NSWI166 Introduction to recommender systems and user preferences

Prostřední třetinu Peter Vojtáš, KSI MFF UK první a poslední třetinu Láďa Peška, KSI MFF UK

8/12 Challenge Response Framework A general Framework for modeling and evaluation of model-quality

Nástin obsahu

- Dosavadní přehled témat vše pro zákazníka
- Společný jmenovatel modelování reality
- Další příklady modelování reality
- Potřeba abstraktního rámce pro modelování reality a vyhodnocení kvality modelu
 - Challenge Response Framework, situations, reductions
- Model kvality e-shopu, +++

Topic 1 (5/12). Representation

Topic 2 (6/12). Efficient top-k querying

Topic 3 (7/12). Customer's preference learning

Google design thinking

or Lean Startup methodology?

R

M

R

E

Ο

D

Ε

Weather forecast – reality to model reduction

Problem instance: Prague, August 9th 2019, reduction

0.0KB/s all 👘 🛜 77

 (\bigcirc)

▲ 11 km/h

Prague

∦ ssw 6-10

∳s 5-13

≱ ssw 6-13

🖌 SSW

9-19

∦ ssw 11-22

✓ WSW 7-22

♦ SSE

Client-server / middleware – web service, ...

What is the challenge? User expects top-k relevant answers. Client can finish computation. How can we meet the challenge?

Asking for/providing/accepting-using response

Reality \rightarrow model, process, ... One needs help \rightarrow the other will provide assistance

Recommendation as reality to model reduction

Challenge-Response situation ChRS

Let us have a set C of challenges and a set R responses.

- A binary relation $A \subseteq C \times R$ represents **acceptability** of a specific response r to a specific challenge c, denoted A(c, r).
- Eventually A can be a program, process, then denoted α ,
- $\alpha\;$ can represent either
- an optimal response, or
- an algorithm

ChRF Challenge-Response Framework

Challenge-Response reduction ChRR

ChRF = ChRS + ChRR formally

- Challenge Response Situation ChRS S = (C, R, A) consists of a set C of challenges, set of responses R and an acceptability relation $A \subseteq C \times R$ (can be preferential, probabilistic, ...)
- For an $c \in C$, $r \in R$ we read A(c, r) as "r is an acceptable response (in some degree) for challenge c", or also "response r meets challenge c"
- Challenge Response Reduction ChRR of a situation $S_1 = (C_1, R_1, A_1)$ to a situation $S_2 = (C_2, R_2, A_2)$ consists of a pair of functions (f⁻, f⁺) such that

$$f^{-}: C_{1} \rightarrow C_{2},$$

$$f^{+}: R_{2} \rightarrow R_{1}, \text{ such that following holds:}$$

$$(\forall c_{1} \in C_{1})(\forall r_{2} \in R_{2})(A_{2}(f^{-}(c_{1}), r_{2}) \Longrightarrow A_{1}(c_{1}, f^{+}(r_{2})))$$

We will deal later with mathematical problem of "0 \rightarrow *", so far, we can understand it procedurally

Various CRR instances

Partial Challenge-Response situation for learning

In learning set of challenges C (vector of independent variables <u>x</u>) and the set of responses R (dependent variable y) are not know in total – we know only train and test data (role of extra element nar will be discussed later).

Binary acceptability relation $A \subseteq C \times R$ (selector α) is also known only on train+test).

The task is to find α , as good as possible

Comparison of COVID-19 Molecular and Antibody Tests

Various CRR instances

Upper level - Several models, chose the best / different aspects Lower level - ensemble learning, integration/ ?transfer learning

Globální vyhodnocení e-shopu E

Further material

- 3 SAT reduction to 3 COL
- Mathematical problem of Challenge Response
 Framework CRFm
- CRF situations and reductions
 - Definitions
 - Decision (yes-no) and search problems
 - NAR no acceptable responses
 - Theorem one implication suffices
- Metrics

Example

 $\varphi = (u \vee \neg v \vee w) \land (v \vee x \vee \neg y)$

Example CRR of 3SAT to 3COL

Start with 3-SAT formula ϕ with n variables x_1, \ldots, x_n and m clauses K_1, \ldots, K_m . Create graph G_{ϕ} such that

- ${\sf G}_\phi$ is 3-colorable iff ϕ is satisfiable (decision problem) and
- 3SAT is CR reducible to 3COL, up to this we need to establish truth assignment for x₁, . . . , x_n via colors for some nodes in G.
 create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \underline{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or v_i gets the same color as True. Interpret this as a truth assignment to v_i

For each clause $K_i = (a \lor b \lor c)$, create a small gadget graph

gadget graph connects to nodes corresponding to a, b, c,

implements OR connect output node of gadget to both False and Base

Correctness of 3SAT^{dec} reduction to 3COL^{dec}

 ϕ is satisfiable implies ${\sf G}_{\sigma}$ is 3-colorable

- if x_i is assigned True, color v_i True and \underline{v}_i False
- for each clause $K_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for K_j can be 3-colored such that output is True.
- G_{ϕ} is 3-colorable implies is ϕ satisfiable
- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause K_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for K_j has to be colored False but output is connected to Base and False!

CRF situations and reductions "0 \rightarrow * is true"

Challenge Response Situation S = (C, R, A) consists of a set C of challenges, set of responses R and an acceptability relation $A \subseteq C \times R$ (can be preferential)

- For an c ∈ C, r ∈ R we read A(c, r) as "r is an acceptable response (in some degree) for challenge c", or also "response r meets challenge c"
- We assume, that each set R contains also a special element "nar" representing "there is no acceptable response". We assume:

A(c, nar) is equivalent to (∀r∈R\{nar})(¬A(c, r)) (*^{nar})
 R\{nar} are meaningful responses, "nar" is like logical "not" in decision problems

Example CRR of 3SAT to 3COL with "nar"

Assume we have situation $3SAT^{nar}$ ($3SAT^{dec}$ variant with $R_1 = \{true, false\}$ is constructed analogously, with same $f(\phi)$) with

C₁ is the set of all 3CNF clauses,

R₁ is the set of all truth assignments of variables + nar₁ and

 $A_1(\phi, v)$ if $v \models \phi$, here \models says that in the world v is true (xor nar) And situation $3COL^{nar}$, where

 C_2 is the sets of all graphs G(V, E),

 R_2 is the set of all 3-vertex coloring + nar₂ and

A₂(G, c) if c is a proper coloring of vertices of G (xor nar)

CR reduction consists of a pair of functions (f⁻, f⁺) such that

 $f(\phi) = G_{\phi}$, see illustration

 $f^+(c) = v_c$, also described in illustration

 $(\forall c_1 \in C_1)(\forall r_2 \in R_2)(A_2(f(c_1), r_2) \Longrightarrow A_1(c_1, f(r_2))) \quad (*)$

Note that $A_2(f(c_1), nar_2) \Rightarrow A_1(c_1, nar_1)$ is equivalent to

 $\neg A_2(f^{-}(c_1), \operatorname{nar}_2) \Leftarrow \neg A_1(c_1, \operatorname{nar}_1) \text{ and this is equivalent to}$ $(\exists r_1 \in R_1 \setminus \{\operatorname{nar}_1\})(A_1(c_1, r_1)) \Rightarrow (\exists r_2 \in R_2 \setminus \{\operatorname{nar}_2\})(A_2(f^{-}(c_1), r_2)) \quad (**)$

Challenge-Response situation "nar"

Let us have a set C of nar = not challenges and a set R responses (with an extra element nar = "no acceptable response in R). a binary acceptability

relation A ⊆ C x R represents search problem (and "yes" decision). A selector

 $\alpha\;$ can represent either

- an optimal response, or
- an algorithm

{(c, nar): $c \in C \setminus dom(A)$ } fills

"no" decision ...and corresponding decision problem

CRF situations and reductions "nar"

Challenge Response Reduction of a situation $S_1 = (C_1, R_1, A_1)$ to a situation $S_2 = (C_2, R_2, A_2)$ consists of a pair of functions (f⁻, f⁺) such that

 $f: C_1 \rightarrow C_2$, $f^+: R_2 \rightarrow R_1$, such that $f^+(nar_2) = nar_1$, $f^+(r_2) = nar_1$ implies $r_2 = nar_2$ and following holds: $(\forall c_1 \in C_1)(\forall r_2 \in R_2)(A_2(f(c_1), r_2) \Longrightarrow A_1(c_1, f(r_2)))$ (*) Note that $A_2(f(c_1), nar_2) \Rightarrow A_1(c_1, nar_1)$ is equivalent to $\neg A_2(f(c_1), nar_2) \Leftarrow \neg A_1(c_1, nar_1)$ and this to $(\exists r_1 \in R_1 \setminus \{nar_1\})(A_1(c_1, r_1)) \Longrightarrow (\exists r_2 \in R_2 \setminus \{nar_2\})(A_2(f(c_1), r_2))$ Hence "nar" prevents fake reductions

Challenge-Response reduction "nar"

Correctness of 3SAT^{nar} reduction to 3COL^{nar}

- Denote $G_{\phi}(V_{\phi}, E_{\phi}) = f^{-}(\phi)$, assume $A_2(G_{\phi}, c)$ and c: $V_{\phi} \rightarrow \{\text{True, False,} Base\}$, hence $c \neq nar_2$, is a proper 3-coloring. Let us construct f⁺(c) as follows: if v_i is colored True then set f⁺(c) = $v_c(x_i)$ to be True, this is a legal truth assignment and $v_c \mid = \phi$
- consider any clause K_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for K_j has to be colored False but output is connected to Base and False!
- To show $A_2(G_{\phi}, nar_2)$ implies $A_1(\phi, nar_1)$, by (**) it is sufficient to show that if $v \in R_1$ is a truth assignment with $A_1(\phi, v)$ then there is a c a proper 3-coloring of $G_{\phi} = f(\phi)$, hence $A_2(G_{\phi}, c)$

Indeed

- if variable x_i is assigned True by v, color v_i True and \underline{v}_i False by c
- for each clause $K_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for K_i can be 3-colored such that output is True.

Database as a mediator by AHV

Figure 1.1: Database as mediator between humans and data

AHV three levels of DB architecture

Computer architecture

reduction is correct means "if α" is computed then (implies) α is correct" is a true statement – implication can be true also in case "False implies *" - fake reduction
 In computer science we have to be careful – consequence should have a true witness

SemPre – aggregated measures - evaluating success of semantization and recommendation

ChRF as a general epistemic reasoning method?

- What is the "truth value" A₂(r(i₁), s₂) => A₁(i₁, t(s₂))?
- A₁ target, hypothesis, event, reality, deployment,
 - A₂ source, model, evidence, test, experiment,
- A₁ declarative, correct, semantics, truth, tautology
 A₂ procedural, computed, syntax , proof
- Preferential logic; Hájek's comparative notion of truth; Bayes; Hájek's observational logic, 4ft, IR; user studies; formal proofs

https://en.wikipedia.org/wiki/Precision_and_recall

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{ Condition positive}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Ac <u>Σ True pos</u> Σ	curacy (ACC) = sitive + Σ True negative Total population
Predicted condition	Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative , Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $ \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}} $	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = <u>FNR</u> TNR	$= \frac{LR+}{LR-}$	2 · Precision + Recall

ChRR motivated problems "challenges"

- Specify A₁
- Learn, find, code A_{2} , α_{2} ,
- Learn, find, code f⁻, f⁺, ...
- What is the right "truth value" of $A_1 \Rightarrow A_2$
 - math. logic (fuzzy connectives)
 - probabilistic measures P/R , RMSE, ...
 - offline A/B testing measures, business metric, ...
- U-process
- Iterative coupling of enriched / reccurent $~~\downarrow \uparrow$

$ChRR \rightarrow many valued logic \rightarrow preferential$ Datalog + Data domain calculi

- Integration of search and decision complexity problems, of deduction and induction
- Only one implication!
- No equivalence! Still correct ...
- No nontrivial fulfillment of \Rightarrow
- Cartesian closed category ↓
- Complexity strength as that of search and decision problem
- Acceptability can be function, algorithm
- Not necessary 100%, various metric $f^+(nar_2) = nar_1$


```
(\forall c_1 \in C_1)(\forall r_2 \in R_2)
           A_{2}(f(c_{1}), r_{2})
                      ][
```

 $A_1(c_1, f^+(r_2))$

Theoretical problems

what does it mean there is a CRR reduction between two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and all possible graph theoretic questions

 $\mathbb{C} = \{(S_1, S_2): \text{ where } S_1 \text{ and } S_2 \text{ are} \}$ finite CR situations, $S_i = (C_i, R_i, A_i)\}$, $\mathbb{R} = \{(f_-, f_+): \text{ pairs of finite} \}$ functions} A checks whether (f_-, f_+) form a CR -reduction from S_1 to S_2

ChRR in decision support, client server

Problem situations

- client server
- **Manager decision** support expert/tool
- Customer recommender system of e-shop

44