NSWI166 Introduction to recommender systems and user preferences

Jednu 1/3 Peter Vojtáš, KSI MFF UK dvě 1/3 Láďa Peška, KSI MFF UK

6/12 Querying - top-k Fagin-Lotem-Naor class of models

Outline of this lecture

Information models and ordering – seen from the point of view of RS=recommender systems and UP=user preferences

Querying - top-k – FLN=Fagin-Lotem-Naor class of models

- Web service motivation (?also in RS and UP)
- FLN data model
- FLN data model viewed as LMPM
- FLN TA=threshold algorithm for top-k
- FLN TA seen geometrically (illustrative 2D in LMPM)
- FLN data model and W3C RDF (web resources)
- FLN TA heuristics

Motto: "The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise."

— Edsger W. Dijkstra, "The Humble Programmer" 1972 ACM Turing Lecture, see <u>Human-Centered Approach to Static-Analysis-Driven Developer Tools</u>

Motivation – new aspects

- so far from "no match" to "close", multicriterial
 - Ideal values separately for attributes conflicts

┛

Self explainable → visual / geometric

tableaux → Lean Startup (your idea)

- **new aspect** attributes distributed/external sources
 - [BGM02] N. Bruno, L. Gravano, A. Marian. <u>Evaluating Top-k</u> <u>Queries over Web-Accessible Databases</u>, *ICDE 2002 -International Conference on Data Engineering, San Jose*,
 - Goal: Find best restaurants for a user:
 - Close to address: "2290 Broadway"
 - Price around \$25
 - Good rating

Web services – access mode – data types

- <u>MapQuest</u> returns the <u>distance</u> between two addresses.
- <u>NYTimes Review</u> gives the <u>price</u> range of a restaurant.
- <u>Zagat</u> gives a <u>food rating</u> to the restaurant.
- We follow paper [FLN] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66 (2003) 614–656 JCSS2003
 - Access mode sorted, direct (random), stateless, ...
 - From multimedia middleware (<u>IBM Almaden Garlic project</u>) top-k optimal querying to our multiuser LMPM

Data model Fagin – Lotem - Naor

We need method/prototype/algorithm for top-k queries Possibly without scanning whole data ? "order-by" ?

Objects {R_i : i \leq N}, m attributes R has scores x_1^R , ..., $x_m^R \in [0, 1]$ Data in m ordered lists L₁, ..., L_m record in L_i looks like (R, x_i^R), is sorted in descending order by the x_i^R value Data access:

- sequential price c_S
- Direct (random) , knowing id. R) price c_R
 overall price s*c_S + r*c_R

Combination function t: $[0,1]^m \rightarrow [0,1]$, monotone, i.e.

 $x_i \le y_i \text{ implies } t(x_1, ..., x_m) \le t(y_1, ..., y_m)$

We follow paper [FLN] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66 (2003) 614–656

FLN data model – viewed as LMPM

In LMPM object globally ordered by $r_{f,t}(oid) = t(f_1(oid.A_1), \dots, f_j(oid.A_j), \dots, f_m(oid.A_m))$ In FLN Objects {R_i : i ≤ N}, m attributes - R_i iff oid=i R has scores x_1^R , ..., $x_m^R \in [0, 1] - x_j^R = f_j(oid.A_j)$ Ordered by $t(R) = t(x_1^R, ..., x_m^R) = r_{f,t}(oid) - so far same \dots$ Differences:

- FLN do not restrict to linear f_i and t
- FLN assumes data in m ordered lists $L_1, ..., L_m$ (indexes) or mode of access on the server side
- Data access sequential, direct (random),
- price c_S , price c_R , overall price $s^*c_S + r^*c_R$

We will add more - our model is multiuser – formally is FLN single user, Garlic Almaden has a graphical query interface

1. Do sorted access in parallel to each of the m sorted lists L_i . As an object R is seen under sorted access in some list, do random access to the other lists to find the grade x_j^R of object R in every list L_j . Then compute the grade $t(R) = t(x_1^R, ..., x_m^R)$ of object R.

If this grade is one of the k highest we have seen, then remember object R and its grade t(R) (ties are broken arbitrarily, so that only k objects and their grades need to be remembered at any time).

(It may seem wasteful to do random access to find a grade that was already determined earlier. As we discuss later, this is done in order to avoid unbounded buffers)

2. For each list L_i , let \underline{x}_i be the grade of the last object seen under sorted access. Define the threshold value τ to be

$$\tau = t(\underline{x}_1, ..., \underline{x}_m)$$

As soon as at least k objects have been seen whose grade is at least equal to τ ; then halt. Else go to 1.

3. Let Y be a set containing the k objects that have been seen with the highest grades. The **output** is then the graded set $\{(R, t(R)) | R \in Y\}$ (ordered by t(R)).

TA algorithm - illustration

I am looking for a hotel close to beach, cheap, good

С	ose		ch	eap		qu	Ia	lity	sta	ck c	sta	С	k c ₂
H1	0,9	Н	13	0,9		H2		0,9	H2	0,8	H2		0,8
H2	0,8	H	ł2	0,8		H3		0,8	H3	0,68	H3		0,68
H3	0,5	∖н	14	0,5	;	H1		0,5	H1	0,63	H1		0,63
H4	0,4	Н	11	0,3	ľ	H4		0,3					

Threshold τ_1 (3*0,9+2*0,9+0,9)/6=0,9So far I do not know the bestThreshold τ_2 (3*0,8+2*0,8+0,8)/6=0,8 $0,8\geq0,8\dots$ H2 is the best

Threshold $\tau_3 = 0.5$, hotel H4 has overall preference degree 0.416...

Threshold algorithm is incremental in top-k

P 100m P Long P Shot P High P 400m P 110mh P Discus P Pole P Javelin P 1500r Constraints 4 938 2 10108 4 847 1 915 2 964 1 985 4 840 2 1004 1 892 5 799 9277 4 938 2 1010 3 841 5 915 8 924 3 976 1 827 4 972 6 861 1 798 9062 2 922 3 982 1 919 4 946 3 803 11 940 2 803 11 919 4 946 3 803 10 910 3 839 10 760 8816 10 915 8 932 1 919 9 919 9 910 3 839 10 760 8462 <
4 938 2 1010 3 841 5 915 8 924 3 976 1 827 4 972 6 861 1 798 9062 2 922 3 982 9 831 7 859 1 919 4 946 3 803 11 941 2 843 12 770 8816 17 915 8 932 1 810 12 831 9 909 7 936 5 803 10 910 3 839 10 760 8645 3 897 6 908 8 800 4 803 14 877 10 936 7 800 12 910 14 777 11 734 8462 10 890 11 898 16 796 13 803 3 873 9 929 9 796 9 880 15 763 3 721 8349 14<
2 922 3 982 9 831 7 859 1 919 4 946 3 803 11 941 2 843 12 770 8816 17 915 8 932 1 810 12 831 9 909 7 936 5 803 10 910 3 839 10 760 8645 3 897 6 908 8 800 4 803 14 877 10 936 7 800 12 910 14 797 11 734 8462 10 890 11 898 16 796 13 803 3 873 9 929 9 796 9 880 15 763 3 721 8349 14 885 4 891 10 780 2 776 17 873 2 916 11 748 1 849 5 746 4 706 8170 8170 <td< td=""></td<>
17 915 8 932 1 810 12 831 9 909 7 936 5 803 10 910 3 839 10 760 8645 3 897 6 908 8 800 4 803 14 877 10 936 7 800 12 910 14 797 11 734 8462 10 890 11 898 16 796 13 803 3 873 9 929 9 796 9 880 15 763 3 721 8349 14 885 4 891 10 780 2 776 17 873 2 916 11 748 1 849 5 746 4 706 8170 8 883 5 859 7 776 3 776 10 872 8 913 2 732 6 849 16 737 6 703 8100
3 897 6 908 8 800 4 803 14 877 10 936 7 800 12 910 14 797 11 734 8462 10 890 11 898 16 796 13 803 3 873 9 929 9 796 9 880 15 763 3 721 8349 14 885 4 891 10 780 2 776 9 9 9 9 9 9 880 15 763 3 721 8349 14 885 4 891 10 780 2 776 11 7873 2 916 11 748 1 849 5 746 4 706 8170 8 883 5 859 7 776 3 776 10 872 8 913 2 732 6 849 16 737 6 703 8100 9 9 863
10 890 11 898 16 796 13 803 3 873 9 929 9 796 9 880 15 763 3 721 8349 14 885 4 891 10 780 2 776 17 873 2 916 11 748 1 849 5 746 4 706 8170 8 883 5 859 7 776 3 776 10 872 8 913 2 732 6 849 16 737 6 703 8100 6 876 12 854 6 772 14 776 5 870 6 903 8 6898 8 849 7 735 2 6866 8019 9 863 7 853 17 769 15 776 4 866 12 897 12 696 3 819 10 715 16 679 7933 <td< td=""></td<>
14 885 4 891 10 780 2 776 17 873 2 916 11 748 1 849 5 746 4 706 8170 8 883 5 859 7 776 3 776 10 872 8 913 2 732 6 849 16 737 6 703 8100 6 876 12 854 6 772 14 776 5 870 6 903 8 698 8 849 7 735 2 686 8019 9 863 7 853 17 769 15 776 4 866 12 897 12 696 3 819 10 715 16 679 7933 13 863 9 840 5 765 6 749 7 858 14 886 15 691 7 819 17 711 8 665 7847
8 883 5 859 7 776 3 776 10 872 8 913 2 732 6 849 16 737 6 703 8100 6 876 12 854 6 772 14 776 5 870 6 903 8 698 8 849 7 735 2 686 8019 9 863 7 853 17 769 15 776 4 866 12 897 12 696 3 819 10 715 16 679 7933 13 863 9 840 5 765 6 749 7 858 14 866 15 691 7 819 17 711 8 665 7847
6 876 12 854 6 772 14 776 5 870 6 903 8 698 8 849 7 735 2 686 8019 9 863 7 853 17 769 15 776 4 866 12 897 12 696 3 819 10 715 16 679 7933 13 863 9 840 5 765 6 749 7 858 14 866 15 691 7 819 17 711 8 665 7847
9 863 7 853 17 769 15 776 4 866 12 897 12 696 3 819 10 715 16 679 7933 13 863 9 840 5 765 6 749 7 858 14 886 15 691 7 819 10 711 8 665 7847
<u>13 863 9 840 5 765 6 749 7 858 14 886 15 691 7 819 17 711 8 665</u> 7847
<u>5 858 13 840 2 751 8 749 13 849 15 870 14 688 15 790 11 709 9 664 7768</u>
16 854 10 799 11 739 16 749 6 846 <mark>17 853</mark> 10 672 5 760 8 672 13 640 7584
7 843 15 797 13 715 9 723 16 819 11 842 13 668 13 760 4 656 15 636 7459
12 841 14 788 14 708 11 696 12 808 13 841 6 655 <mark>17 731</mark> 13 653 <mark>17 628</mark> 7349
11 793 17 774 12 667 10 670 15 803 16 817 16 653 16 673 12 617 7 621 7088
15 784 16 769 15 666 17 644 11 791 5 798 17 608 14 645 9 593 14 563 6861

Found versus confirmed = In which step was the object above threshold, e.g., Sebrle in the step 3

Objects seen in first o second third o step

FLN – theorem 4.1. If the aggregation function t is monotone, then TA correctly finds the top k answers (ties are ordered arbitrarily).

Proof. Let Y be as in Step 3 of TA. We need only show that every member of Y has at least as high a grade as every object z not in Y.

By definition of Y; $z \notin Y$, either it's grade was not one of the k highest or z has not been seen in running TA. So assume that z was not seen. Assume that the fields of z are x_1^z , ..., x_m^z . Therefore, $x_i^z \le \underline{x}_i$ for every i: Hence, $t(x_1^z, ..., x_m^z) \le \tau = t(\underline{x}_1, ..., \underline{x}_m)$; where the inequality follows by monotonicity of t. But by definition of Y; for every y in Y, $t(y) \ge \tau$. Therefore, for every y in Y we have $t(y) \ge \tau \ge t(z)$ as desired. Threshold algorithm TA - wording as in FLN and small changes, additional notation (cycle counter)

Given k > 0 (can work incrementally then put k=0), data in ordered lists L_j, sequential/random access, cycle counter c:=1 1. Do sorted access in parallel to each of the m sorted lists L_i, either the service is stateless (get c's element) or not (server "knows c" \rightarrow next)

 As an object R is seen under sorted access in some list, DO random access to the other lists to find the grade x_j^R of object R in every list L_i

THEN compute the grade of R, $t(R) = t(x_1^{R}, ..., x_m^{R})$

- IF this grade is one of the k highest we have seen,

THEN remember in Y^c object R and its grade t(R) (ties are broken arbitrarily, can work incrementally)

- GO TO 2

Threshold algorithm TA - wording as in FLN and small changes, additional notation (cycle counter) - cont'd

2. For each list L_i , let \underline{x}_i^c be the grade of the last object seen under c's sorted access. Put $T^c = (\underline{x}_1^c, ..., \underline{x}_m^c)$

- Define the threshold value τ^{c} to be

$$\tau^{c} = t(\underline{x}_{1}^{c}, ..., \underline{x}_{m}^{c})$$

If k>0 and AS SOON AS at least k objects in Y^c have been seen whose grade is at least equal to τ^c (incremental variant: elements of Y^c above τ^c are confirmed) THEN GOTO 3 ELSE IF N=c THEN GOTO 3 ELSE C:= c+1 and GO TO 1

3. Let Y^c be a set containing the k objects that have been seen with the highest grades. The output is then the graded set $\{(R, t(R)) | R \in Y\}$ (ordered by t(R)).

TA algorithm geometrically

User's screen?

We would like to keep our model intuitive self explanatory

We would like to visualize also methods / prototypes / algorithms both Top-k querying and Learning user's preferences

We start at preference cube

FLN-TA-runs here

Vojtáš 6/12 NSWI166 RS&UP

 D_2

e 1

g₁

a₁

X₁

<u>0</u> 10 D_1

Run threshold algorithm Use notation as in previous slide Use colors to denote steps/cycles of TA

Run threshold algorithm Use notation as in previous slide Use colors to denote steps/cycles of TA

Run threshold algorithm Use notation as in previous slide Use colors to denote steps/cycles of TA

Lists are same, how does aggregation influence run of TA?

Is there a **neighborhood of contour line** with same TA run and outcome?

Experiment with mutual influence of data and aggregation distribution.

Is the hypothesis ?can we find data distribution such that TA ends (decides winner / decides all) in arbitrary number of steps $s \le (\lfloor n/2 \rfloor + 1)$? true ?

Check it in **higher dimensions** in PC, 4-D, 5-D, ...

Try **randomly generated** data and threshold

Run threshold algorithm With notation, colors, etc. same as in previous

σημαντικος (ΣΗΜΑΝΤΙΚΟΣ) – sémantika, význam Problém webu-lidé rozumí, stroje ne

林克昌 根留台灣 可能增高

在愛戴者熱心奔走之下,華裔名指揮家林克昌根留台 灣的可行性又提升了幾分。兩廳院主任李炎、國家音樂 廳樂團副團長黃奕明日前親赴林克昌、石聖芳寓所拜會 ,並提出多場客席邀約。此外,台灣省立交響樂團團長 陳澄雄也早早「下訂」,邀請林克昌赴台中霧峰,從八 月十日起訓練省交,為期長達一個月。

在台灣諸多公家樂團中,陳澄雄是以實際行動表達對 林克昌肯定的樂界人士之一,曾多次公開表示對林克昌 指揮才華的欽佩,而且幾乎每個樂季都邀請林克昌客席 演出。

此外,林克昌上個月赴俄羅斯與預尖的「俄羅斯國家 管絃樂團」灌錄了柴可夫斯基晚期三大交響曲以及「羅 密歐與業麗葉」、「斯拉夫進行曲」、「義大利隨想曲」,最後的DAT母帶也在前兩天寄回台灣。製作人場 忠衡與林克昌試聽之後,都對錄音效果一尤其音質表現 感到相當滿意,楊忠衡估計呈現了七分林克昌指揮神韻

俄羅斯國家管絃樂團首席布魯尼日前也讚譽林克昌的 指揮藝術有三大特點:一是控制自如的弾性速度;二是 强烈的動態對比;三是宛如呼吸歌唱的旋律處理。這些 對錄音師而言都構成很大挑戰。俄國錄音師雖然採用多 軌混音,但定位、場面都有可觀之處。。

Více bývalá NSWI108 a nově také NDBI021, také multimodální data

machine-processable navigable space

σημαντικος (ΣΗΜΑΝΤΙΚΟΣ) – sémantika, význam Problém webu-lidé

RDF – named oriented graph

- RDF "Resource Description Framework"
- W3C recommendation (http://www.w3.org/RDF)
- RDF is a data model

RDF – oriented graph

- uses URI (IRI) for unique resource identification, taken from XML
- graph has named vertices and edges
- Literals are data values, which are not resources, string of symbols, with possible data type

RDF terminology of sentence analysis

This sentence in natural language reads as:
 http://www.example.org/index.html has a creator
 whose staffid value is 85740
 → Collision of "linguistic" and OOP terminology

RDF and terminologies of ER, OOP, ...

Languages of web services use RDF – XML syntax

- as in XML, we can use name spaces
- proper RDF elements, with name space rdf:

```
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://example.org/"
xmlns:dc="http://purl.org/dc/elements/1.1/" >
```

<rdf:Description rdf:about="http://www.example.org/index.html"> <ex:creator> <rdf:Description rdf:about="http://www.example.org/staffid/85740"> </ex:creator > </rdf:Description> </rdf:RDF>

Example from W3C Resource Description Framework (RDF) Primer <u>http://www.w3.org/TR/rdf-primer/</u>

RDF – XML syntax tripple

- element rdf:Description is coding "subject", it's URI is attribute value of rdf:about
- each subelement of rdf:Description is "predicate", it's URI is the name, this contains "object" of the triple as further rdf:Description

<rdf:Description rdf:about="http://www.example.org/index.html">

<ex:creator>
<rdf:Description rdf:about="http://www.example.org/staffid/85740">
</ ex:creator >

</rdf:Description>

</rdf:RDF>

ttp://example.org/staffid/8574

http://example.org/index.htm

http://purl.org/dc/elements/1.1/creato

RDF – XML syntax

- Untyped literals can be specified as text in content of element "predicate"
- single element "subject" can contain more "predicate" subelements
- "object" rdf:Description can serve as "subject" for next triple

<rdf:Description rdf:about="http://www.example.org/index.html">

<ex:creator>

<rdf:Description rdf:about="http://www.example.org/staffid/85740">

< ex:name > John Smith </ ex:name >

</ ex:creator >

<exterms:creation-date > August 16, 1999 </ exterms:creation-date >

</rdf:Description>

Transformations without loss of information

Relational to RDF – decomposition – when does it make sense?

RDF to relational – lot of joins – integration of web resources (like FLN-TA only needed for top-k)

Graph databases, store as graphs? optimize in the time of query? ... W3C rules too strict!?

Р	Athlete		Points		Р	100m	Р	Long	Р	Shot	Ρ	High	P	100m	Р	110mh	Р	Discus	P	Pole		Javeli n	Р	1500m
1	Šebrle C	ZE	9026		1	10,64	1	8.11	4	15.9	3 1	2.12	24	16,89		1 13,92	4	48.53	3 2	5.3	1	70.16	5	4.21,85
2	Nool ES	г	8604		4	10,66	2	7.8	3	15.8	35	2.12	84	7,70		3 13,99	1	47.92	4	5.2	6	68.15	1	4.21,98
3	Dvorak C	ZE	8527		2	10,73	3	7.69	9	15.6	7 7	2.06	14	7,79	4	4 14,22	3	46.74	11	5.1	2	66.94	12	4.26,13
4	Lobodin	RUS	8465		17	10,76	8	7.49	1	15.3	<mark>3</mark> 12	2.03	94	8,01	7	7 14,30	5	46.73	3 10	5	3	66.66	10	4.27,65
Ath	ilete	Points	Р	1	00m	ΡL	.ong	P	Shot	P	High	Р	400n	n P	11	0mh P	Di: us		Pole	Р	J	avelin	Р	1500m
	brle CZE			1	942		108		84		91	_		64	1	985		40 2	_	04	1	892		5 799
No	ol EST	860	4	4	938	2	101	03	84	15	91	58	9	24	3	976	1 8	<mark>27</mark> 4	9	72	6	861		1 798

FLN Model-viewed as LMPM-RDF data, for web services + multiuser, ...

- In LMPM object globally ordered by $r_{f,t}(oid) = t(f_1(oid.A_1),...)$
- In FLN Objects $\{R_i : i \le N\}$, (attributes are hidden, $R_i = oid_i$)
- R has scores x_1^{R} , ..., $x_m^{R} \in [0, 1]$ $x_i^{R} = f_i(\text{oid.}A_i)$
- Ordered by $t(R) = t(x_1^R, ..., x_m^R) = r_{f,t}(oid) so far same ...$ •
- FLN do not restrict to linear f_i and t
- FLN assumes data in m ordered lists L₁, ..., L_m (indexes) or mode of access on the server side
- Lists are in fact RDF data, as (R, x^R) can be seen as a triple $R \xrightarrow{A_i \text{ preference}} X_i^R$
- Data access sequential, direct (random), price c_{s} , price c_{R} , overall price $s^*c_s + r^*c_R$
- We will add more our model is multiuser FLN is single user + we consider learning user models, measure quality of models, ... Voitáš 6/12 NSWI166 RS&UP 39 FLN

Alternatives

- Various server responses
 - No random access (some servers have both, some only one type of access, ...)
 - Answer is an ordered (step-by-step) list od object ID's (preference degree computation hidden – probably depending on user's behavior)
 - Answer is an ordered (step-by-step) list od object ID's and attribute values (preference degree computation hidden – probably depending on user's behavior)
- It is about data integration
 - preference degree computation on server side hidden probably depending on user's behavior
 - preference degree computation on middleware side our task?
- In house data?
 - Is TA useful at all?

Found versus confirmed in TA

Assume – data structure is given – computed offline (NlogN)^m We can not influence found; we can try to influence confirmed

Found versus confirmed - heuristics

Confirm TA as early as possible, if t(R) bigger, τ smaller

$$t(R) \geq \tau = t(\underline{x}_1, ..., \underline{x}_m)$$

Heuristics can use

$\partial t / \underline{x}_i$

– if it is our first access to services in $\rm L_{i}$, ...

If we know from previous access some estimation of distribution of grades (attribute values when f_i is known) then Heuristics can use

estimationOf(jth element of L_i)* $\partial t/\underline{x}_i$

Test heuristics on data (maybe it is domain dependent – e.g., Reuters collection has exponential distribution of lists)

Can we predict found? What is the probability that at step c(k) the list is already fixed?

Design experiments!

- Server
 - Create lists for u_i
 - Which data accessed
 - by different users?
- middleware
 - Change aggregation
 - Measure influence
- client
 - Incremental run, when found, when confirmed
 - Step-by-step execution, measure top-k, 1-hit,
- Separate middleware Like IBM, Google, ...
- Maybe an e-shop
- Maybe a "smart" app

Visualizing TA – price ≈ time

Speed up ideas ...

- Guntzer, Balke, Kießling VLDB 2000
- With <u>P. Gurský</u>

Heuristics GBK, PG, ...

Increase frequency and depth of sequential access $t(R) \ge \tau$

Where $\underline{x}_i * \partial t(\underline{x}_1, ..., \underline{x}_i, ..., \underline{x}_m) / \partial \underline{x}_i$ decrease most Where $\underline{x}_i * \partial t(\underline{x}_1, ..., \underline{x}_i, ..., \underline{x}_m) / \partial \underline{x}_i$ decrease least

Discrete $\partial t(\underline{x}_1^{H(j)}, ..., \underline{x}_m^{H(j)}) / \partial \underline{x}_i^* (\underline{x}_i^{H(j)} - \underline{x}_i^{H(j)+p})$ See <u>PG</u> page 18-20

How about TA in data cube?

We can illustrate in DC what happens during TA first step computation, or

... in case of **in-house** data we have data cube with items B, C, D, E and the aggregation function t in preference cube, user preferences f_i^u

It is more realistic to compute one contour lines in DC, then take parallel CL of the point in the quadrant (here the blue ones), intersect with the quadrant diagonal, proportional value of these in North-East quadrant gives ordering, this gives t(B) < t(D) ...

End of lecture

Questions? Comments?