NSWI166 Introduction to recommender systems and user preferences

1/3 Peter Vojtáš, KSI MFF UK
2/3 Lád’a Peška, KSI MFF UK
5/12 Linear Monotone Preference Model

Originally Information models with ordering NDBIO37

Outline of this lecture

Information models and ordering

Various representation and presentations of ordering in data, information, knowledge +Linear Monotone Preference Model

- User requirements - conflicting, multicriterial
- Ordering - human, intuitive, (self) explainable
- Decathlon
- Customer model - ideal values, choice
- Linear Monotone Preference Model
- Data cube, Preference cube, contour lines, top-k, ...
- Examples, Conclusions

Motto: "The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise."
— Edsger W. Dijkstra, "The Humble Programmer" 1972 ACM Turing Lecture, see Human-Centered Approach to Static-Analysis-Driven Developer Tools

Conflicting requirements -

```
Price
30000,-
In Stock
Order status`
All
Brand New
Unwrapped, Nearly
New and Used
```

Brands

Display size
Colour

Intel Core 17 (0)
Intel Core is (0)
Intel Core i3 (0)
AMD Ryzen $5(0)$
AMD Ryzen 3 (0)
Next 8
Size of operational RAM $8 G 8$ G3

Storage Type
Storage capacity

$1500 G 8$	-20000069

Professional Laptops $\boldsymbol{f} \boldsymbol{\square}$

Display size	from 14" to $17.3^{\prime \prime} \times$

Size of operational RAM	from $\mathbf{8} \mathbf{G B}$ to $\mathbf{3 2} \mathbf{~ G B} \times$

Storage capacity	from 1,500 GB to $\mathbf{2 , 0 0 0 , 0 0 0} \mathbf{~ G B} \times$

Clear selected Parameters

| Professional Laptops we will dispat | Modify Results |
| :--- | :--- | :--- | :--- |
| Specify | |
| category | | Do any of these come close?

Certified	*	SUV / Crossover		$\times \quad \mathrm{M}$	Min Year: 2000		\times	Max Year: 2016		\times
Min Price: $\$ 10,000$		*	Max Price: $\$ 14,000$		\times	Mileage: Under 30,000			*	

Edit this search | Start a new search

Sorry, we couldn't find your dream cal

We can alert you as soon as one is avallable. Just save this search and set up alerts with My Autotrader.

Save Search
Close! How to measure it?
Do any of these come close?

2016 Jeep Patriot \$13,994

Ordering - human, intuitive, ...scaled

- ... Self explainable - Information technology - more and more about the people and for the people
- Ordering - in the language, Likert's scale https://en.wikipedia.org/wiki/Likert scale , ...

2. Wikipedia is usually my first resource for research.

3. Wikipedia pages generally have good images.

4. Wikipedia allows users to upload pictures easily.

5. Wikipedia has a pleasing color scheme.

LMPM
"Scream Queens" (2015) Mare at IMDbpro»

4884 IMDb users have given a weighted average vote of $7.2 / 10$
Demographic breakdowns are shown below.

Arithmetic mean $=7.2$. Median $=8$
This page is updated daily.
See user ratings report for:
Top Links

- trailers and videos - frivia cast and crew - official sites
- memorable quotes

Overview

- main details
combined details
- full cast and crew
company credits
episode list
- episodes cast
- episode ratings
... by rating
Awards \& Reviews

User preference - scaled + ideal values

- In competitions it is clear who is better = winner
- On e-shop it is not clear - users differ
- Producers know this - Marketing Segmentation
- „Faceted browsing" - specifying ,ideal values"
- Too many items, conflicting requirements

Display Size
Any Display Size
1.9 in . \& Under (20)

2 to 2.9 in . (111)
Image Stabilization
Any Image Stabilization
None (74)
Optical (37)
Electronic (5)
Viewfinder Type
Any Viewfinder Type
None (92)
Optical (41)
LCD (13)

Preferential sets

- Preferential sets are variants of fuzzy sets
- Fuzzy sets intended to model linguistic vagueness
- Preferential sets model human some linear preferences
- Price - fully cheap, reasonable, expensive
- Linearly ordered domain low, medium, high
- Linguistic input is very rare we usually have

- Preference scale, e.g. [0, 1]

Decathlon data - scale-points, multicriterial

Decathlon points-commeasurable

P Athlete	Points	P	100m	P	Long	P	Shot	P	High	P	400m	P	110 mh	P	Disc us	P	Pole	P	Javelin	P	1500m
1 Šebrle CZE	9026	1	942	1	1089	4	847	1	915	2	964	1	985	4	840	2	1004	1	892	5	799
2Nool EST	8604	4	938	2	1010	3	841	5	915	8	924	3	976	1	827	4	972	6	861	1	798
CZE	8527	2	922	3	982	9	831	7	859	1	919	4	946	3	803	11	941	2	843	12	770
Lobodin 4 RUS	8465	17	915	8	932	1	810	12	831	9	909	7	936	5	803	10	910	3	839	10	760
$\begin{aligned} & \text { Zsivoczky } \\ & 5 \text { HUN } \end{aligned}$	8173	3	897	6	908	8	800	4	803	14	877	10	936	7	800	12	910	14	797	11	734
Ambrosch 6 AUT	8122	10	890	11	898	16	796	13	803	3	873	9	929	9	796	9	880	15	763	3	721
Kürtösi 7HUN	8099	14	885	4	891	10	780	2	776	17	873	2	916	11	748	1	849	5	746	4	706
$\begin{aligned} & \text { Warners } \\ & 8 \text { NED } \\ & \hline \end{aligned}$	8085	8	883	5	859	7	776	3	776	10	872	8	913	2	732	6	849	16	737	6	703
Hämäläine 9 n FIN	8028	6	876	12	854	6	772	14	776	5	870	6	903	8	698	8	849	7	735	2	686
$\begin{array}{l\|l} \hline & \text { Jensen } \\ 10 & \text { NOR } \\ \hline \end{array}$	8004	9	863	7	853	17	769	15	776	4	866	12	897	12	696	3	819	10	715	16	679
$\begin{array}{l\|l\|} \hline \text { Schönbeck } \\ 11 & \text { GER } \end{array}$	7891	13	863	9	840	5	765	6	749	7	858	14	886	15	691	7	819	17	711	8	665
Niklaus 12 GER	7891	5	858	13	840	2	751	8	749	13	849	15	870	14	688	15	790	11	709	9	664
$\begin{array}{l\|l} & \text { Tebbich } \\ 13 & \mathrm{AUT} \\ \hline \end{array}$	7632	16	854	10	799	11	739	16	749	6	846	17	853	10	672	5	760	8	672	13	640
$\begin{array}{l\|l} & \text { Llanos } \\ 14 & \text { PUR } \\ \hline \end{array}$	7613	7	843	15	797	13	715	9	723	16	819	11	842	13	668	13	760	4	656	15	636
Schnallinge 15 rAUT	7576	12	841	14	788	14	708	11	696	12	808	13	841	6	655	17	731	13	653	17	628
$\begin{array}{l\|l} & \text { Walser } \\ 16 \mathrm{AUT} \\ \hline \end{array}$	7546	11	793	17	774	12	667	10	670	15	803	16	817	16	653	16	673	12	617	7	621
Walser 17AUT	7506	15	784	16	769	15	666	17	644	11	791	5	798	17	608	14	645	9	593	14	563

Better is rephrased by dominance

- Intuitively better (dominating) means better in all disciplines = Pareto ordering - it is a partial ordering! We need the winner!
- Lobodin • dominates both Nool •and Dvorak •. • and • are incomparable (restricted to $100 \mathrm{~m} \times$ shot data and points)

Better is rephrased by dominance

- Intuitively better (dominating) means better in all disciplines = Pareto ordering - it is a partial ordering! We need the winner!
- Lobodin • dominates both Nool •and Dvorak •. • and • are incomparable (restricted to $100 \mathrm{~m} \times$ shot data and points)

Sum of points makes Decathlon linear

- Data cube (upper right) - point function transforms achievements to preference cube (lower left)
- - dominates long

Sum of points makes Decathlon linear

- Data cube (upper right) - point function transforms achievements to preference cube (lower left)
- • dominates long
 propagated to data cube

Decathlon like preference model for information ordering in web e-shops DC-Athletes \rightarrow items, Ordering made linear by sum \rightarrow aggregation Preference scale linear point system $\rightarrow[0,1]$ preference degree Single authority decides winner \rightarrow each user separately has/can have own preferences PC-Multicriterial Pareto partial ordering of preference degree vectors Decathlon like preference model - all parts linear - linear monotone preference model - LMPM

1500m

Linear Monotone Preference Model-LMPM

- Decathlon - "single user" IAAF rules order athletes
- Disciplines $\mathcal{A}_{1}, \ldots, \mathscr{A}_{10}$; domains D_{1}, \ldots, D_{10}; ideal (field / track)
- \mathscr{A}_{i} point function $\mathrm{f}_{\mathrm{i}}: \mathcal{D}_{\mathrm{i}} \rightarrow \mathrm{N}$ makes results commeasurable
- Winner - overall IAAF achievement is obtained via sum $\Sigma\left\{\mathrm{f}_{\mathrm{i}}\left(\right.\right.$ athleteID. $\left.\left.\mathcal{A}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, 10\right\}$
- Retail, e-shop - set of users U, LMPM ${ }^{\text {u }}$ orders items
- Attributes $\boldsymbol{A}_{1}, \ldots, \mathscr{A}_{\mathrm{m}}$; domains $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{\mathrm{m}} ;$ ideal points can be for each user different
- Degree of preference for $\boldsymbol{A}_{\mathrm{i}}$ and user $\mathbf{u} \in \mathrm{U} \mathrm{f}_{\mathrm{i}} \mathrm{u}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]-$ hardly made commeasurable in response time
- Winner, top-k, overall degree of preference - aggregation

$$
\left.r^{\mathrm{f}, \mathrm{t}}(\mathrm{objectID})=\mathrm{t}^{\mathrm{u}}\left\{\mathrm{f}_{\mathrm{i}}^{\mathrm{u}} \text { (objectID. } \mathcal{A}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{~m}\right\}
$$

Here $t^{\mathrm{u}}:[0,1]^{\mathrm{m}} \rightarrow[0,1], \mathrm{t}^{\mathrm{u}}(0, \ldots, 0)=0, \mathrm{t}^{\mathrm{u}}(1, \ldots, 1)=1$, t" monotone(linear) - preserves Pareto ordering,

```
Let us build LMPM step
by step
Data model: attributes
A}\mp@subsup{\mathscr{A}}{1}{},\mp@subsup{\mathscr{A}}{2}{};\mathrm{ domains D}\mp@subsup{D}{1}{},\mp@subsup{D}{2}{}
only 2-dimensional -
makes paper drawing
easier
triangular degree of
preference of }\mp@subsup{\mathscr{A}}{\textrm{j}}{}\mathrm{ , a value
from }\mp@subsup{D}{j}{}\mathrm{ (local preference)
is given by an ideal point
i}\mp@subsup{i}{j}{}\mathrm{ and function f
f
f
x\leqij
f
f
s y
f
```


Similarly

trapezoidal degree of preference of \mathscr{A}_{j}, a value from \mathcal{D}_{j} (local preference) is given by an ideal interval $\left[i_{j}{ }^{1}, i_{j}^{r}\right]$ and analogically defined functions f_{j}

Let us describe steps leading to calculation of preference degree of item B (for user u), we first describe mapping DC-data cube to PCpreference cube

Assume degree of preference $f_{i}: \mathcal{D}_{i} \rightarrow[0,1]$ (for an user $u \in U$),

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $\mathscr{A}_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$.

Attribute preference degrees $f_{j}{ }^{u}\left(B . \mathscr{A}_{j}\right)=b_{j}{ }^{u}$ and corresponding point in preference cube is $\mathrm{B}^{u}=$ ($\mathrm{b}_{1}{ }^{\mathrm{u}}, \mathrm{b}_{2}{ }^{\mathrm{u}}$)
other points analogically

Note, that point B^{4} has 4 coimages $B, B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$ Degree of preference for user $u \in U$ are given by $f_{1}{ }^{4}$ and $f_{2}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $\mathscr{A}_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$.

For B, D, E attribute preference degrees the corresponding points in preference cube are B^{u}, D^{u}, E^{u},

Note that B^{u} and D^{u} are incomparable in Pareto order and E^{u} is dominated by both B^{u} and D^{u},

Pareto ordering of pref. cube (\underline{x}) $<_{\text {Pareto }}$ (\mathbf{y}) iff (for each i) $x_{i} \leq y_{i} \&(\exists i) x_{i}<y_{i}$

Assume A, B, C, D, E, F, G are images of respective items under some attribute preference

We say that item B dominates item G in $<_{\text {Pareto }}$ (G is dominated by $B)$, in fact B dominates whole red area

F is dominated by whole green area
$<_{\text {Pareto }}$ is not linear, e.g. B and C are not comparable

Assume, we have users u, and u. Red are item image using u's preference, green that of u.

Notice e.g. $\mathrm{t}^{\mathrm{u}}(\mathrm{A})=0.54$ B and C are not <pareto comparable, aggregation makes C more preferable for user u than B (w_{1} is sufficiently bigger than w_{2})
E is best for u
Can C be better than E ? Can B be better than C? If two PC cube points are Pareto incomparable, then any ordering of these is possible - prove or disprove!

How does it work together?

Vector of attribute preferences $\mathbf{f}=\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right]$ and aggregation \mathbf{t} define a user $\mathbf{u}_{\mathrm{f}, \mathrm{t}}=\mathbf{u}$

Overall preference of user $\mathrm{u}_{\mathrm{f}, \mathrm{t}}$ is given by $\mathrm{r}^{\mathrm{f}, \mathrm{t}}: \mathrm{O} \rightarrow[0,1]$, for object oid given by r^{ft} (oid) $=$ $t\left(\left[f_{i}\left(\right.\right.\right.$ oid. $\left.\left.\left.A_{i}\right): i=1, \ldots, m\right]\right)$

Depict contour line (i.e. items of same preference degree) in DC-data cube is a little bit trickier (depending on position of ideal points and/or intervals)

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time

Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2. Use copy of DC, PC in pptx.

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2. Use copy of DC, PC in pptx.

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time

Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2. Use copy of DC, PC in pptx.

Dynamical model - three sessions - moving ideal points and moving aggregation

Simulation of development in time Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $\mathrm{u}^{0}{ }_{\mathrm{f}, \mathrm{t}}=\mathrm{u}^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2. Use copy of DC, PC in pptx.

Preference model of user $\mathrm{u}_{\mathrm{f}, \mathrm{t}}$ on data cube
Function $\mathrm{R}^{\mathrm{ft} \mathrm{t}}: \Pi \mathrm{D}_{\mathrm{i}} \rightarrow[0,1]$ $\mathrm{R}^{\mathrm{ft}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)=\mathrm{t}\left(\left[\mathrm{f}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right): \mathrm{i}\right.\right.$ $=1, \ldots, m]$)
Ordering on data cube $\left(a_{1}, \ldots, a_{m}\right) \geq{ }^{\text {fit }}\left(b_{1}, \ldots\right.$, $\left.b_{m}\right)$ iff $R^{f, t}\left(a_{1}, \ldots, a_{m}\right) \geq$ $\mathrm{R}^{\mathrm{f}, \mathrm{t}}\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}\right)$ Odering can be vizualized as contour lines on Π_{i}

For better understanding are different contour lines (of same t) in colors

User $\mathbf{u}_{\mathrm{f}, \mathrm{t}}$, preference of user $\mathrm{u}_{\mathrm{f}, \mathrm{t}}, \mathrm{R}^{\mathrm{ftt}}: \Pi D_{\mathrm{i}} \rightarrow[0,1]$ $R^{\mathrm{ft}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)=\mathrm{t}\left(\left[\mathrm{f}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right): \mathrm{i}\right.\right.$ $=1, \ldots, m]$)
(a) $\geq^{f, t}(\underline{b})$ iff $R^{f, t}(\underline{a}) \geq R^{f, t}(\underline{b})$

Let us insert into previous slide the preference cube diagonal and depict it in DC. Does it preserve preference degree?

We have now mappings from $\mathrm{DC} \rightarrow \mathrm{PC}$ and from PC \rightarrow DC - what are properties?
$D C \rightarrow P C$ is injective, $P C \rightarrow D C$ need not Both mappings preserve line segments (maybe in quadrants, see quadrant in yellow)

Mapping of areas, e.g. quadrilaterals can be more complicated

Two users u and u Preference scale L = [0, 1]

Data model: attributes $\boldsymbol{A}_{1}, \boldsymbol{A}_{2} ;$ domains $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$;

Ideal points can be for each user different, we consider users u and u.

Degree of preference $\mathrm{f}_{\mathrm{i}} \mathrm{u}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]$ (for an user $u \in U$), so we have $f_{i}{ }^{u}$ and $f_{i}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $\mathscr{A}_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$.

Attribute preference degrees $f_{i}{ }^{u}\left(B, \mathcal{A}_{i}\right)=b_{i}{ }^{u}$ and corresponsing point in preference cube is $\mathrm{B}^{u}=$ $\left(b_{1}{ }^{u}, b_{2}{ }^{4}\right)$

Find both images of C , ...

Data model: attributes $\mathcal{A}_{1}, \mathcal{A}_{2}$; domains $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$;

Ideal points can be for each user different, we consider users u and u. Both have same aggregation average AVG

As before we have $\mathrm{f}_{\mathrm{i}}{ }^{\mathrm{U}}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]$ (for an user $u \in U$), so we have $f_{i}{ }^{u}$ and $f_{i}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $A_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$ has two images in preference cube B^{u} and B^{u}.

Let us depict $1 / 2$ contour line in DC, interpret result, discuss intuitiveness

Data model: attributes $\boldsymbol{A}_{1}, \mathcal{A}_{2}$; domains D_{1}, D_{2}; Ideal points can be for each user different, we consider users u and u. Both have same aggregation average AVG

As before we have $\mathrm{f}_{\mathrm{i}} \mathrm{u}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]$ (for an user $u \in U$), so we have $f_{i}{ }^{u}$ and $f_{i}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $A_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$ has two images in preference cube B^{u} and B^{u}.

Let us depict $3 / 4$ contour line in DC, interpret result, discuss intuitiveness

Similarly

trapezoidal degree of preference of \mathscr{A}_{j}, a value from \mathcal{D}_{j} (local preference) is given by an ideal interval $\left[i_{j}{ }^{1}, i_{j}^{r}\right]$ and analogically defined functions f_{j}

Instead of minimum/max of domains D_{j} we can/have to consider the possibility that trapezoid is based on some interval $\left[a_{j}, d_{j}\right]$

Depicting contour lines continues on blackboard
\qquad
ideal

Contour lines for general trapezoidal case

Please, notice construction Image ungrouped for further constructions

Four corners versus one corner - Makes your solutions faster

Illustration for "one quarter" construction

Saves time

Only illustration, must be constructed
(

Contour lines for general trapezoidal case Consider different combination of "hill" "valley" shaped attribute preferences

Illustration for "one quarter" construction ...

Possible task: assume we know the convex hull of data (as depicted in DC), find the best object, calculate it's preference degree x, find objects with preference degree 0.9*x

Discuss all possible solution strategies, which is/can be most intuitive for an untrained user?

Consider variants of this task, e.g. with trapezoidal attribute preferences; with ideal point in max/min of domains,

Consider $f_{i}{ }^{u}$ and t variable, formulate tasks ...

Possible task: assume we know the convex hull of data (as depicted in DC), find the best object, calculate it's preference degree x, find objects with preference degree 0.9*x

Discuss all possible solution strategies, which is/can be most intuitive for an untrained user?

Consider variants of this task, e.g. with trapezoidal attribute preferences; with ideal point in max/min of domains,

Consider $f_{i}{ }^{u}$ and t variable, formulate tasks ...

Possible task: assume we know the convex hull of data each product group separately (as depicted in DC), find the best object, calculate it's preference degree x, find objects with preference degree 0.9*x

Discuss all possible solution strategies, which is/can be most intuitive for an untrained user?

Consider variants of this task, e.g. with trapezoidal attribute preferences; with ideal point in max/min of domains,

Consider $f_{i}{ }^{u}$ and t variable, formulate tasks

How does it work together?

Vector of attribute preferences $\mathbf{f}=\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right]$ and aggregation \mathbf{t} define an user $\mathbf{u}_{\mathrm{f}, \mathrm{t}}=\mathbf{u}$

Overall preference of user $\mathrm{u}_{\mathrm{f}, \mathrm{t}}$ is given by $\mathrm{r}^{\mathrm{f}, \mathrm{t}}: \mathrm{O} \rightarrow[0,1]$, for object oid given by r^{ft} (oid) $=$ $t\left(\left[f_{i}\left(\right.\right.\right.$ oid. $\left.\left.\left.A_{i}\right): i=1, \ldots, m\right]\right)$

Depict contour line (i.e. items of same preference degree) in DC-data cube is a little bit trickier (depending on position of ideal points and/or intervals)

How does it work together?

Vector of attribute preferences $\mathbf{f}=\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right]$ and aggregation \mathbf{t} define an user $\mathbf{u}_{\mathrm{f}, \mathrm{t}}=\mathbf{u}$

Overall preference of user $\mathrm{u}_{\mathrm{f}, \mathrm{t}}$ is given by $\mathrm{r}^{\mathrm{f}, \mathrm{t}}: \mathrm{O} \rightarrow[0,1]$, for object oid given by r^{ft} (oid) $=$ $t\left(\left[f_{i}\left(\right.\right.\right.$ oid. $\left.\left.\left.A_{i}\right): i=1, \ldots, m\right]\right)$

Depict contour line (i.e. items of same preference degree) in DC-data cube is a little bit trickier (depending on position of ideal points and/or intervals)

How does it work together?

Vector of attribute preferences $\mathbf{f}=\left[\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right]$ and aggregation \mathbf{t} define an user $\mathbf{u}_{\mathrm{f}, \mathrm{t}}=\mathbf{u}$

Overall preference of user $u_{f, t}$ is given by $r^{\mathrm{f}, \mathrm{t}}: \mathbf{O} \rightarrow[0,1]$, for object oid given by r^{ft} (oid) $=$ $\mathrm{t}\left(\left[\mathrm{f}_{\mathrm{i}}\left(\right.\right.\right.$ oid. $\left.\left.\left.\mathrm{A}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{~m}\right]\right)$

Depict contour line (i.e. items of same preference degree) in DC-data cube is a little bit trickier (depending on position of ideal points and/or intervals)

Two users u and u

Preference scale L = [0, 1]

Questions?

Comments?

