?

• 1. The adjustment should be proportional to the error
let it be ε-times the error
– In the current example: error = 9 – 4 = 5
– with ε=0.1 we will decrease all the values in the

corresponding rows and columns by 0.1*5=0.5

<

z

á

p

a

t

í

>

(3*1)+(2*3) = 9

- 60 -

<

z

á

p

a

t

í

> • 2. We should take into account how much each value
of the row/column contributes to the error
– For the selected row:
– 3 is multiplied by 1 3 is adjusted by ε*5*1 = 0.5
– 2 is multiplied by 3 2 is adjusted by ε*5*3 = 1.5
– For the selected column respectively:
– ε*5*3=1.5 and ε*5*2=1.0

Why is the algorithm „good”?

- 61 -

<

z

á

p

a

t

í

>

• 3. We prefer simpler models (avoid overfitting).
• At each adjustment step: subtract additionally
• λ-times the value

– For the selected row: subtract additionally
– λ*3 from 3, and λ*2 from 2 .
– For the selected column respectively: λ*1 and λ*3
–

Why is the algorithm „good”?

- 62 -

How to set the parameters ε, λ and K ?

• 1. Select a subset of the known values of M
• 2. Execute the previous matrix factorisation algorithm using the

selected subset only
• 3. Evaluate the result of the factorisation using the non-selected

known values of M, i.e., check how well the product U x V estimates
the non-selected, but known values of M
 In order to measure how well U x V estimates the non-selected, but

known values of M, one can use for example the mean absolute error
(MAE) or mean squared error (MSE), see e.g. Wikipedia

• 4. Repeat steps 2 and 3 for various settings of the values of the
parameters, and select the parameter values that give the best result

• 5. Execute the algorithm using the selected parameter values using
ALL the known values of M, and finally estimate the missing values of
M using the product of U and V

<

z

á

p

a

t

í

>

- 63 -

Additional issues
•

• Local optimum vs. global optimum

• Memory-efficient implementation
– sparse representation of M

<

z

á

p

a

t

í

>

- 64 -

Other algorithms, approaches

- 65 -

Item1 Item5

Alice 2 ?

User1 1 2

 Idea of Slope One predictors is simple and is based on a popularity
differential between items for users

 Example:

 p(Alice, Item5) =

 Basic scheme: Take the average of these differences of the co-ratings to
make the prediction

 In general: Find a function of the form f(x) = x + b

– That is why the name is "Slope One"

Slope One predictors (Lemire and Maclachlan 2005)

-

2 + (2 - 1) = 3

- 66 -

2008: Factorization meets the neighborhood: a multifaceted collaborative

filtering model, Y. Koren, ACM SIGKDD

 Stimulated by work on Netflix competition
– Prize of $1,000,000 for accuracy improvement of 10% RMSE

compared to own Cinematch system

– Very large dataset (~100M ratings, ~480K users , ~18K
movies)

– Last ratings/user withheld (set K)

 Root mean squared error metric optimized to 0.8567

 Metrics measure error rate

– Mean Absolute Error (MAE) computes the deviation
between predicted ratings and actual ratings

– Root Mean Square Error (RMSE) is similar to MAE,
but places more emphasis on larger deviation

- 67 -

 Merges neighborhood models with latent factor models

 Latent factor models

– good to capture weak signals in the overall data

 Neighborhood models

– good at detecting strong relationships between close items

 Combination in one prediction single function

– Local search method such as stochastic gradient descent to determine
parameters

– Add penalty for high values to avoid over-fitting

2008: Factorization meets the neighborhood: a multifaceted collaborative

filtering model, Y. Koren, ACM SIGKDD

Kiu

iuiui

T

uiuui
bqp

bbqpqpbbr
),(

22222

,,
)()(min

i
T
uiuui qpbbr ˆ

- 68 -

The Google News personalization engine

- 69 -

Google News portal (1)

 Aggregates news articles from several thousand sources

 Displays them to signed-in users in a personalized way

 Collaborative recommendation approach based on

– the click history of the active user and

– the history of the larger community

 Main challenges

– Vast number of articles and users

– Generate recommendation list in real time (at most one second)

– Constant stream of new items

– Immediately react to user interaction

 Significant efforts with respect to algorithms, engineering, and
parallelization are required

- 70 -

Google News portal (2)

 Pure memory-based approaches are not directly applicable and for
model-based approaches, the problem of continuous model updates
must be solved

 A combination of model- and memory-based techniques is used

 Model-based part: Two clustering techniques are used

– Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann 2004)

– MinHash as a hashing method

 Memory-based part: Analyze story co-visits for dealing with new users

 Google's MapReduce technique is used for parallelization in order to
make computation scalable

- 71 -

Literature (1)

 [Adomavicius and Tuzhilin 2005] Toward the next generation of recommender systems: A survey of the state-of-the-art
and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 6, 734–749

 [Breese et al. 1998] Empirical analysis of predictive algorithms for collaborative filtering, Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (Madison, WI) (Gregory F. Cooper and Seraf´in Moral, eds.), Morgan
Kaufmann, 1998, pp. 43–52

 [Gedikli et al. 2011] RF-Rec: Fast and accurate computation of recommendations based on rating frequencies, Proceedings
of the 13th IEEE Conference on Commerce and Enterprise Computing - CEC 2011, Luxembourg, 2011, forthcoming

 [Goldberg et al. 2001] Eigentaste: A constant time collaborative filtering algorithm, Information Retrieval 4 (2001), no. 2,
133–151

 [Golub and Kahan 1965] Calculating the singular values and pseudo-inverse of a matrix, Journal of the Society for Industrial
and Applied Mathematics, Series B: Numerical Analysis 2 (1965), no. 2, 205–224

 [Herlocker et al. 2002] An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms,
Information Retrieval 5 (2002), no. 4, 287–310

 [Herlocker et al. 2004] Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems
(TOIS) 22 (2004), no. 1, 5–53

- 72 -

Literature (2)

 [Hofmann 2004] Latent semantic models for collaborative filtering, ACM Transactions on Information Systems 22 (2004),
no. 1, 89–115

 [Huang et al. 2004] Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering, ACM
Transactions on Information Systems 22 (2004), no. 1, 116–142

 [Koren et al. 2009] Matrix factorization techniques for recommender systems, Computer 42 (2009), no. 8, 30–37

 [Lemire and Maclachlan 2005] Slope one predictors for online rating-based collaborative filtering, Proceedings of the 5th
SIAM International Conference on Data Mining (SDM ’05) (Newport Beach, CA), 2005, pp. 471–480

 [Sarwar et al. 2000a] Application of dimensionality reduction in recommender systems – a case study, Proceedings of the
ACM WebKDD Workshop (Boston), 2000

 [Zhang and Pu 2007] A recursive prediction algorithm for collaborative filtering recommender systems, Proceedings of the
2007 ACM Conference on Recommender Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007, pp. 57–64

- 73 -

2000: Application of Dimensionality Reduction in

Recommender System, B. Sarwar et al., WebKDD Workshop

 Basic idea: Trade more complex offline model building for faster online
prediction generation

 Singular Value Decomposition for dimensionality reduction of rating
matrices

– Captures important factors/aspects and their weights in the data

– factors can be genre, actors but also non-understandable ones

– Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100)

 Constant time to make recommendations

 Approach also popular in IR (Latent Semantic Indexing), data
compression,…

- 74 -

Matrix factorization

 Informally, the SVD theorem (Golub and Kahan 1965) states that a given
matrix 𝑀 can be decomposed into a product of three matrices as follows

– where 𝑈 and 𝑉 are called left and right singular vectors and the values of the
diagonal of Σ are called the singular values

 We can approximate the full matrix by observing only the most important
features – those with the largest singular values

 In the example, we calculate 𝑈, 𝑉, and Σ (with the help of some linear
algebra software) but retain only the two most important features by
taking only the first two columns of 𝑈 and 𝑉𝑇

TVUM

- 75 -

Example for SVD-based recommendation

Vk
T

Dim1 -0.44 -0.57 0.06 0.38 0.57

Dim2 0.58 -0.66 0.26 0.18 -0.36

Uk Dim1 Dim2

Alice 0.47 -0.30

Bob -0.44 0.23

Mary 0.70 -0.06

Sue 0.31 0.93 Dim1 Dim2

Dim1 5.63 0

Dim2 0 3.23

T

kkkk VUM

k

• SVD:

• Prediction:

= 3 + 0.84 = 3.84

)()(ˆ EPLVAliceUrr T
kkkuui

- 76 -

The projection of 𝑈 and 𝑉𝑇 in the 2 dimensional space (𝑈2, 𝑉2
𝑇)

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Bob
Mary

Alice

Sue

Eat Pray Love

Pretty Woman

Twins

Die Hard

Terminator

- 77 -

Discussion about dimensionality reduction (Sarwar et al. 2000a)

 Matrix factorization

– Generate low-rank approximation of matrix

– Detection of latent factors

– Projecting items and users in the same n-dimensional space

 Prediction quality can decrease because…

– the original ratings are not taken into account

 Prediction quality can increase as a consequence of…

– filtering out some "noise" in the data and

– detecting nontrivial correlations in the data

 Depends on the right choice of the amount of data reduction

– number of singular values in the SVD approach

– Parameters can be determined and fine-tuned only based on experiments in a certain
domain

– Koren et al. 2009 talk about 20 to 100 factors that are derived from the rating patterns

