NSWI166 Introduction to

 recommender systems and user preferencesProstřední třetinu Peter Vojtáš, KSI MFF UK první a poslední třetinu Lád’a Peška, KSI MFF UK

8/12 Challenge Response Framework
A general Framework for modeling and evaluation of model-quality

Nástin obsahu

- Dosavadní přehled témat - vše pro zákazníka
- Společný jmenovatel - modelování reality
- Další příklady modelování reality
- Potřeba abstraktního rámce pro modelování reality a vyhodnocení kvality modelu
- Challenge - Response Framework, situations, reductions
- Model kvality e-shopu, +++

Topic 1 (5/12). Representation

Topic 2 (6/12). Efficient top-k querying

Topic 3 (7/12). Customer's preference learning

Google design thinking

Empathy

Expansive thinking

Experimentation or Lean Startup methodology?

Weather forecast - reality to model reduction

Client-server / middleware - web service, ...

What is the challenge? User expects top-k relevant answers. Client can finish computation.
How can we meet the challenge?
Asking for/providing/accepting-using response

Recommendation as reality to model reduction

Challenge-Response situation ChRS

Let us have a set C of challenges and a set R responses.
A binary relation $A \subseteq C \times R$ represents acceptability of a specific response r to a specific challenge c , denoted $A(c, r)$.
Eventually A can be a program, process, then denoted α,
α can represent either

- an optimal response, or
- an algorithm

C

ChRF Challenge-Response Framework

Challenge-Response reduction ChRR

$\left(\forall \mathrm{c}_{1} \in \mathrm{C}_{1}\right)\left(\forall \mathrm{r}_{2} \in \mathrm{R}_{2}\right)$
IF $A_{2}\left(f\left(c_{1}\right), r_{2}\right)$
Then

$$
\mathrm{A}_{1}\left(\mathrm{c}_{1}, \mathrm{f}^{+}\left(\mathrm{r}_{2}\right)\right)
$$

ChRF $=$ ChRS + ChRR formally

Challenge Response Situation ChRS S $=(\mathrm{C}, \mathrm{R}, \mathrm{A})$ consists of a set C of challenges, set of responses R and an acceptability relation $\mathrm{A} \subseteq \mathrm{C} \times \mathrm{R}$ (can be preferential, probabilistic, ...)
For an $c \in C, r \in R$ we read $A(c, r)$ as " r is an acceptable response (in some degree) for challenge c ", or also "response r meets challenge c"
Challenge Response Reduction ChRR of a situation $\mathrm{S}_{1}=\left(\mathrm{C}_{1}\right.$, $\left.R_{1}, A_{1}\right)$ to a situation $S_{2}=\left(C_{2}, R_{2}, A_{2}\right)$ consists of a pair of functions ($\mathrm{f}, \mathrm{f} \mathrm{f}^{+}$) such that

$$
\begin{align*}
& f: C_{1} \rightarrow C_{2}, \\
& f^{+}: R_{2} \rightarrow R_{1} \text {, such that following holds: } \\
& \left(\forall c_{1} \in C_{1}\right)\left(\forall r_{2} \in R_{2}\right)\left(A_{2}\left(f\left(c_{1}\right), r_{2}\right) \Rightarrow A_{1}\left(c_{1}, f^{+}\left(r_{2}\right)\right)\right. \tag{*}
\end{align*}
$$

We will deal later with mathematical problem of " $0 \rightarrow{ }^{*}$ ", so far, we can understand it procedurally

Various CRR instances

$\begin{array}{ccc}C_{1} & -A_{1-} & R_{1} \\ f_{-} & & \\ C_{2} & -A_{2-} & R_{2}\end{array}$
simpler, customer, teacher, computed, true (
wiser, developer, student, correct, proved

Partial Challenge-Response situation for learning

In learning set of challenges C (vector of independent variables \underline{x}) and the set of responses R (dependent variable y) are not know in total - we know only train and test data (role of extra element nar will be discussed later).
Binary acceptability relation $\mathrm{A} \subseteq \mathrm{C} \times \mathrm{R}$ (selector α) is also known only on train+test).
The task is to find α, as good as possible

Learning from data $(\underline{x}, \underline{y})$ gives (\underline{x}, \hat{y})

T-train, V-validate
$\underline{\mathrm{x}}_{T}, \mathrm{~V}_{T} \quad$ _RMSE_ $\underline{\mathrm{x}}_{\mathrm{V}}, \mathrm{y}_{\mathrm{V}}$

$\underline{x}_{V} \quad \quad_{-} \alpha_{2-} \quad \hat{y}_{V}$
Whenever cross validation gives
satisfactory results, then
$\alpha_{2}\left(\underline{x}_{\text {valid }}\right)=\hat{y}_{\text {Valid }}$ is sent to be compared with $\mathrm{y}_{\text {valid }}$. $\operatorname{RMSE}\left(\mathrm{y}_{\text {valid }}, \hat{y}_{\text {valid }}\right)$ can be considered the truth degree of this ChRR

Complex model CRISP-DM

Comparison of COVID-19 Molecular and Antibody Tests

Various CRR instances

Cartesian closed category

Upper level - Several models, chose the best / different aspects Lower level - ensemble learning, integration/ ?transfer learning

Globální vyhodnocení e-shopu E

Further material

- 3 SAT reduction to 3 COL
- Mathematical problem of Challenge Response Framework - CRFm
- CRF - situations and reductions
- Definitions
- Decision (yes-no) and search problems
- NAR - no acceptable responses
- Theorem - one implication suffices
- Metrics

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Example CRR of 3SAT to 3COL

Start with 3-SAT formula φ with n variables x_{1}, \ldots, x_{n} and m clauses K_{1}, \ldots, K_{m}. Create graph G_{φ} such that
$-G_{\varphi}$ is 3 -colorable iff φ is satisfiable (decision problem) and

- 3SAT is CR reducible to 3COL , up to this we need to establish truth assignment for x_{1}, \ldots, x_{n} via colors for some nodes in G.
create triangle with node True, False, Base
for each variable x_{i} two nodes v_{i} and $\underline{v}_{\underline{i}}$ connected in a triangle with common Base
If graph is 3 -colored, either v_{i} or $\underline{v}_{\underline{i}}$ gets the same color as True. Interpret this as a truth assignment to v_{i}
For each clause $K_{j}=(a \vee b \vee c)$, create a small gadget graph gadget graph connects to nodes corresponding to a, b, c, implements OR connect output node of gadget to both False and Base

Correctness of $3 S A T^{\text {dec }}$ reduction to $3 \mathrm{COL}^{\text {dec }}$

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color v_{i} True and $\mathrm{v}_{\underline{\underline{1}}}$ False
- for each clause $K_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for K_{j} can be 3 -colored such that output is True.
G_{φ} is 3 -colorable implies is φ satisfiable
- if v_{i} is colored True then set x_{i} to be True, this is a legal truth assignment
- consider any clause $\mathrm{K}_{\mathrm{j}}=(\mathrm{a} \vee \mathrm{b} \vee \mathrm{c})$. it cannot be that all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are False. If so, output of OR-gadget for K_{j} has to be colored False but output is connected to Base and False!

CRF situations and reductions " $0 \rightarrow$ * is true"

Challenge Response Situation $S=(C, R, A)$ consists of a set C of challenges, set of responses R and an acceptability relation $A \subseteq C \times R$ (can be preferential)
For an $c \in C, r \in R$ we read $A(c, r)$ as " r is an acceptable response (in some degree) for challenge c ", or also "response r meets challenge c"
We assume, that each set R contains also a special element "nar" representing "there is no acceptable response". We assume:
$A(c, n a r)$ is equivalent to $(\forall r \in R \backslash\{n a r\})(\neg A(c, r)) \quad(* n a r)$
$R \backslash\{n a r\}$ are meaningful responses, "nar" is like logical "not" in decision problems

Example CRR of 3SAT to 3COL with "nar"

Assume we have situation 3SAT ${ }^{\text {mar }}$ (3SAT ${ }^{\text {dec }}$ variant with $\mathrm{R}_{1}=\{$ true, false $\}$ is constructed analogously, with same $f(\varphi))$ with
C_{1} is the set of all 3CNF clauses,
R_{1} is the set of all truth assignments of variables + nar r_{1} and
$A_{1}(\varphi, v)$ if $v \mid=\varphi$, here $\mid=$ says that in the world v is true (xor nar)
And situation $3 \mathrm{COL}^{\text {nar }}$, where
C_{2} is the sets of all graphs $\mathrm{G}(\mathrm{V}, \mathrm{E})$,
R_{2} is the set of all 3 -vertex coloring + nar $_{2}$ and
$A_{2}(G, c)$ if c is a proper coloring of vertices of G (xor nar)
CR reduction consists of a pair of functions (f, f^{+}) such that

$$
\begin{align*}
& f^{f}(\varphi)=\mathrm{G}_{\varphi^{\prime}} \text {, see illustration } \\
& \mathrm{f}^{+}(\mathrm{c})=\mathrm{v}_{\mathrm{c}} \text {, also described in illustration } \\
& \left(\forall \mathrm{c}_{1} \in \mathrm{C}_{1}\right)\left(\forall \mathrm{r}_{2} \in \mathrm{R}_{2}\right)\left(\mathrm{A}_{2}\left(\mathrm{f}^{\prime}\left(\mathrm{c}_{1}\right), r_{2}\right) \Rightarrow \mathrm{A}_{1}\left(\mathrm{c}_{1}, \mathrm{f}^{+}\left(r_{2}\right)\right)\right. \tag{*}
\end{align*}
$$

Note that $A_{2}\left(f\left(c_{1}\right)\right.$, nar $\left.{ }_{2}\right) \Rightarrow A_{1}\left(c_{1}\right.$, nar $\left.r_{1}\right)$ is equivalent to
$\neg \mathrm{A}_{2}\left(\mathrm{f} \cdot\left(\mathrm{c}_{1}\right)\right.$, nar $\left._{2}\right) \Leftarrow \neg \mathrm{A}_{1}\left(\mathrm{c}_{1}\right.$, nar $\left._{1}\right)$ and this is equivalent to $\left(\exists r_{1} \in R_{1} \backslash\left\{n a r_{1}\right\}\right)\left(A_{1}\left(c_{1}, r_{1}\right)\right) \Rightarrow\left(\exists r_{2} \in R_{2} \backslash\left\{n a r_{2}\right\}\right)\left(A_{2}\left(f\left(c_{1}\right), r_{2}\right)\right)$

Challenge-Response situation "nar"

Let us have a set C of challenges and a set R responses (with an extra element nar = "no acceptable response in R).
a binary acceptability
relation $\mathrm{A} \subseteq \mathrm{C} \times \mathrm{R}$ represents search problem (and "yes" decision). A selector
α can represent either

- an optimal response, or
- an algorithm
$\{(c$, nar): $c \in C \backslash \operatorname{dom}(A)\}$ fills "no" decision ...and corresponding decision problem

CRF situations and reductions "nar"

Challenge Response Reduction of a situation $S_{1}=\left(C_{1}, R_{1}\right.$, $\left.A_{1}\right)$ to a situation $S_{2}=\left(C_{2}, R_{2}, A_{2}\right)$ consists of a pair of functions (f, f^{+}) such that

$$
f: C_{1} \rightarrow C_{2}
$$

$\mathrm{f}^{+}: \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}$, such that $\mathrm{f}^{+}\left(\right.$nar $\left._{2}\right)=$ nar $_{1}, \mathrm{f}^{+}\left(\mathrm{r}_{2}\right)=$ nar $_{1}$ implies $r_{2}=$ nar r_{2} and following holds:
$\left(\forall \mathrm{c}_{1} \in \mathrm{C}_{1}\right)\left(\forall \mathrm{r}_{2} \in \mathrm{R}_{2}\right)\left(\mathrm{A}_{2}\left(\mathrm{f}-\left(\mathrm{c}_{1}\right), \mathrm{r}_{2}\right) \Rightarrow \mathrm{A}_{1}\left(\mathrm{c}_{1}, \mathrm{f}^{\mathrm{f}}\left(\mathrm{r}_{2}\right)\right)\right.$
Note that $A_{2}\left(f\left(c_{1}\right)\right.$, nar $\left.{ }_{2}\right) \Rightarrow A_{1}\left(c_{1}\right.$, nar $\left._{1}\right)$ is equivalent to
$\neg \mathrm{A}_{2}\left(\mathrm{f}\left(\mathrm{c}_{1}\right)\right.$, nar $\left._{2}\right) \Leftarrow \neg \mathrm{A}_{1}\left(\mathrm{c}_{1}\right.$, nar $\left._{1}\right)$ and this to
$\left(\exists r_{1} \in R_{1} \backslash\left\{n a r_{1}\right\}\right)\left(A_{1}\left(c_{1}, r_{1}\right)\right) \Rightarrow\left(\exists r_{2} \in R_{2} \backslash\left\{n a r_{2}\right\}\right)\left(A_{2}\left(f-\left(c_{1}\right), r_{2}\right)\right)$
Hence "nar" prevents fake reductions

Challenge-Response reduction "nar"

$$
\begin{array}{ccc}
C_{1} & \quad A_{1} & R_{1} \\
f \\
& & \\
C_{2} \quad & f^{+} \\
& A_{2} & R_{2} \\
\left(\forall c_{1} \in C_{1}\right)\left(\forall r_{2} \in R_{2}\right) \\
A_{2}\left(f\left(c_{1}\right), r_{2}\right) \\
\Downarrow \\
A_{1}\left(c_{1}, f^{+}\left(r_{2}\right)\right) \& \\
f^{+}\left(\operatorname{nar}_{2}\right)=\operatorname{nar}_{1}
\end{array}
$$

Correctness of $35 A T^{\text {nar }}$ reduction to $3 C O L^{\text {nar }}$

Denote $\mathrm{G}_{\varphi}\left(\mathrm{V}_{\varphi}, \mathrm{E}_{\varphi}\right)=\mathrm{f}(\varphi)$, assume $\mathrm{A}_{2}\left(\mathrm{G}_{\varphi}, \mathrm{c}\right)$ and $\mathrm{c}: \mathrm{V}_{\varphi} \rightarrow$ \{True, False, Base\}, hence $c \neq$ nar $_{2}$, is a proper 3-coloring. Let us construct $f^{+}(c)$ as follows: if v_{i} is colored True then set $f^{+}(c)=v_{c}\left(x_{i}\right)$ to be True, this is a legal truth assignment and $\mathrm{v}_{\mathrm{c}} \mid=\varphi$

- consider any clause $K_{j}=(a \vee b \vee c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for K_{j} has to be colored False but output is connected to Base and False!
To show $A_{2}\left(G_{\varphi}, \text { nar }\right)_{2}$ implies $A_{1}\left(\varphi\right.$, nar $\left._{1}\right)$, by $\left({ }^{* *}\right)$ it is sufficient to show that if $v \in R_{1}$ is a truth assignment with $A_{1}(\varphi, v)$ then there is a c a proper 3-coloring of $G_{\varphi}=f(\varphi)$, hence $A_{2}\left(G_{\varphi}, c\right)$
Indeed
- if variable x_{i} is assigned True by v, color v_{i} True and \underline{v}_{i} False by c
- for each clause $K_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for K_{j} can be 3-colored such that output is True.

Graphical solution and visualization in LMPM

Analytical layer
input $\xrightarrow{\text { User study }}$ output

What is the role of "nar" in practical applications?

Database as a mediator by AHV

Figure 1.1: Database as mediator between humans and data

Query _correct_ answer
\# reduction is correct \uparrow

Query _computed_ answer

AHV three levels of DB architecture

Figure 1.2: Three-level architecture of database systems

Computer architecture

Application layer

input $\xrightarrow{\text { Code } \alpha}$ output
input

Compiled assembler input

output

\# reduction is correct means "if α " is computed then (implies) α is correct" is a true statement - implication can be true also in case "False implies *" - fake reduction In computer science we have to be careful - consequence should have a true witness

SemPre - aggregated measures - evaluating success of semantization and recommendation

ChRF as a general epistemic reasoning method?

- What is the "truth value" $\mathrm{A}_{2}\left(\mathrm{r}\left(\mathrm{i}_{1}\right), \mathrm{s}_{2}\right)=>\mathrm{A}_{1}\left(\mathrm{i}_{1}, \mathrm{t}\left(\mathrm{s}_{2}\right)\right)$?
- A_{1} - target, hypothesis, event, reality, deployment, A_{2} - source, model, evidence, test, experiment,
- A_{1} - declarative, correct, semantics, truth, tautology A_{2} - procedural, computed, syntax, proof
- Preferential logic; Hájek's comparative notion of truth; Bayes; Hájek's observational logic, 4ft, IR; user studies; formal proofs

TN
$\frac{\left(A_{2}, b\right),\left(A_{1} \leftarrow A_{2}, r\right)}{\left(A_{1}, C_{\rightarrow}(b, r)\right.} \quad \operatorname{Pr}\left(A_{1} \mid A_{2}\right)=\frac{\operatorname{Pr}\left(A_{2} \mid A_{1}\right) * \operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(A_{2}\right)} \quad \frac{\text { \# true positive }}{\text { \# all }}$

https://en.wikipedia.org/wiki/Precision_and_recall

ChRR motivated problems "challenges"

- Specify A_{1}
- Learn, find, code A_{2}, α_{2},
- Learn, find, code $\mathrm{f}^{-}, \mathrm{f}^{+}, \ldots$
- What is the right "truth value" of $A_{1} \Rightarrow A_{2}$
- math. logic (fuzzy connectives)
- probabilistic measures P/R, RMSE, ...
- offline A / B testing measures, business metric, ...
- U-process

- Iterative coupling of enriched / reccurent

ChRR \rightarrow many valued logic \rightarrow preferential Datalog + Data domain calculi

- Integration of search and decision complexity problems, of deduction and induction
- Only one implication!
- No equivalence! Still correct ...
- No nontrivial fulfillment of \Rightarrow
- Cartesian closed category $\sqrt{ } \sqrt{ }$
- Complexity strength as that of

$$
\begin{array}{ccc}
\mathrm{C}_{1} & -\mathrm{A}_{1-} & \mathrm{R}_{1} \\
\mathrm{f} & \| & { }^{2}+ \\
& \downarrow & \mathrm{f}^{2} \\
\mathrm{C}_{2} & -\mathrm{A}_{2-} & \mathrm{R}_{2}
\end{array}
$$ search and decision problem

- Acceptability can be function, algorithm

$$
\begin{gathered}
\left(\forall \mathrm{c}_{1} \in \mathrm{C}_{1}\right)\left(\forall \mathrm{r}_{2} \in \mathrm{R}_{2}\right) \\
\mathrm{A}_{2}\left(\mathrm{f}\left(\mathrm{c}_{1}\right), \mathrm{r}_{2}\right) \\
\Downarrow
\end{gathered}
$$

- Not necessary 100\%, various metric

$$
\mathrm{f}^{+}\left(\operatorname{nar}_{2}\right)=\operatorname{nar}_{1}
$$

Theoretical problems

what does it mean there is a CRR reduction between two graphs
$\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ and all possible graph theoretic questions
$C=\left\{\left(S_{1}, S_{2}\right)\right.$: where S_{1} and S_{2} are finite $C R$ situations, $\left.S_{i}=\left(C_{i}, R_{i}, A_{i}\right)\right\}$,
$R=\left\{\left(f_{-}, f_{+}\right)\right.$: pairs of finite functions\}
A checks whether ($\mathrm{f}_{-}, \mathrm{f}_{+}$) form a CR -reduction from S_{1} to S_{2}

ChRR in decision support, client server

