NSWI166 Introduction to recommender systems and
 user preferences

Jednu 1/3 Peter Vojtáš, KSI MFF UK dvě 1/3 Lád'a Peška, KSI MFF UK

6/12 Querying - top-k Fagin-Lotem-Naor class of models

Outline of this lecture

Information models and ordering - seen from the point of view of RS=recommender systems and UP=user preferences
 Querying - top-k - FLN=Fagin-Lotem-Naor class of models

- Web service motivation (?also in RS and UP)
- FLN data model
- FLN data model - viewed as LMPM
- FLN TA=threshold algorithm for top-k
- FLN TA seen geometrically (illustrative 2D in LMPM)
- FLN data model and W3C RDF (web resources)
- FLN TA heuristics

Motto: "The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise."
— Edsger W. Dijkstra, "The Humble Programmer" 1972 ACM Turing Lecture, see Human-Centered Approach to Static-Analysis-Driven Developer Tools

Motivation - new aspects

- so far from "no match" to "close", multicriterial
- Ideal values separately for attributes - conflicts
- Self explainable \rightarrow visual / geometric
tableaux \rightarrow Lean Startup (your idea)
- new aspect - attributes distributed/external sources
- [BGM02] N. Bruno, L. Gravano, A. Marian. Evaluating Top-k Queries over Web-Accessible Databases, ICDE 2002 International Conference on Data Engineering, San Jose,
- Goal: Find best restaurants for a user:
- Close to address: "2290 Broadway"
- Price around \$25
- Good rating

Web services - access mode - data types

- MapQuest returns the distance between two addresses.
- NYTimes Review gives the price range of a restaurant.
- Zagat gives a food rating to the restaurant.
- We follow paper [FLN] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66 (2003) 614-656 JCSS2003
- Access mode - sorted, direct (random), stateless, ...
- From multimedia middleware (IBM Almaden Garlic project) top-k optimal querying to our multiuser LMPM

Data model Fagin - Lotem - Naor

We need method/prototype/algorithm for top-k queries Possibly without scanning whole data ? "order-by" ?

Data model Fagin-Lotem-Naor-FLN

Objects $\left\{\mathrm{R}_{\mathrm{i}}: \mathrm{i} \leq \mathrm{N}\right\}$, m attributes
R has scores $x_{1}{ }^{R}, \ldots, x_{m}{ }^{R} \in[0,1]$
Data in m ordered lists L_{1}, \ldots, L_{m} record in L_{i} looks like (R, x_{i}^{R}), is sorted in descending order by the x_{i}^{R} value
Data access:

- sequential - price c_{S}
- Direct (random) , knowing id. R) - price C_{R} overall price $\mathrm{s}^{*} \mathrm{c}_{\mathrm{S}}+\mathrm{r}^{*} \mathrm{c}_{\mathrm{R}}$
Combination function $t:[0,1]^{m} \rightarrow[0,1]$, monotone, i.e. $x_{i} \leq y_{i}$ implies $t\left(x_{1}, \ldots, x_{m}\right) \leq t\left(y_{1}, \ldots, y_{m}\right)$

We follow paper [FLN] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66 (2003) 614-656

FLN data model - viewed as LMPM

FLN data model - viewed as LMPM

In LMPM object globally ordered by
$\mathrm{r}_{\mathrm{f}, \mathrm{t}}($ oid $)=\mathrm{t}\left(\mathrm{f}_{1}\left(\right.\right.$ oid. $\left.\mathrm{A}_{1}\right), \ldots, \mathrm{f}_{\mathrm{j}}\left(\right.$ oid. $\left.\mathrm{A}_{\mathrm{j}}\right), \ldots, \mathrm{f}_{\mathrm{m}}\left(\right.$ oid. $\left.\left.\mathrm{A}_{\mathrm{m}}\right)\right)$
In FLN Objects $\left\{\mathrm{R}_{\mathrm{i}}: \mathrm{i} \leq \mathrm{N}\right\}$, m attributes $-\mathrm{R}_{\mathrm{i}}$ iff oid $=\mathrm{i}$
R has scores $x_{1}{ }^{R}, \ldots, x_{m}{ }^{R} \in[0,1]-x_{j}^{R}=f_{j}\left(\right.$ oid. $\left.A_{j}\right)$
Ordered by $t(R)=t\left(x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}\right)=r_{f, t}(o i d)$ - so far same ... Differences:

- FLN do not restrict to linear f_{j} and t
- FLN assumes data in m ordered lists L_{1}, \ldots, L_{m} (indexes) or mode of access on the server side
- Data access - sequential, direct (random),
- price c_{S}, price c_{R}, overall price $s^{*} c_{S}+r^{*} c_{R}$

We will add more - our model is multiuser - formally is FLN single user, Garlic Almaden has a graphical query interface

FLN threshold algorithm TA

1. Do sorted access in parallel to each of the m sorted lists L_{i}. As an object R is seen under sorted access in some list, do random access to the other lists to find the grade x_{i}^{R} of object R in every list L_{j}. Then compute the grade $t(R)=t\left(x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}\right)$ of object R.

If this grade is one of the k highest we have seen, then remember object R and its grade $t(R)$ (ties are broken arbitrarily, so that only k objects and their grades need to be remembered at any time).
(It may seem wasteful to do random access to find a grade that was already determined earlier. As we discuss later, this is done in order to avoid unbounded buffers)

Threshold algorithm TA

2. For each list L_{i}, let \underline{x}_{i} be the grade of the last object seen under sorted access. Define the threshold value τ to be

$$
\tau=t\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)
$$

As soon as at least k objects have been seen whose grade is at least equal to τ; then halt. Else go to 1 .
3. Let Y be a set containing the k objects that have been seen with the highest grades. The output is then the graded set $\{(R, t(R)) \mid R \in Y\}$ (ordered by $t(R)$).

TA algorithm - illustration

I am looking for a hotel close to beach, cheap, good

close	
H1	0,9
H2	0,8
H3	0,5
H4	0,4

cheap	
H3	0,9
H2	0,8
H4	0,5
H1	0,3

quality	
H 2	0,9
H 3	0,8
H 1	0,5
H 4	0,3

Threshold $\tau_{1} \quad(3 * 0,9+2 * 0,9+0,9) / 6=0,9$

stack C_{1}	
H2	0,8
H3	0,68
H1	0,63

stack C_{2}	
H 2	0,8
H 3	0,68
H 1	0,63

So far I do not know the best
Threshold $\tau_{2} \quad(3 * 0,8+2 * 0,8+0,8) / 6=0,8$
$0,8 \geq 0,8 \ldots \mathrm{H} 2$ is the best
Threshold $\tau_{3}=0.5$, hotel H 4 has overall preference degree $0.416 \ldots$

Threshold algorithm is incremental in top-k

P	100m	P	Long	P	Shot	P	High	P	400m	P	110mh	P	Discus	P	Pole	P	Javelin	P	$1500 r$		
1	942	1	1089	4	847	1	915	2	964	1	985	4	840	2	1004	1	892	5	799	9277	
4	938	2	1010	3	841	5	915	8	924	3	976	1	827	4	972	6	861	1	798	9062	
2	922	3	982	9	831	7	859	1	919	4	946	3	803	11	941	2	843	12	770	8816	
17	915	8	932	1	810	12	831	9	909	7	936	5	803	10	910	3	839	10	760	8645	
3	897	6	908	8	800	4	803	14	877	10	936	7	800	12	910	14	797	11	734	8462	
10	890	11	898	16	796	13	803	3	873	9	929	9	796	9	880	15	763	3	721	8349	
14	885	4	891	10	780	2	776	17	873	2	916	11	748	1	849	5	746	4	706	8170	
8	883	5	859	7	776	3	776	10	872	8	913	2	732	6	849	16	737	6	703	8100	
6	876	12	854	6	772	14	776	5	870	6	903	8	698	8	849	7	735	2	686	8019	
9	863	7	853	17	769	15	776	4	866	12	897	12	696	3	819	10	715	16	679	7933	
13	863	9	840	5	765	6	749	7	858	14	886	15	691	7	819	17	711	8	665	7847	
5	858	13	840	2	751	8	749	13	849	15	870	14	688	15	790	11	709	9	664	7768	
16	854	10	799	11	739	16	749	6	846	17	853	10	672	5	760	8	672	13	640	7584	
7	843	15	797	13	715	9	723	16	819	11	842	13	668	13	760	4	656	15	636	7459	
12	841	14	788	14	708	11	696	12	808	13	841	6	655	17	731	13	653	17	628	7349	
11	793	17	774	12	667	10	670	15	803	16	817	16	653	16	673	12	617	7	621	7088	,
15	784	16	769	15	666	17	644	11	791	5	798	17	608	14	645	9	593	14	563	6861	

Found versus confirmed = In which step was the object above threshold, e.g., Sebrle in the step 3

Objects seen in first \bigcirc second \bigcirc third \bigcirc step

TA algorithm is correct

FLN - theorem 4.1. If the aggregation function t is monotone, then TA correctly finds the top k answers (ties are ordered arbitrarily).
Proof. Let Y be as in Step 3 of TA. We need only show that every member of Y has at least as high a grade as every object z not in Y.
By definition of $\mathrm{Y} ; \mathrm{z} \notin \mathrm{Y}$, either it's grade was not one of the k highest or z has not been seen in running TA. So assume that z was not seen. Assume that the fields of z are $x_{1}{ }^{2}, \ldots, x_{m}{ }^{2}$. Therefore, $\mathrm{x}_{\mathrm{i}}{ }^{2} \leq \underline{\mathrm{x}}_{i}$ for every i: Hence, $\mathrm{t}\left(\mathrm{x}_{1}{ }^{2}, \ldots, \mathrm{x}_{\mathrm{m}}{ }^{2}\right) \leq \tau=\mathrm{t}\left(\underline{\mathrm{x}}_{1}, \ldots, \underline{\mathrm{x}}_{\mathrm{m}}\right)$; where the inequality follows by monotonicity of t. But by definition of Y ; for every y in $\mathrm{Y}, \mathrm{t}(\mathrm{y}) \geq \tau$. Therefore, for every y in Y we have $t(y) \geq \tau \geq t(z)$ as desired.

Threshold algorithm TA - wording as in FLN

 and small changes, additional notation (cycle counter)Given $\mathrm{k}>0$ (can work incrementally then put $\mathrm{k}=0$), data in ordered lists L_{j}, sequential/random access, cycle counter $\mathrm{c}:=1$ 1. Do sorted access in parallel to each of the m sorted lists L_{i}, either the service is stateless (get c's element) or not (server "knows c" \rightarrow next)

- As an object R is seen under sorted access in some list, DO random access to the other lists to find the grade x_{j}^{R} of object R in every list L_{j}

THEN compute the grade of $R, t(R)=t\left(x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}\right)$

- IF this grade is one of the k highest we have seen,

THEN remember in Y^{c} object R and its grade $t(R)$ (ties are broken arbitrarily, can work incrementally)

- GOTO 2

Threshold algorithm TA - wording as in FLN and small changes, additional notation (cycle counter) - cont'd
2. For each list L_{i}, let \underline{x}_{i}^{c} be the grade of the last object seen under c's sorted access. Put $T^{c}=\left(\underline{x}_{1}{ }^{c}, \ldots, \underline{x}_{m}{ }^{c}\right)$

- Define the threshold value τ^{c} to be

$$
\tau^{c}=t\left(\underline{x}_{1}^{c}, \ldots, \underline{x}_{m}^{c}\right)
$$

If $k>0$ and AS SOON AS at least k objects in Y^{c} have been seen whose grade is at least equal to τ^{c} (incremental variant: elements of Y^{c} above τ^{c} are confirmed)
THEN GOTO 3 ELSE IF N=c THEN GOTO 3 ELSE c:= c+1 and GO TO 1
3. Let Y^{c} be a set containing the k objects that have been seen with the highest grades. The output is then the graded set $\{(R, t(R)) \mid R \in Y\}$ (ordered by $t(R)$).

TA algorithm geometrically

We would like to keep our model intuitive self explanatory

We would like to visualize also methods / prototypes / algorithms both
Top-k querying and
Learning user's preferences

We start at preference cube

FLN-TA graphically (2D)
Objects $\left\{R_{i}: i \leq N\right\}, R$ have m-many score $x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}$
Data in m ordered lists
L_{1}, \ldots, L_{m}, record in L_{i} looks like (R, x_{i}^{R}), is sorted in descending order by the x_{i}^{R} value

Combination function

$$
\mathrm{t}:[0,1]^{\mathrm{m}} \rightarrow[0,1],
$$

monotone wrt Pareto ord
User u is fixed, task is to compute top-k as efficiently as possible, $\mathrm{f}_{\mathrm{i}}{ }^{u}$ gave X_{i}^{R}

Preference cube with images of data pts $\mathrm{A}, \ldots, \mathrm{G}$ on x_{1}, x_{2} axes (lists L_{1}, L_{2}) at middleware is not seen ... with aggregation given by one contour line.

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=1$
Step 1
Part "Do sorted access" aggregation given by ex. contour line.
Axes $\mathrm{x}_{1}, \mathrm{x}_{2}$ can be viewed as lists, in this case we see only (by sequential access)
$\mathrm{L}_{1}=\left\{\left(\mathrm{A}, \mathrm{a}_{1}\right)\right\}$
$\mathrm{L}_{2}=\left\{\left(\mathrm{E}, \mathrm{e}_{2}\right)\right\}$
Nevertheless we know object ID's and so we can go to part 2

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=1$
Step 1
Part "DO random access "
this gives $\mathrm{a}_{1}, \mathrm{e}_{2}$,
Axes $\mathrm{x}_{1}, \mathrm{x}_{2}$ viewed as lists, in this case
$\mathrm{L}_{1}=\left\{\left(\mathrm{A}, \mathrm{a}_{1}\right),\left(\mathrm{E}, \mathrm{e}_{1}\right)\right\}$
$L_{2}=\left\{\left(\mathrm{E}, \mathrm{e}_{2}\right),\left(\mathrm{A}, \mathrm{a}_{2}\right)\right\}$
We have PC images A^{u}
$=\left(a_{1}, a_{2}\right), E^{u}=\left(e_{1}, e_{2}\right)$
Part "compute $t(R)$ " gives $t(A), t(E)$
Part "in stack Y^{1} we have" $Y^{1}=\{(A, t(A)),(E, t(E))\}$ Step 2 gives $\underline{\mathrm{x}}_{1}{ }^{1}=\mathrm{a}_{1}, \underline{\mathrm{x}}_{2}^{1}=\mathrm{e}_{2}$, $T^{1}=\left(a_{1}, e_{2}\right)$, and it's contour line intersects diagonal at τ^{1}
a_{2} from the list L_{2} we know $\left(A, a_{2}\right)$

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=1$
Step 2
Part "compare Y^{1} and τ^{1} "
ELSE c:= c+1 = 2
and GO TO 1
applies

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=2$
Step 1
Part "Do sorted access"

Axes $\mathrm{x}_{1}, \mathrm{x}_{2}$ and/or lists we see (by sequential access)
$\mathrm{L}_{1}=\left\{\left(\mathrm{A}, \mathrm{a}_{1}\right),\left(\mathrm{B}, \mathrm{b}_{1}\right), \ldots\left(\mathrm{E}, \mathrm{e}_{1}\right)\right\}$
$\mathrm{L}_{2}=\left\{\left(\mathrm{E}, \mathrm{e}_{2}\right),\left(\mathrm{D}, \mathrm{d}_{2}\right), \ldots\left(\mathrm{A}, \mathrm{a}_{2}\right)\right\}$
Nevertheless we know object ID's and so we can go to part 2

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=2$
Step 1
Part "DO random access "
this gives $\mathrm{d}_{1}, \mathrm{~b}_{2}$,
We have PC images B^{u}, D^{u} Part "compute $t(R)$ " gives $t(B), t(D)$
Part "in stack Y^{2} we have" an ordered stack
$Y^{2}=\{(B, t(B)),(A, t(A)),(D$, $t(D)),(E, t(E))\}$
Step 2 gives
$\underline{\mathrm{x}}_{1}{ }^{2}=\mathrm{b}_{1}, \underline{\mathrm{x}}_{2}{ }^{2}=\mathrm{d}_{2}$,
$\mathrm{T}^{2}=\left(\mathrm{b}_{1}, \mathrm{~d}_{2}\right)$, and it's contour line intersects diagonal at τ^{2}
Part "compare Y^{2} and τ^{2} " gives $\mathrm{c}:=3$ and GO TO 1

FLN-TA graphically (2D)
cycle counter $\mathrm{c}:=3$
Step 1, part ... 2, part ...
Colors can help us to distinguish cycles ...

Anyway, it is a mess in this small dimension

In future we omit
depicting

- data cube part
- attribute preferences

We enlarge preference cube and solutions will be coded by colors and notation as here

FLN-TA graphically (2D)

Big picture

In this case we need 4 steps to decide the winner

Certified order of items so far is B, A, G, D (for F, C, E we have to wait)

It seems that number of steps needed to decide the winner is at most $\mathrm{n} / 2+1$ where n is the \# of items $(\lfloor n / 2\rfloor+1)$
?can we find data distribution such that TA ends (decides winner / decides all) in arbitrary number of steps
$s \leq(\lfloor n / 2\rfloor+1)$?
In 3-D, 4-D, ...?

FLN-TA graphically (2D) Lab/homework 3

Run threshold algorithm
Use notation as in previous slide

Use colors to denote steps/cycles of TA

Lists are same, how does aggregation influence run of TA?

Is there a neighborhood of contour line with same TA run and outcome?

FLN-TA graphically (2D) Lab/homework 4

Experiment with mutual influence of data and aggregation distribution.

Is the hypothesis ?can we find data distribution such that TA ends (decides winner / decides all) in arbitrary number of steps $s \leq(\lfloor n / 2\rfloor+1)$? true ?

Check it in higher dimensions in PC, 4-D, 5-D, ...

Try randomly generated data and threshold

Run threshold algorithm With notation, colors, etc. same as in previous

oŋ $\mu \alpha$ Vtıkos（ $\Sigma \mathrm{HMA}$ Problém webu－lidé rozumí，stroje ne

林克昌 根留台灣 可能增高

在要敖者熱心弃走之下，華雰名指揮家林克昌根留白變的可行性又提升了幾分。雨聽院主任李炎，國家音楽聽楽團副團長黄㚙明日前視赴林克昌，石侱芳寓所䍩曾

月十日起訓䌙省交，為期長達一估月
在台溪諎多公家樂重中，陳澄雄是以菑際行動素達持林克昌肯定的樂界人士之一，曾活次公開表示對林克寻指揮才華的欽佩，而且幾平每個㗫季都邀請林克昌客茧演出。

此外，林克昌上固月走俄羅斯與頂尖的「俄羅斯國家管紋㭃團」灌録了柴可夫斯基晩期三大交響田以及「羅密歐與童麗葉」，「斯拉夫進行曲」，「義大利隌想曲」，最後的DAT母帯也在前兩天寄回台学。製作人湯忠衡與林克昌試聴之後，都對録音效果—龙其音質表涀感到相當㜑意，楊忠衡估計星現了七分林克昌指揮神韻
指揮藝術有三大特貼：一是控制自如的丵性述度；二是强烈的動態對比；三是宛如呼吸歌唱的施律慮理。這毕對録音餪而言都構成很大挑戦。代國録音䬷雖然操用多軌混音，但定位，場面都有可觀之慮。。

Více bývalá NSWI108 a nově také NDBIO21，také multimodální data

machine－processable navigable space

oף $\mu \alpha v \tau ו K o \varsigma ~(\Sigma H M A N T I K O \Sigma) ~-~ s e ́ m a n t i k a, ~ v y ́ z n a m ~$ Problém webu-lidé rozumí, stroje ne

RDF - named oriented graph

- RDF - "Resource Description Framework"
- W3C recommendation (http://www.w3.org/RDF)
- RDF is a data model

RDF - oriented graph

- uses URI (IRI) for unique resource identification, taken from XML
- graph has named vertices and edges
- Literals are data values, which are not resources, string of symbols, with possible data type

RDF terminology of sentence analysis

| Terminology W3C | Sentence analytical
 Subject
 level in Czech
 podmět |
| :--- | :--- | :--- |
| Predicate (verb) | http:/www.example.org/index.hitml |

This sentence in natural language reads as: http://www.example.org/index.html has a creator whose staffid value is $\mathbf{8 5 7 4 0}$
Collision of „linguistic" and OOP terminology

RDF and terminologies of ER, OOP, ...

Languages of web services use RDF - XML syntax

- as in XML, we can use name spaces
- proper RDF elements, with name space rdf:
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#" xmlns:ex='http://example.org/" xmlns:dc=,,http://purl.org/dc/elements/1.1/" >
<rdf:Description rdf:about="http://www.example.org/index.html"> ex:creator
<rdf:Description rdf:about="http://www.example.org/staffid/85740">
</ ex:creator >
</rdf:Description>
</rdf:RDF>

RDF - XML syntax tripple

- element rdf:Description is coding „subject", it's URI is attribute value of rdf:about
- each subelement of rdf:Description is „predicate", it's URI is the name, this contains „object" of the triple as further rdf:Description
<rdf:Description rdf:about="http://www.example.org/index.html">
ex:creator
<rdf:Description rdf:about="http://www.example.org/staffid/85740">
</ ex:creator >
</rdf:Description>
</rdf:RDF>

RDF - XML syntax

- Untyped literals can be specified as text in content of element „predicate"
- single element „subject" can contain more „predicate" subelements
- „object" rdf:Description can serve as „subject" for next triple <rdf:Description rdf:about="http://www.example.org/index.html"> ex:creator
<rdf:Description rdf:about="http://www.example.org/staffid/85740">
< ex:name > John Smith </ ex:name >
</ ex:creator >
<exterms:creation-date > August 16, 1999 </ exterms:creation-date > </rdf:Description>

Transformations without loss of information

Relational to RDF decomposition - when does it make sense?

RDF to relational - lot of joins - integration of web resources (like FLN-TA only needed for top-k)

Graph databases, store as graphs? optimize in the time of query? ... W3C rules too strict!?

FLN Model- viewed as LMPM-RDF data, for web services + multiuser, ...

- In LMPM object globally ordered by $\mathrm{r}_{\mathrm{f}, \mathrm{t}}($ oid $)=\mathrm{t}\left(\mathrm{f}_{1}\left(\right.\right.$ oid. $\left.\left.\mathrm{A}_{1}\right), \ldots\right)$
- In FLN Objects $\left\{\mathrm{R}_{\mathrm{i}}: \mathrm{i} \leq \mathrm{N}\right\}$, (attributes are hidden, $\mathrm{R}_{\mathrm{i}}=$ oid $_{\mathrm{i}}$)
- R has scores $x_{1}{ }^{R}, \ldots, x_{m}{ }^{R} \in[0,1]-x_{j}^{R}=f_{j}\left(\right.$ oid. $\left.A_{j}\right)$
- Ordered by $t(R)=t\left(x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}\right)=r_{f, t}($ oid $)$ - so far same ...
- FLN do not restrict to linear f_{j} and t
- FLN assumes data in m ordered lists L_{1}, \ldots, L_{m} (indexes) or mode of access on the server side
- Lists are in fact RDF data, as (R, x_{i}^{R}) can be seen as a triple $R \xrightarrow{\text { Aprefeenere }} X_{i}^{R}$
- Data access - sequential, direct (random), price c_{S}, price c_{R}, overall price $s^{*} c_{S}+r^{*} c_{R}$
- We will add more - our model is multiuser - FLN is single user + we consider learning user models, measure quality of models, ...

Alternatives

- Various server responses
- No random access (some servers have both, some only one type of access, ...)
- Answer is an ordered (step-by-step) list od object ID's (preference degree computation hidden - probably depending on user's behavior)
- Answer is an ordered (step-by-step) list od object ID's and attribute values (preference degree computation hidden - probably depending on user's behavior)
- It is about data integration
- preference degree computation on server side hidden probably depending on user's behavior
- preference degree computation on middleware side our task?
- In house data?
- Is TA useful at all?

Found versus confirmed in TA

Assume - data structure is given - computed offline (NlogN) ${ }^{m}$
We can not influence found; we can try to influence confirmed

Decathlon

Found versus confirmed - heuristics

Confirm TA as early as possible, if $t(R)$ bigger, τ smaller

$$
\uparrow \mathrm{t}(\mathrm{R}) \geq \tau=\mathrm{t}\left(\underline{\mathrm{x}}_{1}, \ldots, \underline{\mathrm{x}}_{\mathrm{m}}\right) \downarrow
$$

Heuristics can use

$$
\partial \mathrm{t} / \underline{\mathrm{x}}_{\mathrm{i}}
$$

- if it is our first access to services in L_{i}, \ldots

If we know from previous access some estimation of distribution of grades (attribute values when f_{i} is known) then Heuristics can use
estimationOf(jth element of $\left.\mathrm{L}_{\mathrm{i}}\right)^{\text {th }} \boldsymbol{\partial t} / \underline{\mathrm{x}}_{\mathrm{i}}$
Test heuristics on data (maybe it is domain dependent - e.g., Reuters collection has exponential distribution of lists)
Can we predict found? What is the probability that at step c(k) the list is already fixed?

Design experiments!

- Server
- Create lists for u_{i}
- Which data accessed
by different users?
- middleware
- Change aggregation
- Measure influence
- client
- Incremental run, when found, when confirmed
- Step-by-step execution, measure top-k, 1-hit,
- Separate middleware

Like IBM, Google, ...

- Maybe an e-shop
- Maybe a "smart" app

Visualizing TA - price \approx time

Speed up ideas ...

- Guntzer, Balke, Kießling VLDB 2000
- With P. Gurský

Heuristics GBK, PG, ...

Increase frequency and depth of sequential access

$$
t(R) \geq \tau
$$

Where $\underline{x}_{i}^{*} \partial t\left(\underline{x}_{1}, \ldots, \underline{x}_{i}, \ldots, \underline{x}_{m}\right) / \partial \underline{\mathbf{x}}_{i}$ decrease most Where $\underline{x}_{i}^{*} \partial t\left(\underline{x}_{1}, \ldots, \underline{x}_{i}, \ldots, \underline{\mathbf{x}}_{m}\right) / \partial \underline{\mathbf{x}}_{i}$ decrease least

Discrete $\partial \mathrm{t}\left(\underline{\mathbf{x}}_{1}{ }^{H(j)}, \ldots, \underline{\mathbf{x}}_{\mathrm{m}}{ }^{H(j)}\right) / \partial \underline{\mathbf{x}}_{i}^{*}\left(\underline{\mathbf{x}}_{i}^{H(j)}-\underline{\mathrm{x}}_{i}^{H(j)+p}\right)$
See PG page 18-20

Consider data cube with items B, C, D, E and preference cube with their images. During construction on $\mathrm{x}_{1}, \mathrm{x}_{2}$ axes are lists
$L_{1}=\left\{\left(B, b_{1}\right),\left(D, d_{1}\right),\left(E, e_{1}\right), .\right.$. $L_{2}=\left\{\left(D, d_{2}\right),\left(B, b_{2}\right),\left(E, e_{2}\right) \ldots\right.$ Random access givesd ${ }_{1}, b_{2}$ $B^{u}=\left(b_{1}, b_{2}\right), t(B)-$ see diagonal, $c=1, \underline{x}_{1}{ }^{1}=b_{1}$, $\underline{x}_{2}{ }^{1}=d_{2}, T^{1}=\left(b_{1}, d_{2}\right)$ $Y^{1}=\{(B, t(B)),(D, t(D))\}$, $\tau^{1}>\mathrm{t}(\mathrm{B})$,

For $c=2, \underline{x}_{1}^{2}=d_{1}, \underline{x}_{2}^{2}=b_{2}$, $Y^{2}=\{(B, t(B)),(D, t(D))\}$, $\tau^{2}<t(B)<t(D)$, so we have top-2

But, we do not know which data points to take first,

Vojtáš 6/12 NSWI166 RS\&UP

How about TA in data cube?
But, we do not know which data points to take first, ...

So it is wrong to assume we have data cube with items B, C, D, E and preference cube ...

It is more realistic to assume that server S_{1} knows B. $\mathscr{A}_{1}, \mathrm{C} . \mathscr{A}_{1}, \mathrm{D} . \mathscr{A}_{1}$, E. \mathcal{A}_{1}, \ldots and also $f_{1}{ }^{u}$. Then server S_{1} is able to create $L_{1}=\left\{\left(B, b_{1}\right),\left(D, d_{1}\right),\left(E, e_{1}\right), .\right.$. Similarly server S_{2} with $L_{2}=\left\{\left(D, d_{2}\right),\left(B, b_{2}\right),\left(E, e_{2}\right) \ldots\right.$ In step 1 we (at middleware we know t and are able to compute τ^{1}) do not get best item.

We can illustrate in DC what happens during TA first step computation, or
... in case of in-house data we have data cube with items B, C, D, E and the aggregation function t in preference cube, user preferences $f_{i}{ }^{u}$. ...

It is more realistic to compute one contour lines in DC, then take parallel CL of the point in the quadrant (here the blue ones), intersect with the quadrant diagonal, proportional value of these in North-East quadrant gives ordering, this gives $t(B)<t(D) . .$.

End of lecture

Questions?
 Comments?

