NSWI166 - Introduction to Recommender Systems

Ladislav Peska
peska@ksi.mff.cuni.cz

2/1, ZK+Z, 4 credits

Problem domain

- Recommendation systems (RS) help to match users with items
- Ease information overload
- Sales assistance (guidance, advisory, persuasion,...)
$R S$ are software agents that elicit the interests and preferences of individual consumers [...] and make recommendations accordingly.
They have the potential to support and improve the quality of the decisions consumers make while searching for and selecting products online.
" (Xiao \& Benbasat 2007¹)
- Different system designs / paradigms
- Based on availability of exploitable data
- Implicit and explicit user feedback

- Domain characteristics

[^0]
Paradigms of recommender systems

Collaborative Filtering

Paradigms of recommender systems

Agenda

- Collaborative Filtering (CF)
- Pure CF approaches
- User-based nearest-neighbor
- The Pearson Correlation similarity measure
- Memory-based and model-based approaches
- Item-based nearest-neighbor
- The cosine similarity measure
- Data sparsity problems
- Recent methods (SVD, Association Rule Mining, Slope One, RF-Rec, ...)
- The Google News personalization engine
- Discussion and summary
- Literature

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
- used by large, commercial e-commerce sites
- well-understood, various algorithms and variations exist
- applicable in many domains (book, movies, DVDs, ..)
- Approach
- use the "wisdom of the crowd" to recommend items
- Basic assumption and idea

- Users give ratings to catalog items (implicitly or explicitly)
- Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF Approaches

- Input
- Only a matrix of given user-item ratings
- Output types
- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
- Less relevant nowadays
- A top-N list of recommended items

User-based nearest-neighbor collaborative filtering (1)

- The basic technique
- Given an "active user" (Alice) and an item i not yet seen by Alice
- find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
- use, e.g. the average of their ratings to predict, if Alice will like item i
- do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based nearest-neighbor collaborative filtering (1)

- The basic technique
- Given an "active user" (Alice) and an item i not yet seen by Alice
- find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
- use, e.g. the average of their ratings to predict, if Alice will like item i
- do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time
- This might be a problem for long-deployed services
- Apply decay of relevance or remove old data
- Detect changes of preference

User-based nearest-neighbor collaborative filtering (2)

- Example
- A database of ratings of the current user, Alice, and some other users is given:

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	$?$
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- Determine whether Alice will like or dislike Item5, which Alice has not yet rated or seen
- Underlined assumption: user provides explicit rating

User-based nearest-neighbor collaborative filtering (3)

- Some first questions
- How do we measure similarity?
- How many neighbors should we consider?

- How do we generate a prediction from the neighbors' ratings?

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	$?$
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

- A (once upon time) popular similarity measure in KNN: Pearson correlation a, b : users
$r_{a, p}$: rating of user a for item p
$P \quad:$ set of items, rated both by a and b
- Possible similarity values between -1 and 1

$$
\operatorname{sim}(a, b)=\frac{\sum_{p \in P}\left(r_{a, p}-\bar{r}_{a}\right)\left(r_{b, p}-\bar{r}_{b}\right)}{\sqrt{\sum_{p \in P}\left(r_{a, p}-\bar{r}_{a}\right)^{2}} \sqrt{\sum_{p \in P}\left(r_{b, p}-\bar{r}_{b}\right)^{2}}}
$$

Measuring user similarity (1)

- A popular similarity measure in user-based KNN : Pearson correlation
a, b : users
$r_{a, p}$: rating of user a for item p
$P \quad:$ set of items, rated both by a and b
- Possible similarity values between -1 and 1
- Underlined assumption: User dislikes what he/she rated below average
- Often not true in reality (we rate only what we liked or highly disliked)

$$
\boldsymbol{\operatorname { s i m }}(\boldsymbol{a}, \boldsymbol{b})=\frac{\sum_{\boldsymbol{p} \in \boldsymbol{P}}\left(\boldsymbol{r}_{\boldsymbol{a}, \boldsymbol{p}}-\overline{\boldsymbol{r}}_{\boldsymbol{a}}\right)\left(\boldsymbol{r}_{\boldsymbol{b}, \boldsymbol{p}}-\overline{\boldsymbol{r}}_{\boldsymbol{b}}\right)}{\sqrt{\sum_{\boldsymbol{p} \in \boldsymbol{P}}\left(\boldsymbol{r}_{\boldsymbol{a}, \boldsymbol{p}}-\overline{\boldsymbol{r}}_{\boldsymbol{a}}\right)^{\mathbf{2}}} \sqrt{\sum_{\boldsymbol{p} \in \boldsymbol{P}}\left(\boldsymbol{r}_{\boldsymbol{b}, \boldsymbol{p}}-\overline{\boldsymbol{r}}_{\boldsymbol{b}}\right)^{\mathbf{2}}}+\boldsymbol{\varepsilon}}
$$

Measuring user similarity (2)

- A popular similarity measure in user-based KNN : Pearson correlation
a, b : users
$r_{a, p}$: rating of user a for item p
$P \quad:$ set of items, rated both by a and b
- Possible similarity values between -1 and 1

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	$\begin{aligned} & \operatorname{sim}=0,85 \\ & \operatorname{sim}=0,00 \\ & \operatorname{sim}=0,70 \\ & \operatorname{sim}=-0,79 \end{aligned}$
User1	3	1	2	3	3	
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	

Pearson correlation

- Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
- such as cosine similarity
- Cannot handle uniform feedback well

Making predictions

- A common prediction function:

$$
\operatorname{pred}(a, p)=\overline{r_{a}}+\frac{\sum_{b \in N} \operatorname{sim}(a, b) *\left(r_{b, p}-\overline{r_{b}}\right)}{\sum_{b \in N} \operatorname{sim}(a, b)}
$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences - use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
- Agreement on commonly liked items is not so informative as agreement on controversial items
- Possible solution: Give more weight to items that have a higher variance
- Value of number of co-rated items
- Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
- Incorporate all items rated by users, not just the shared ones
- Case amplification
- Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
$-\operatorname{sim}(a, b)^{2}$ etc.
- Neighborhood selection
- Use similarity threshold or fixed number of neighbors

Memory-based and model-based approaches

- User-based KNN is said to be "memory-based"
- the rating matrix is directly used to find neighbors / make predictions
- Everything is calculated at the time of the request
- does not scale for most real-world scenarios
- large e-commerce sites / social networks have tens of millions of customers and millions of items
- Model-based approaches
- based on an offline pre-processing or "model-learning" phase
- at run-time, only the learned model is used to make predictions
- models are updated / re-trained periodically
- large variety of techniques used
- model-building and updating can be computationally expensive
- item-based KNN is an example for model-based approaches

Item-based collaborative filtering

- Basic idea:
- Use the similarity between items (and not users) to make predictions
- Tends to be a bit more stable
- Example:
- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	Item1	Item2	Item3	Item4	Item5
Alice	$\mathbf{5}$	3	4	4	$?$
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- Produces better results in item-to-item filtering
- Ratings are seen as vector in \mathbf{n}-dimensional space
- Similarity is calculated based on the angle between the vectors

$$
\operatorname{sim}(\vec{a}, \vec{b})=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| *|\vec{b}|}
$$

- Adjusted cosine similarity
- take average user ratings into account, transform the original ratings
- U : set of users who have rated both items a and b

$$
\operatorname{sim}(\vec{a}, \vec{b})=\frac{\sum_{u \in U}\left(r_{u, a}-\overline{r_{u}}\right)\left(r_{u, b}-\overline{r_{u}}\right)}{\sqrt{\sum_{u \in U}\left(r_{u, a}-\overline{r_{u}}\right)^{2}} \sqrt{\sum_{u \in U}\left(r_{u, b}-\bar{r}_{u}\right)^{2}}}
$$

Making predictions

- A common prediction function:

$$
\operatorname{pred}(u, p)=\frac{\sum_{i \in \operatorname{ratedItem}(u)} \operatorname{sim}(i, p) * r_{u, i}}{\sum_{i \in \operatorname{ratedtem}(u)} \operatorname{sim}(i, p)}
$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

Pre-processing for item-based filtering

- Item-based filtering does not solve the scalability problem itself
- Pre-processing approach by Amazon.com (in 2003)
- Calculate all pair-wise item similarities in advance
- The neighborhood to be used at run-time is typically rather small, because only items are taken into account which the user has rated
- Item similarities are supposed to be more stable than user similarities
- Memory requirements
- Up to N^{2} pair-wise similarities to be memorized ($N=$ number of items) in theory
- In practice, this is significantly lower (items with no co-ratings)
- Further reductions possible
- Minimum threshold for co-ratings
- Limit the neighborhood size (might affect recommendation accuracy)

More on ratings - Explicit ratings

- Probably the most precise ratings
- Most commonly used (1 to 5, 1 to 7 Likert response scales, likes/dislikes)
- Research topics
- Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.
- Different domains addopted other common scales
- Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)
- Booking.com rating
- Main problems
- Users not always willing to rate many items
- number of available ratings could be too small \rightarrow sparse rating matrices \rightarrow poor recommendation quality
- How to stimulate users to rate more items?
- What else to use?

More on ratings - Implicit ratings

- Typically collected by the web shop or application in which the recommender system is embedded
- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating
- Clicks, page views, time spent on some page, demo downloads ...
- Implicit ratings can be collected constantly and do not require additional efforts from the side of the user
- Main problem
- One cannot be sure whether the user behavior is correctly interpreted
- For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else
- Implicit ratings can be used in addition to explicit ones; question of correctness of interpretation

Data sparsity problems

- Cold start problem
- How to recommend new items? What to recommend to new users?
- Straightforward approaches
- Ask/force users to rate a set of items
- Use another method (e.g., content-based, demographic or simply nonpersonalized) in the initial phase
- Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998)
- Alternatives
- Use better algorithms (beyond nearest-neighbor approaches)
- Example:
- In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions
- Assume "transitivity" of neighborhoods

Data sparsity problem for nearest neighbors

- Which user is closer to the current one?

- Which object is closer to the current one?
- among the rated objects

KNN Models for Sparse Datasets and Ranking Prediction

- Calculating estimated rating for each object is time-consuming and unnecessary
- Often, we do not need object's rating, but only ranking of a top-k objects
- For many objects, there are no similar user who rated this object
- No way to reliably estimate rating

		Item1	Item2	Item3	Item4	Item5	Item6	Item7
	Alice	5	3	?	4	?	?	?
	User1	5	3	?	?	3	2	?
	User2	?	5	?	?	5	5	5
	User3	?	?	1	?	?	1	3
	User4	1	?	4	2	?	4	?

KNN Models for Sparse Datasets and Ranking Prediction

- Calculating estimated rating for each object is time-consuming and unnecessary
- Often, we do not need object's rating, but only ranking of a top-k objects
- For many objects, there are no similar user who rated this object
- No way to reliably estimate rating
=> Forget about Item3, we have plenty of others to recommend

		Item1	Item2	Item3	Item4	Item5	Item6	Item7
	Alice	5	3	?	4	?	?	?
	User1	5	3	?	?	3	2	?
	User2	?	5	?	?	5	5	5
	User3	?	?	1	?	?	1	3
	User4	1	?	4	2	?	4	?

KNN Models for Sparse Datasets and Ranking Prediction

- User-based KNN for ranking:
- Select K closest neighbors, who rated also some other item
- Sum scores for all unknown items rated by the neighbors
- Return items with highest scores
$\operatorname{score}(a, p)=\sum_{b \in N} \operatorname{sim}(a, b) *\left(r_{b, p}-\overline{r_{b}}\right)$
- Sum object's score instead of average to prefer items on which multiple neighbors agreed

KNN Models for Sparse Datasets and Ranking Prediction

- User-based KNN for ranking:
- Select K closest neighbors, who rated also some other item

$$
\operatorname{sim}(a, b)=\frac{\sum_{p \in P}\left(r_{a, p}-\bar{r}_{a}\right)\left(r_{b, p}-\bar{r}_{b}\right)}{\sqrt{\sum_{p \in P}\left(r_{a, p}-\bar{r}_{a}\right)^{2}} \sqrt{\sum_{p \in P}\left(r_{b, p}-\bar{r}_{b}\right)^{2}}}
$$

		Item1	Item2	Item3	Item4	Item5	Item6
	Alice	5	3	$?$	4	$?$	$?$
$\mathbf{0 . 5}$	User1	5	3	$?$	$?$	3	1
$\mathbf{0 . 3 5}$	User2	$?$	4	$?$	$?$	5	5
$\mathbf{N a N / 0}$	User3	$?$	$?$	1	$?$	$?$	1
$\mathbf{- 0 . 4 5}$	User4	$\mathbf{1}$	$?$	4	2	$?$	5

KNN Models for Sparse Datasets and Ranking Prediction

- User-based KNN for ranking:
- Select K closest neighbors, who rated also some other item
- Sum scores for all unknown items rated by the neighbors
- Return items with highest scores
- Item5, Item6,...

		Item1	Item2	Item3	Item4	Item5	Item6	Item7
	Alice	5	3	$?$	4	$?$	$?$	$?$
$\mathbf{0 . 5}$	User1	5	3	$?$	$?$	3	1	$?$
$\mathbf{0 . 3 5}$	User2	$?$	4	$?$	$?$	5	5	4

Item-based KNN for Ranking Prediction

- 2003 paper: Amazon.com Recommendations Item-to-Item Collaborative Filtering
- https://dl.acm.org/citation.cfm?id=642471
- Recommend items that are similar (based on other user ratings) to the items already liked by Alice

Item-based KNN for Ranking Prediction

- Recommend items that are similar (based on other user ratings) to the items already liked by Alice
- Offline preprocessing:

```
For each item in product catalog, I1
    For each customer C who purchased II
            For each item I2 purchased by customer C
            Record that a customer purchased I1 and I2
```

 For each item I2
 Compute the similarity between I1 and I2 (i.e. Jaccard)
 - Output: similarity matrix of all objects (or top-k most similar)
- Online:
- For each rated object o_{a} add $\operatorname{sim}\left(o_{a}, o_{b}\right) *\left(r_{a, u}-\overline{r_{u}}\right)$ to the score of object o_{b}
- Recommend objects with highest scores

Example algorithms for sparse datasets

- Recursive CF (Zhang and Pu 2007)
- Assume there is a very close neighbor n of u who however has not rated the target item i yet.
- Idea:
- Apply CF-method recursively and predict a rating for item i for the neighbor
- Use this predicted rating instead of the rating of a more distant direct neighbor

	Item1	Item2	Item3	Item4	Item5		
Alice	5	3	4	4	$?$		
User1	3	1	2	3	$?$		
User2	4	3	4	3	5		
User3	3	3	1	5	4		
User4	1	5	5	2	1		Predict
:---							

Graph-based methods (1)

- "Spreading activation" (Huang et al. 2004)
- Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
- Assume that we are looking for a recommendation for User1
- When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and Item4
- Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also bought or liked it

Graph-based methods (2)

- "Spreading activation" (Huang et al. 2004)
- In a standard user-based or item-based CF approach, paths of length 3 will be considered - that is, Item3 is relevant for User1 because there exists a three-step path (User1-Item2-User2-Item3) between them
- Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
- Using path length 5, for instance

Graph-based methods (3)

- "Spreading activation" (Huang et al. 2004)
- Idea: Use paths of lengths > 3 to recommend items
- Length 3: Recommend Item3 to User1
- Length 5: Item1 also recommendable

More model-based approaches

- Plethora of different techniques proposed in the last years, e.g.,
- Matrix factorization techniques, statistics
- singular value decomposition, principal component analysis
- Association rule mining
- compare: shopping basket analysis
- Probabilistic models
- clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
- Various other machine learning approaches
- Costs of pre-processing
- Usually not discussed
- Incremental updates possible?
- if not, training should be fast enough

Association rule mining

- Commonly used for shopping behavior analysis
- aims at detection of rules such as
"If a customer purchases beer then he also buys diapers
in 70\% of the cases"
- Association rule mining algorithms
- can detect rules of the form $X \rightarrow Y$ (e.g., beer \rightarrow diapers) from a set of sales transactions $D=\left\{t_{1}, t_{2}, \ldots t_{n}\right\}$
- measure of quality: support, confidence
- used e.g. as a threshold to cut off unimportant rules
- let $\sigma(\mathrm{X})=\frac{|\{\mathrm{x} \mid \mathrm{x} \subseteq \mathrm{ti}, \mathrm{ti} \in \mathrm{D}\}|}{|D|}$
- support $=\frac{\sigma(\mathrm{X} \cup \mathrm{Y})}{|D|}$, confidence $=\frac{\sigma(\mathrm{X} \cup \mathrm{Y})}{\sigma(X)}$

Recommendation based on Association Rule Mining

- Simplest approach
- transform 5-point ratings into binary ratings (1 = above user average)
- Mine rules such as
- Item1 \rightarrow Item5

	Item1	Item2	Item3	Item4	Item5
Alice	1	0	0	0	$?$
User1	1	0	1	0	1
User2	1	0	1	0	1
User3	0	0	0	1	1
User4	0	1	1	0	0

- support (2/4), confidence (2/2) (without Alice)
- Make recommendations for Alice (basic method)
- Determine "relevant" rules based on Alice's transactions (the above rule will be relevant as Alice bought Item1)
- Determine items not already bought by Alice
- Sort the items based on the rules' confidence values
- Different variations possible
- dislike statements, user associations ..

Probabilistic methods

- Basic idea (simplistic version for illustration):
- given the user/item rating matrix
- determine the probability that user Alice will like an item i
- base the recommendation on such these probabilities
- Calculation of rating probabilities based on Bayes Theorem
- How probable is rating value "1" for Item5 given Alice's previous ratings?
- Corresponds to conditional probability $\mathrm{P}($ Item $5=1 \mid X)$, where
- $X=$ Alice's previous ratings $=($ Item1 $=1$, Item2=3, Item3= ...)
- Can be estimated based on Bayes' Theorem

$$
P(Y \mid X)=\frac{P(X \mid Y) \times P(Y)}{P(X)} \quad P(Y \mid X)=\frac{\prod_{i=1}^{d} P\left(X_{i} \mid Y\right) \times P(Y)}{P(X)}
$$

- Assumption: Ratings are independent (?)

Calculation of probabilities in simplistic approach

	Item1	Item2	Item3	Item4	Item5	X = (Item1 =1, Item2=3, Item3= ...)	
Alice	1	3	3	2	?		
User1	2	4	2	2	4		
User2	1	3	3	5	1		
User3	4	5	2	3	3		
User4	1	1	5	2	1		
$\begin{aligned} & P(X \mid \text { Item } 5=1) \\ & =P(\text { Item } 1=1 \mid \text { Item } 5=1) \times P(\text { Item } 2=3 \mid \text { Item } 5=1) \\ & \times P(\text { Item } 3=3 \mid \text { Item } 5=1) \times P(\text { Item } 4=2 \mid \text { Item } 5=1)=\frac{2}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\ & \approx 0.125 \\ & P(X \mid \text { Item } 5=2) \\ & =P(\text { Item }=1 \mid \text { Item } 5=2) \times P(\text { Item } 2=3 \mid \text { Item } 5=2) \\ & \times P(\text { Item } 3=3 \mid \text { Item } 5=2) \times P(\text { Item } 4=2 \mid \text { Item } 5=2)=\frac{0}{0} \times \cdots \times \cdots \times \cdots \\ & =0 \end{aligned}$							

- More to consider
- Zeros (smoothing required)
- like/dislike simplification possible

Practical probabilistic approaches

- Use a cluster-based approach (Breese et al. 1998)
- assume users fall into a small number of subgroups (clusters)
- Make predictions based on estimates
- probability of Alice falling into cluster c
- probability of Alice liking item i given a certain cluster and her previous ratings
- $P\left(C=c, v_{1}, \ldots, v_{n}\right)=P(C=c) \prod_{i=1}^{n} P\left(v_{i} \mid C=c\right)$
- Based on model-based clustering (mixture model)
- Number of classes and model parameters have to be learned from data in advance (EM algorithm)
- Others:
- Bayesian Networks, Probabilistic Latent Semantic Analysis,
- Empirical analysis shows:
- Probabilistic methods lead to relatively good results (movie domain)
- No consistent winner; small memory-footprint of network model

RF-Rec predictors (Gedikli et al. 2011) a.k.a. Baseline predictors

- Idea: Take rating frequencies into account for computing a prediction
- Basic scheme: $\hat{r}_{u, i}=\arg \max _{v \in R} f_{u s e r}(u, v) * f_{\text {item }}(i, v)$
- R : Set of all rating values, e.g., $R=\{1,2,3,4,5\}$ on a 5 -point rating scale
- $f_{\text {user }}(u, v)$ and $f_{\text {item }}(i, v)$ basically describe how often a rating v was assigned by user u and to item i resp.
- Example:

	Item1	Item2	Item3	Item4	Item5
Alice	$\mathbf{1}$	$\mathbf{1}$	$?$	5	4
User1	2		5	5	5
User2			1	1	
User3		5	2		2
User4	3		1	1	
User5	1	2	2		4

- p(Alice, Item3) = 1

Summarizing recent methods

- Recommendation is concerned with learning from noisy observations (\mathbf{x}, \mathbf{y}), where $f(x)=\hat{y}$ has to be determined such that $\sum_{\hat{y}}(\hat{y}-y)^{2}$ is minimal.
- A huge variety of different learning strategies have been applied trying to estimate $f(x)$
- Non parametric neighborhood models
- MF models, SVMs, Neural Networks, Bayesian Networks,...

Collaborative Filtering Issues

- Pros:
- well-understood, works well in some domains, no knowledge engineering required
- Cons:
- requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results
- What is the best CF method?
- In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)
- How to evaluate the prediction quality?
- MAE / RMSE: What does an MAE of 0.7 actually mean?
- Serendipity (novelty and surprising effect of recommendations)
- Not yet fully understood (still true)
- What about multi-dimensional ratings?

Matrix Completion (Matrix factorization)

Matrix completion

. Given a sparse matrix
. We want to fill-in the
. unknown values
. The values of the matrix

- are dependent on
- each other

5	$?$	1	$?$	$?$	\ldots
$?$	$?$	5	$?$	4	\ldots
5	4	2	$?$	$?$	\ldots
$?$	3	$?$	2	5	\ldots
1	$?$	5	$?$	4	\ldots
5	4	$?$	$?$	2	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

- Approaches
- Search for similar rows/columns
- (nearest neighbour collaborative filtering)
- Matrix factorization
- Restricted Boltzmann Machines (RBM)

Example: Nearest neighbor collaborative filtering for movie-rating prediction (recommender systems)

		$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { D } \end{aligned}$	$$		10 .0 	
User 1	5	?	1	?	?	...
User 2	?	?	5	?	4	...
User 3	5	4	2	?	?	...
User 4	?	3	?	2	5	...
User 5	1	?	5	?	4	...
User 6	5	4	?	?	2	...

Quiz question: How would you fill in this question mark?

	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \overline{2} \end{aligned}$		$$	$\begin{aligned} & \dot{+} \\ & \stackrel{0}{0} \\ & \text { D } \end{aligned}$		
User 1	5	?	1	$?$?	...
User 2	?	?	5	?	4	...
User 3	5	4	2	?	?	...
User 4	?	3	?	2	5	...
User 5	1	?	5	?	4	...
User 6	5	4	?	?	2	...

Matrix factorization

. We estimate matrix M as the product of two matrices U and V.

- Based on the known values of M, we search for U and V so that their product best estimates the (known) values of \boldsymbol{M}

Problem formulation

- Target function:
. sum of squared errors + regularization

$$
\sum_{i, j}\left(m_{i, j}-\sum_{k=0}^{K} u_{i, k} v_{k, j}\right)^{2}+\lambda\left(\sum_{i, j} u_{i, j}^{2}+\sum_{i, j} v_{i, j}^{2}\right)
$$

. where λ is the weight of the regularization term

- (i. e., a constant giving the importance of the
- regularization term)
- Minimization of the above loss function using stochastic gradient descent (or any other optimization algorithms)

Matrix Factorization Algorithm

```
Input: matrix M with n rows and m columns, integer K,
    real number eps, real number lambda
    Create U and V matrices and initialize their values randomly
    (U has n rows, K columns; V has K rows, m columns)
    While U x V does not approximate M well enough
    (or the maximal number of iterations is not reached)
        For each known element x of M
            Let i and j denote the row and column of x
            Let }\mp@subsup{x}{}{\prime}\mathrm{ be the dot product of the corresponding
            row of }U\mathrm{ and column of }
            err = x' - x
            for (k=0; k < K; k++)
                u <u - eps*err*v - lambda*u
            vi,k \leftarrow vi,k - eps*err*uk,j - lambda*vi,k
            /k,simulty,neous update!i,k k,j
            end for
        end for
    end while
```


High-level view of matrix factorization algorithm

Random initialization of U and V

- While $U \mathbf{x} V$ does not approximate the known values
- of M well enough
- Choose a known value of M, we denote it by x
- Adjust the values of the corresponding row and column of U and V respectively, so that the approximation becomes better

Example for an adjustment step

$(2 * 2)+\left(1^{*} 1\right)=5$ which equals to the selected value \rightarrow we do not do anything

Example for an adjustment step

$\left(3^{*} 1\right)+\left(2^{*} 3\right)=9$
$9>4 \rightarrow$ we decrease the values of the corresponding rows so that their products will be closer to 4

Example for an adjustment step

$\left(3^{*} 1\right)+\left(2^{*} 3\right)=9$
$9>4 \rightarrow$ we decrease the values of the corresponding rows so that their products will be closer to 4

Why is the algorithm „good"?

- 1. The adjustment should be proportional to the error \rightarrow let it be ε-times the error
- In the current example: error =9-4=5
- with $\varepsilon=0.1$ we will decrease all the values in the corresponding rows and columns by $0.1 * 5=0.5$

$$
(3 * 1)+(2 * 3)=9
$$

Why is the algorithm „good"?

2. We should take into account how much each value of the row/column contributes to the error

- For the selected row:
- 3 is multiplied by $1 \rightarrow 3$ is adjusted by $\varepsilon^{*} 5^{*} 1=0.5$
- 2 is multiplied by $3 \rightarrow 2$ is adjusted by $\varepsilon^{*} 5^{*} 3=1.5$
- For the selected column respectively:
- $\varepsilon^{*} 5^{*} 3=1.5$ and $\varepsilon^{*} 5^{*} 2=1.0$

Why is the algorithm „good"?

3. We prefer simpler models (avoid overfitting).

- At each adjustment step: subtract additionally
- λ-times the value
- For the selected row: subtract additionally
- $\lambda^{*} 3$ from 3, and $\lambda^{*} 2$ from 2.
- For the selected column respectively: $\lambda^{*} 1$ and $\lambda^{*} 3$

-How to set the parameters ε, λ and K ?

- 1. Select a subset of the known values of M
- 2. Execute the previous matrix factorisation algorithm using the selected subset only
- 3. Evaluate the result of the factorisation using the non-selected known values of M, i.e., check how well the product $U \times V$ estimates the non-selected, but known values of M
- In order to measure how well $U x V$ estimates the non-selected, but known values of M, one can use for example the mean absolute error (MAE) or mean squared error (MSE), see e.g. Wikipedia
- 4. Repeat steps 2 and $\mathbf{3}$ for various settings of the values of the parameters, and select the parameter values that give the best result
- 5. Execute the algorithm using the selected parameter values using ALL the known values of M, and finally estimate the missing values of M using the product of U and V

Additional issues

. Local optimum vs. global optimum

- Memory-efficient implementation
- sparse representation of \boldsymbol{M}

Other algorithms, approaches

Slope One predictors (Lemire and Maclachlan 2005)

- Idea of Slope One predictors is simple and is based on a popularity differential between items for users
- Example:

- $\mathrm{p}($ Alice, Item5) $=\mathbf{2 + (2 - 1) = 3}$
- Basic scheme: Take the average of these differences of the co-ratings to make the prediction
- In general: Find a function of the form $f(x)=x+b$
- That is why the name is "Slope One"

2008: Factorization meets the neighborhood: a multifaceted collaborative filtering model, Y. Koren, ACM SIGKDD

- Stimulated by work on Netflix competition
- Prize of $\$ \mathbf{1 , 0 0 0 , 0 0 0}$ for accuracy improvement of $\mathbf{1 0 \%}$ RMSE compared to own Cinematch system
- Very large dataset ($\sim 100 \mathrm{M}$ ratings, $\sim 480 \mathrm{~K}$ users , $\sim 18 \mathrm{~K}$ movies)
- Last ratings/user withheld (set K)
- Root mean squared error metric optimized to 0.8567
- Metrics measure error rate
- Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings
- Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$
\begin{aligned}
\text { MAE } & =\frac{1}{n} \sum_{i=1}^{n}\left|p_{i}-r_{i}\right| \\
R M S E & =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(p_{i}-r_{i}\right)^{2}}
\end{aligned}
$$

2008: Factorization meets the neighborhood: a multifaceted collaborative filtering model, Y. Koren, ACM SIGKDD

- Merges neighborhood models with latent factor models
- Latent factor models
- good to capture weak signals in the overall data
- Neighborhood models
- good at detecting strong relationships between close items
- Combination in one prediction single function
- Local search method such as stochastic gradient descent to determine parameters
- Add penalty for high values to avoid over-fitting

$$
\begin{aligned}
& \hat{r}_{u i}=\mu+b_{u}+b_{i}+p_{u}^{T} q_{i} \\
& \min _{p_{0}, q_{v}, b_{c}} \sum_{(u, i) \in K}\left(r_{u i}-\mu-b_{u}-b_{i}-p_{u}^{T} q_{i}\right)^{2}+\lambda\left(\left\|p_{u}\right\|^{2}+\left\|q_{i}\right\|^{2}+b_{u}^{2}+b_{i}^{2}\right)
\end{aligned}
$$

The Google News personalization engine

News archive search \| Advanced news search \| Blog search

> Top Stories	Top Stories Personalized News v Go	Auto-generated 13 minutes ago
Recommended	Tibet's Communist Party Leader Denounces \quad Edit this personalized page	
U.S.		
Business	Voice of America - 43 minutes ago By VOA News The head of Tibet's Communist Party has	Fed cuts key interest rate
Elections		Los Angeles Times - $\underline{\text { all } 510}$ news articles n
World	By VOA News The head of Tibet's Communist Party has warned of a "life and death struggle" with the Dalai Lama, as	$\frac{\text { Obama on race }}{\text { Los Angeles Times - all } 200 \text { news articles n }}$
Entertainment	China struggles to bring an end to several days of protests in the Himalayan region.	
Sci/Tech	Dalai Lama threatens to resign Los Angeles Times ©Comment by Jamie Metzl Executive Vice President, Asia Society	US, Russia Politely Dug In Over Missile Defense Washington Post - all 1,096 news articles n
Health		Sci-fi guru Sir Arthur C. Clarke dies Vancouver Sun - all 976 news articles .
Sports	BBC News - Forbes - Reuters - Washington Post all 5,998 news articles.	
Most Popular	Forex - Dollar resumes weak trend on	Facebook Beefs Up Privacy Options, Readies Online Chat
$\square \underline{\text { News Alerts }}$ Text Version	expectations Fed to cut rates ... CNNMoney.com - 2 hours ago HONG KONG, Mar. 19, 2008 (Thomson Financial delivered by Newstex) - The dollar resumed its weak tone against other key	Washington Post - all 297 news articles » Mills' Money Can't Buy Her Love E! Online - all 3,490 news articles s
Standard Version	currencies in afternoon Asian trade on Wednesday as investors bet the Federal Reserve will further cut interest rates to lift the ...	Boeing confident of winning back tanker deal Reuters - all 200 news articles n
Image Version $\frac{\text { RSS I Atom }}{\text { About Feeds }}$	Los Angeles Times - New York Times - Sacramento Bee - Financial Times all 805 news articles n	In The News Dalai Lama Windows Vista Barack Obama Halle Berry

Google News portal (1)

- Aggregates news articles from several thousand sources
- Displays them to signed-in users in a personalized way
- Collaborative recommendation approach based on
- the click history of the active user and
- the history of the larger community
- Main challenges
- Vast number of articles and users
- Generate recommendation list in real time (at most one second)
- Constant stream of new items
- Immediately react to user interaction
- Significant efforts with respect to algorithms, engineering, and parallelization are required

Google News portal (2)

- Pure memory-based approaches are not directly applicable and for model-based approaches, the problem of continuous model updates must be solved
- A combination of model- and memory-based techniques is used
- Model-based part: Two clustering techniques are used
- Probabilistic Latent Semantic Indexing (PLSI) as proposed by (Hofmann 2004)
- MinHash as a hashing method
- Memory-based part: Analyze story co-visits for dealing with new users
- Google's MapReduce technique is used for parallelization in order to make computation scalable

Literature (1)

- [Adomavicius and Tuzhilin 2005] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 6, 734-749
- [Breese et al. 1998] Empirical analysis of predictive algorithms for collaborative filtering, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (Madison, WI) (Gregory F. Cooper and Seraf'in Moral, eds.), Morgan Kaufmann, 1998, pp. 43-52
- [Gedikli et al. 2011] RF-Rec: Fast and accurate computation of recommendations based on rating frequencies, Proceedings of the 13th IEEE Conference on Commerce and Enterprise Computing - CEC 2011, Luxembourg, 2011, forthcoming
- [Goldberg et al. 2001] Eigentaste: A constant time collaborative filtering algorithm, Information Retrieval 4 (2001), no. 2, 133-151
- [Golub and Kahan 1965] Calculating the singular values and pseudo-inverse of a matrix, Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 2 (1965), no. 2, 205-224
- [Herlocker et al. 2002] An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms, Information Retrieval 5 (2002), no. 4, 287-310
- [Herlocker et al. 2004] Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems (TOIS) 22 (2004), no. 1, 5-53

Literature (2)

- [Hofmann 2004] Latent semantic models for collaborative filtering, ACM Transactions on Information Systems 22 (2004), no. 1, 89-115
- [Huang et al. 2004] Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering, ACM Transactions on Information Systems 22 (2004), no. 1, 116-142
- [Koren et al. 2009] Matrix factorization techniques for recommender systems, Computer 42 (2009), no. 8, 30-37
- [Lemire and Maclachlan 2005] Slope one predictors for online rating-based collaborative filtering, Proceedings of the 5th SIAM International Conference on Data Mining (SDM '05) (Newport Beach, CA), 2005, pp. 471-480
- [Sarwar et al. 2000a] Application of dimensionality reduction in recommender systems - a case study, Proceedings of the ACM WebKDD Workshop (Boston), 2000
- [Zhang and Pu 2007] A recursive prediction algorithm for collaborative filtering recommender systems, Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys '07) (Minneapolis, MN), ACM, 2007, pp. 57-64

2000: Application of Dimensionality Reduction in Recommender System, B. Sarwar et al., WebKDD Workshop

- Basic idea: Trade more complex offline model building for faster online prediction generation
- Singular Value Decomposition for dimensionality reduction of rating matrices
- Captures important factors/aspects and their weights in the data
- factors can be genre, actors but also non-understandable ones
- Assumption that k dimensions capture the signals and filter out noise ($K=20$ to 100)
- Constant time to make recommendations
- Approach also popular in IR (Latent Semantic Indexing), data compression,...

Matrix factorization

- Informally, the SVD theorem (Golub and Kahan 1965) states that a given matrix M can be decomposed into a product of three matrices as follows

$$
M=U \times \Sigma \times V^{T}
$$

- where U and V are called left and right singular vectors and the values of the diagonal of Σ are called the singular values
- We can approximate the full matrix by observing only the most important features - those with the largest singular values
- In the example, we calculate U, V, and Σ (with the help of some linear algebra software) but retain only the two most important features by taking only the first two columns of U and V^{T}

Example for SVD-based recommendation

- svD: $M_{k}=U_{k} \times \Sigma_{k} \times V_{k}^{T}$

\mathbf{U}_{k}	$\operatorname{Dim1}$	$\operatorname{Dim2}$
Alice	0.47	-0.30
Bob	-0.44	0.23
Mary	0.70	-0.06
Sue	0.31	0.93

$\mathbf{V}_{\mathbf{k}}{ }^{\top}$

- Prediction: $\hat{r}_{u i}=\bar{r}_{u}+U_{k}($ Alice $) \times \Sigma_{k} \times V_{k}^{T}(E P L)$

\sum_{k}	$\operatorname{Dim1}$	$\operatorname{Dim} 2$
$\operatorname{Dim1}$	5.63	0
$\operatorname{Dim2}$	0	3.23

The projection of U and V^{T} in the $\mathbf{2}$ dimensional space $\left(U_{2}, V_{2}^{T}\right)$

Discussion about dimensionality reduction (Sarwar et al. 2000a)

- Matrix factorization
- Generate low-rank approximation of matrix
- Detection of latent factors
- Projecting items and users in the same n-dimensional space
- Prediction quality can decrease because...
- the original ratings are not taken into account
- Prediction quality can increase as a consequence of...
- filtering out some "noise" in the data and
- detecting nontrivial correlations in the data
- Depends on the right choice of the amount of data reduction
- number of singular values in the SVD approach
- Parameters can be determined and fine-tuned only based on experiments in a certain domain
- Koren et al. 2009 talk about 20 to 100 factors that are derived from the rating patterns

[^0]: (1) Xiao and Benbasat, E-commerce product recommendation agents: Use, characteristics, and impact, MIS Quarterly 31 (2007), no. 1, 137-209

