Tomáš Horváth RECOMMENDER SYSTEMS

Tutorial at the conference
\section*{Znalosti 2012}
October 14-16, 2012, Mikulov, Czech Republic

Institute of Computer Science, Faculty od Science Pavol Jozef Šafárik University in Košice, Slovak Republic

Information Systems and Machine Learning Lab University of Hildesheim, Germany

Iterative recommendation

Rating prediction - example

$\operatorname{sim}_{p c}(i, j)$	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	-0.956	-0.815	NaN	-0.581
Pulp Fiction	-	1.0	0.948	NaN	0.621
Iron Man	-	-	1.0	NaN	0.243
Forrest Gump	-	-	-	1.0	NaN
The Mummy	-	-	-	-	1.0

NaN values are usually converted to zero (rare in case of enough data)

$\operatorname{sim}_{p c}(u, v)$	Joe	Ann	Mary	Steve
Joe	1.0	-0.716	-0.762	-0.005
Ann	-	1.0	0.972	0.565
Mary	-	-	1.0	0.6
Steve	-	-	-	1.0

user-based

- $\mathcal{U}_{\text {Titanic }}=\{J o e$, Ann, Mary $\}, \mathcal{N}_{\text {Titanic }}^{\text {Steve } 2}=\{$ Mary, Ann $\}$
- $\bar{\phi}_{\text {Steve }}=\frac{11}{3}=3.67, \bar{\phi}_{\text {Mary }}=\frac{12}{4}=3, \bar{\phi}_{\text {Ann }}=\frac{13}{4}=3.25$
- $\hat{\phi}_{S T}=\bar{\phi}_{S}+\frac{s_{p c}(S, M) \cdot\left(\phi_{M T}-\bar{\phi}_{M}\right)+s_{p c}(S, A) \cdot\left(\phi_{A T}-\bar{\phi}_{A}\right)}{\left|s_{p c}(S, M)\right|+\left|s_{p c}(S, A)\right|}=3.67+\frac{0.6 \cdot(4-3)+0.565 \cdot(5-3.25)}{0.6+0.565}=1.36$

item-based

- $\bar{\phi}_{T}=\frac{10}{3}=3.34, \bar{\phi}_{I}=\frac{11}{3}=3.67, \bar{\phi}_{M}=\frac{9}{3}=3$
- $\hat{\phi}_{S T}=\bar{\phi}_{T}+\frac{s_{p c}(T, I) \cdot\left(\phi_{S I}-\bar{\phi}_{I}\right)+s_{p c}(T, M) \cdot\left(\phi_{S M}-\bar{\phi}_{M}\right)}{\left|s_{p c}(T, I)\right|+|s p c(T, M)|}=3.34+\frac{-.815 \cdot(4-3.67)-.581 \cdot(4-3)}{0.815+0.581}=2.73$

Matrix factorization

A latent space representation

Map users and items to a common latent space

- where dimensions or factors represent
- items' implicit properties
- users' interest in items' hidden properties

[^0]
Known factorization models (1/2)

ϕ represented as a user-item matrix $\Phi^{n \times m}$

- n users, m items

[^1]
Known factorization models (1/2)

ϕ represented as a user-item matrix $\Phi^{n \times m}$

- n users, m items

Principal Component Analysis (PCA)

- transform data to a new coordinate system
- variances by any projection of the data lies on coordinates in decreasing order

[^2]
Known factorization models (2/2)

Singular Value Decomposition (SVD)

$$
\Phi=W^{n \times k} \Sigma^{k \times k} H^{n \times k^{T}}
$$

- $W^{T} W=I, H^{T} H=I$
- column vectors of W are orthonormal eigenvectors of $\Phi \Phi^{T}$
- column vectors of H are orthonormal eigenvectors of $\Phi^{T} \Phi$
- Σ contains eigenvallues of W in descending order

[^3]
Known factorization models (2/2)

Singular Value Decomposition (SVD)

$$
\Phi=W^{n \times k} \Sigma^{k \times k} H^{n \times k^{T}}
$$

- $W^{T} W=I, H^{T} H=I$
- column vectors of W are orthonormal eigenvectors of $\Phi \Phi^{T}$
- column vectors of H are orthonormal eigenvectors of $\Phi^{T} \Phi$
- Σ contains eigenvallues of W in descending order

PCA, SVD computed algebraically

- Φ is a big and sparse matrix
- approximations of $\mathrm{PCA}^{1}, \mathrm{SVD}^{2}$

[^4]
MF - rating prediction (1/2)

recommendation task

- to find $\hat{\phi}: \mathcal{U} \times \mathcal{I} \rightarrow \mathbb{R}$ such that $\operatorname{acc}(\hat{\phi}, \phi, \mathcal{T})$ is maximal

MF - rating prediction (1/2)

recommendation task

- to find $\hat{\phi}: \mathcal{U} \times \mathcal{I} \rightarrow \mathbb{R}$ such that $\operatorname{acc}(\hat{\phi}, \phi, \mathcal{T})$ is maximal
- acc is the expected accuracy on \mathcal{T}
- training $\hat{\phi}$ on \mathcal{D} such that the empirical loss $\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})$ is minimal

MF - rating prediction (1/2)

recommendation task

- to find $\hat{\phi}: \mathcal{U} \times \mathcal{I} \rightarrow \mathbb{R}$ such that $\operatorname{acc}(\hat{\phi}, \phi, \mathcal{T})$ is maximal
- acc is the expected accuracy on \mathcal{T}
- training $\hat{\phi}$ on \mathcal{D} such that the empirical loss $\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})$ is minimal
a simple, approximative MF model
- only $W^{n \times k}$ and $H^{m \times k}$
- k - the number of factors

$$
\Phi^{n \times m} \approx \hat{\Phi}^{n \times m}=W H^{T}
$$

- predicted rating $\hat{\phi}_{u i}$ of the user u for the item i

$$
\hat{\phi}_{u i}=w_{u} h_{i}^{T}
$$

MF - rating prediction (2/2)

the loss function $\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})$

- squared loss

$$
\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}} e_{u i}^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-\hat{\phi}_{u i}\right)^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-w_{u} h_{i}^{T}\right)^{2}
$$

MF - rating prediction (2/2)

the loss function $\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})$

- squared loss

$$
\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}} e_{u i}^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-\hat{\phi}_{u i}\right)^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-w_{u} h_{i}^{T}\right)^{2}
$$

the objective function

- regularization term $\lambda \geq 0$ to prevent overfitting
- penalizing the magnitudes of parameters

$$
f(\hat{\phi}, \phi, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-w_{u} h_{i}^{T}\right)^{2}+\lambda\left(\|W\|^{2}+\|H\|^{2}\right)
$$

MF - rating prediction (2/2)

the loss function $\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})$

- squared loss

$$
\operatorname{err}(\hat{\phi}, \phi, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}} e_{u i}^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-\hat{\phi}_{u i}\right)^{2}=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-w_{u} h_{i}^{T}\right)^{2}
$$

the objective function

- regularization term $\lambda \geq 0$ to prevent overfitting
- penalizing the magnitudes of parameters

$$
f(\hat{\phi}, \phi, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-w_{u} h_{i}^{T}\right)^{2}+\lambda\left(\|W\|^{2}+\|H\|^{2}\right)
$$

The task is to find parameters W and H such that, given λ, the objective function $f(\hat{\phi}, \phi, \mathcal{D})$ is minimal.

Gradient descent

How to find a minimum of an "objective" function $f(\Theta)$?

- in case of MF, $\Theta=W \cup H$, and
- $f(\Theta)$ refers to the error of approximation of Φ by $W H^{T}$

Gradient descent

How to find a minimum of an "objective" function $f(\Theta)$?

- in case of MF, $\Theta=W \cup H$, and
- $f(\Theta)$ refers to the error of approximation of Φ by $W H^{T}$

Gradient descent
input: f, α, Σ^{2}, stopping criteria
initialize $\Theta \sim \mathcal{N}\left(0, \Sigma^{2}\right)$
repeat
$\Theta \leftarrow \Theta-\alpha \frac{\partial f}{\partial \Theta}(\Theta)$
until approximate minimum is reached return Θ

Gradient descent

How to find a minimum of an "objective" function $f(\Theta)$?

- in case of MF, $\Theta=W \cup H$, and
- $f(\Theta)$ refers to the error of approximation of Φ by $W H^{T}$

Gradient descent
input: f, α, Σ^{2}, stopping criteria
initialize $\Theta \sim \mathcal{N}\left(0, \Sigma^{2}\right)$
repeat
$\Theta \leftarrow \Theta-\alpha \frac{\partial f}{\partial \Theta}(\Theta)$
until approximate minimum is reached return Θ
stopping criteria

- $\left|\Theta^{\text {old }}-\Theta\right|<\epsilon$
- maximum number of iterations reached
- a combination of both

Stochastic gradient descent

if f can be written as

$$
f(\Theta)=\sum_{i=1}^{n} f_{i}(\Theta)
$$

Stochastic gradient descent

if f can be written as

$$
f(\Theta)=\sum_{i=1}^{n} f_{i}(\Theta)
$$

Stochastic gradient descent (SGD)
input: $f_{i}, \alpha, \Sigma^{2}$, stopping criteria
initialize $\Theta \sim \mathcal{N}\left(0, \Sigma^{2}\right)$
repeat
for all i in random order do
$\Theta \leftarrow \Theta-\alpha \frac{\partial f_{i}}{\partial \Theta}(\Theta)$
end for
until approximate minimum is reached
return Θ

MF with SGD

updating parameters iteratively for each data point $\phi_{u i}$ in the opposite direction of the gradient of the objective function at the given point until a convergence criterion is fulfilled.

- updating the vectors w_{u} and h_{i} for the data point $(u, i) \in D$

MF with SGD

updating parameters iteratively for each data point $\phi_{u i}$ in the opposite direction of the gradient of the objective function at the given point until a convergence criterion is fulfilled.

- updating the vectors w_{u} and h_{i} for the data point $(u, i) \in D$

$$
\begin{gathered}
\frac{\partial f}{\partial w_{u}}(u, i)=-2\left(e_{u i} h_{i}-\lambda w_{u}\right) \\
\frac{\partial f}{\partial h_{i}}(u, i)=-2\left(e_{u i} w_{u}-2 \lambda h_{i}\right) \\
w_{u}(u, i) \leftarrow w_{u}-\alpha \frac{\partial f}{\partial w_{u}}(u, i)=w_{u}+\alpha\left(e_{u i} h_{i}-\lambda w_{u}\right) \\
h_{i}(u, i) \leftarrow h_{i}-\alpha \frac{\partial f}{\partial h_{i}}(u, i)=h_{i}+\alpha\left(e_{u i} w_{u}-\lambda h_{i}\right)
\end{gathered}
$$

where $\alpha>0$ is a learning rate.

MF with SGD - Algorithm

Hyper-parameters: k, iters (the max number of iteration), $\alpha, \lambda, \Sigma^{2}$ $W \leftarrow \mathcal{N}\left(0, \Sigma^{2}\right)$
$H \leftarrow \mathcal{N}\left(0, \Sigma^{2}\right)$
for iter $\leftarrow 1, \ldots$, iters $\cdot|\mathcal{D}|$ do
draw randomly (u, i) from \mathcal{D}
$\hat{\phi}_{u i} \leftarrow 0$
for $j \leftarrow 1, \ldots, k$ do

$$
\hat{\phi}_{u i} \leftarrow \hat{\phi}_{u i}+W[u][j] \cdot H[i][j]
$$

end for

$$
\begin{aligned}
& e_{u i}=\phi_{u i}-\hat{\phi}_{u i} \\
& \text { for } j \leftarrow 1, \ldots, k \text { do } \\
& \quad W[u][j] \leftarrow W[u][j]+\alpha *\left(e_{u i} * H[i][j]-\lambda * W[u][j]\right) \\
& \quad H[i][j] \leftarrow H[i][j]+\alpha *\left(e_{u i} * W[u][j]-\lambda * H[i][j]\right)
\end{aligned}
$$

end for
end for
return $\{W, H\}$

MF with SGD - Example ${ }^{2}$

Let's have the following hyper-parameters:

$$
K=2, \alpha=0.1, \lambda=0.15, \text { iter }=150, \sigma^{2}=0.01
$$

$$
\Phi=\begin{array}{|l|l|l|l|l|}
\hline 1 & 4 & 5 & & 3 \\
\hline 5 & 1 & & 5 & 2 \\
\hline 4 & 1 & 2 & 5 & \\
\hline & 3 & 4 & & 4 \\
\hline
\end{array}
$$

Results are:

$W=$| 1.1995242 | 1.1637173 |
| :--- | :--- |
| 1.8714619 | -0.02266505 |
| 2.3267753 | 0.27602595 |
| 2.033842 | 0.539499 |

$$
H T=\begin{array}{|l|l|l|l|l|}
\hline 1.6261001 & 1.1259034 & 2.131041 & 2.2285593 & 1.6074764 \\
\hline-0.40649664 & 0.7055319 & 1.0405376 & 0.39400166 & 0.49699315 \\
\hline
\end{array}
$$

Results ${ }^{1}$ are:

$\hat{\Phi}=$| 1.477499 | 2.171588 | 3.767126 | 3.131717 | 2.506566 |
| :--- | :--- | :--- | :--- | :--- |
| 3.052397 | 2.091094 | 3.964578 | 4.161733 | 2.997066 |
| 3.671365 | 2.814469 | 5.245668 | 5.294111 | 3.877419 |
| 3.087926 | 2.670543 | 4.895569 | 4.745101 | 3.537480 |

[^5]
Biased MF

baseline estimate

- user-item bias

$$
b_{u i}=\mu+b_{u}^{\prime}+b_{i}^{\prime \prime}
$$

- μ - average rating across the whole \mathcal{D}
- $b^{\prime}, b^{\prime \prime}$ - vectors of user and item biases, respectively

Biased MF

baseline estimate

- user-item bias

$$
b_{u i}=\mu+b_{u}^{\prime}+b_{i}^{\prime \prime}
$$

- μ - average rating across the whole \mathcal{D}
- $b^{\prime}, b^{\prime \prime}$ - vectors of user and item biases, respectively

prediction

$$
\hat{\phi}_{u i}=\mu+b_{u}^{\prime}+b_{i}^{\prime \prime}+w_{u} h_{i}
$$

Biased MF

baseline estimate

- user-item bias

$$
b_{u i}=\mu+b_{u}^{\prime}+b_{i}^{\prime \prime}
$$

- μ - average rating across the whole \mathcal{D}
- $b^{\prime}, b^{\prime \prime}$ - vectors of user and item biases, respectively

prediction

$$
\hat{\phi}_{u i}=\mu+b_{u}^{\prime}+b_{i}^{\prime \prime}+w_{u} h_{i}
$$

objective function to minimize
$f(\phi, \hat{\phi}, \mathcal{D})=\sum_{(u, i) \in \mathcal{D}}\left(\phi_{u i}-\mu-b_{u}^{\prime}-b_{i}^{\prime \prime}-w_{u} h_{i}\right)^{2}+\lambda\left(\|W\|^{2}+\|H\|^{2}+b^{\prime 2}+b^{\prime \prime 2}\right)$

Biased MF with SGD

similar to unbiased MF

- initialize average and biases

$$
\begin{gathered}
\mu=\frac{\sum_{(u, i) \in \mathcal{D}}}{|\mathcal{D}|} \\
b^{\prime} \leftarrow\left(\bar{\phi}_{u_{1}}, \ldots, \bar{\phi}_{u_{n}}\right) \\
b^{\prime \prime} \leftarrow\left(\bar{\phi}_{i_{1}}, \ldots, \bar{\phi}_{i_{m}}\right)
\end{gathered}
$$

Biased MF with SGD

similar to unbiased MF

- initialize average and biases

$$
\begin{gathered}
\mu=\frac{\sum_{(u, i) \in \mathcal{D}}}{|\mathcal{D}|} \\
b^{\prime} \leftarrow\left(\bar{\phi}_{u_{1}}, \ldots, \bar{\phi}_{u_{n}}\right) \\
b^{\prime \prime} \leftarrow\left(\bar{\phi}_{i_{1}}, \ldots, \bar{\phi}_{i_{m}}\right)
\end{gathered}
$$

- update average and biases

$$
\begin{gathered}
\mu \leftarrow \mu-\frac{\partial f}{\partial \mu}(u, i)=\mu+\alpha e_{u i} \\
b^{\prime} \leftarrow b^{\prime}-\frac{\partial f}{\partial b^{\prime}}(u, i)=b^{\prime}+\alpha\left(e_{u i}-\lambda b^{\prime}\right) \\
b^{\prime \prime} \leftarrow b^{\prime \prime}-\frac{\partial f}{\partial b^{\prime \prime}}(u, i)=b^{\prime \prime}+\alpha\left(e_{u i}-\lambda b^{\prime \prime}\right)
\end{gathered}
$$

MF - item recommendation

to predict a personalized ranking score ${ }^{1} \hat{\phi}_{u i}$

- how the item i is preferred to other items for the user u
- to find W and H such that $\hat{\Phi}=W H^{T}$

$$
\hat{\phi}_{u i}=w_{u} h_{i}^{T}
$$

[^6]
MF - item recommendation

to predict a personalized ranking score ${ }^{1} \hat{\phi}_{u i}$

- how the item i is preferred to other items for the user u
- to find W and H such that $\hat{\Phi}=W H^{T}$

$$
\hat{\phi}_{u i}=w_{u} h_{i}^{T}
$$

problem: positive feedback only

- pairwise ranking data

$$
\mathcal{D}_{p}=\left\{(u, i, j) \in \mathcal{D} \mid i \in \mathcal{I}_{u} \wedge j \in \mathcal{I} \backslash \mathcal{I}_{u}\right\}
$$

[^7]
MF - Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

- \succ - the unknown preference structure (ordering)
- we use the derived pairwise ranking data \mathcal{D}_{p}
- Θ - parameters of an arbitrary prediction model
- in case of MF, $\Theta=W \cup H$

$$
p(\Theta \mid \succ) \propto p(\succ \mid \Theta) p(\Theta)
$$

MF - Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

- \succ - the unknown preference structure (ordering)
- we use the derived pairwise ranking data \mathcal{D}_{p}
- Θ - parameters of an arbitrary prediction model
- in case of MF, $\Theta=W \cup H$

$$
p(\Theta \mid \succ) \propto p(\succ \mid \Theta) p(\Theta)
$$

prior probability

- assume independence of parameters
- assume, $\Theta \sim N\left(0, \frac{1}{\lambda} I\right)$

$$
p(\Theta)=\prod_{\theta \in \Theta} \sqrt{\frac{\lambda}{2 \pi}} e^{-\frac{1}{2} \lambda \theta^{2}}
$$

MF - Bayesian Personalized Ranking (2/3)

likelihood

- assume users' feedbacks are independent
- assume, ordering of each pair is independent

$$
p(\succ \mid \Theta)=\prod_{u \in \mathcal{U}} p\left(\succ_{u} \mid \Theta\right)=\prod_{(u, i, j) \in \mathcal{D}_{p}} p\left(i \succ_{u} j \mid \Theta\right)
$$

MF - Bayesian Personalized Ranking (2/3)

likelihood

- assume users' feedbacks are independent
- assume, ordering of each pair is independent

$$
p(\succ \mid \Theta)=\prod_{u \in \mathcal{U}} p\left(\succ_{u} \mid \Theta\right)=\prod_{(u, i, j) \in \mathcal{D}_{p}} p\left(i \succ_{u} j \mid \Theta\right)
$$

- using the ranking scores $\hat{\phi}$

$$
p\left(i \succ_{u} j \mid \Theta\right)=p\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}>0\right)=\sigma\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)=\frac{1}{1+e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}}
$$

MF - Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ
$\arg \max p(\Theta, \succ)=$
Θ

MF - Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

$$
\begin{gather*}
\underset{\Theta}{\arg \max } p(\Theta, \succ)= \\
\arg \max p(\succ \mid \Theta) p(\Theta)=
\end{gather*}
$$

MF - Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

$$
\begin{gathered}
\underset{\Theta}{\arg \max } p(\Theta, \succ)= \\
\underset{\Theta}{\arg \max } p(\succ \mid \Theta) p(\Theta)= \\
\underset{\Theta}{\arg \max } \ln p(\succ \mid \Theta) p(\Theta)=
\end{gathered}
$$

MF - Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

$$
\begin{gathered}
\underset{\Theta}{\arg \max } p(\Theta, \succ)= \\
\underset{\Theta}{\arg \max } p(\succ \mid \Theta) p(\Theta)=
\end{gathered}
$$

$\arg \max \ln p(\succ \mid \Theta) p(\Theta)=$
$\underset{\Theta}{\arg \max } \ln \prod_{(u, i, j) \in \mathcal{D}_{p}} \sigma\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right) \sqrt{\frac{\lambda}{2 \pi}} e^{-\frac{1}{2} \lambda \theta^{2}}$

MF - Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

$$
\begin{gathered}
\underset{\Theta}{\arg \max } p(\Theta, \succ)= \\
\underset{\Theta}{\arg \max } p(\succ \mid \Theta) p(\Theta)=
\end{gathered}
$$

$$
\arg \max \ln p(\succ \mid \Theta) p(\Theta)=
$$

$$
\underset{\Theta}{\arg \max } \ln \prod_{(u, i, j) \in \mathcal{D}_{p}} \sigma\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right) \sqrt{\frac{\lambda}{2 \pi}} e^{-\frac{1}{2} \lambda \theta^{2}}
$$

$$
\underset{\Theta}{\arg \max } \underbrace{\sum_{(u, i, j) \in \mathcal{D}_{p}} \ln \sigma\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)-\lambda\|\Theta\|^{2}}_{B P R-O P T}
$$

Finding parameters for BPR-OPT

Stochastic gradient ascent

$$
\frac{\partial B P R-O P T}{\partial \Theta} \propto \sum_{(u, i, j) \in \mathcal{D}_{p}} \frac{e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}}{1+e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}} \frac{\partial}{\partial \Theta}\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)-\lambda \Theta
$$

Finding parameters for BPR-OPT

Stochastic gradient ascent

$$
\begin{gathered}
\frac{\partial B P R-O P T}{\partial \Theta} \propto \sum_{(u, i, j) \in \mathcal{D}_{p}} \frac{e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}}{1+e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}} \frac{\partial}{\partial \Theta}\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)-\lambda \Theta \\
\frac{\partial}{\partial \theta}\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)= \begin{cases}\left(h_{i}-h_{j}\right) & \text { if } \theta=w_{u} \\
w_{u} & \text { if } \theta=h_{i} \\
-w_{u} & \text { if } \theta=h_{j} \\
0 & \text { else }\end{cases}
\end{gathered}
$$

Finding parameters for BPR-OPT

Stochastic gradient ascent

$$
\begin{gathered}
\frac{\partial B P R-O P T}{\partial \Theta} \propto \sum_{(u, i, j) \in \mathcal{D}_{p}} \frac{e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}}{1+e^{-\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)}} \frac{\partial}{\partial \Theta}\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)-\lambda \Theta \\
\frac{\partial}{\partial \theta}\left(\hat{\phi}_{u i}-\hat{\phi}_{u j}\right)= \begin{cases}\left(h_{i}-h_{j}\right) & \text { if } \theta=w_{u} \\
w_{u} & \text { if } \theta=h_{i} \\
-w_{u} & \text { if } \theta=h_{j} \\
0 & \text { else }\end{cases}
\end{gathered}
$$

LearnBPR
input: $f_{i}, \alpha, \Sigma^{2}$, stopping criteria
initialize $\Theta \sim \mathcal{N}\left(0, \Sigma^{2}\right)$
repeat

$$
\text { draw }(u, i, j) \in \mathcal{D}_{p} \text { randomly }
$$

$\Theta \leftarrow \Theta+\alpha \frac{\partial B P R-O P T}{\partial \Theta}(\Theta)$
until approximate maximum is reached
return Θ

BPR-OPT vs AUC

Area under the ROC curve (AUC)

- probability that the ranking of a randomly drawn pair is correct

$$
A U C=\sum_{u \in \mathcal{U}} A U C(u)=\frac{1}{|\mathcal{U}|} \frac{1}{\left|\mathcal{I}_{u}\right|\left|\mathcal{I} \backslash \mathcal{I}_{u}\right|} \sum_{(u, i, j) \in \mathcal{D}_{p}} \delta\left(\hat{\phi}_{u i} \succ \hat{\phi}_{u j}\right)
$$

- $\delta\left(\hat{\phi}_{u i} \succ \hat{\phi}_{u j}\right)=1$ if $\hat{\phi}_{u i} \succ \hat{\phi}_{u j}$, and 0 , else

[^0]: ${ }^{1}$ The picture is taken from Y. Koren et al. (2009). Matrix Factorization Techniques for Recommender Systems. Computer 42 (8).

[^1]: ${ }^{2}$ The picture is taken from wikipedia.

[^2]: ${ }^{2}$ The picture is taken from wikipedia.

[^3]: ${ }^{1}$ T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data. Neural Information Processing, LNCS. 4984.
 ${ }^{2}$ A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).

[^4]: ${ }^{1}$ T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data. Neural Information Processing, LNCS. 4984.
 ${ }^{2}$ A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).

[^5]: ${ }^{1}$ Note, that these hyper-parameters are just picked up in an ad-hoc manner. One should search for the "best" hyper-parameter combinations using e.g. grid-search (a brute-force approach).
 ${ }^{2}$ Thanks to my colleague Thai-Nghe Nguyen for computing an example.

[^6]: ${ }^{1}$ S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback. 25th Conference on Uncertainty in Artificial Intelligence.

[^7]: ${ }^{1}$ S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback. 25th Conference on Uncertainty in Artificial Intelligence.

