### Tomáš Horváth RECOMMENDER SYSTEMS

Tutorial at the conference

Znalosti 2012

October 14-16, 2012, Mikulov, Czech Republic

Institute of Computer Science, Faculty od Science Pavol Jozef Šafárik University in Košice, Slovak Republic



Information Systems and Machine Learning Lab University of Hildesheim, Germany



#### Iterative recommendation



#### second phase



#### third phase







Tutorial on Recommender Systems

The UPRE framework

#### Rating prediction – example

| $sim_{pc}(i,j)$ | Titanic | Pulp Fiction | Iron Man | Forrest Gump | The Mummy |
|-----------------|---------|--------------|----------|--------------|-----------|
| Titanic         | 1.0     | -0.956       | -0.815   | NaN          | -0.581    |
| Pulp Fiction    | —       | 1.0          | 0.948    | NaN          | 0.621     |
| Iron Man        | —       | _            | 1.0      | NaN          | 0.243     |
| Forrest Gump    | —       | _            | —        | 1.0          | NaN       |
| The Mummy       | _       | —            | —        | —            | 1.0       |

NaN values are usually converted to zero (rare in case of enough data)

| $sim_{pc}(u,v)$ | Joe | Ann    | Mary   | Steve  |
|-----------------|-----|--------|--------|--------|
| Joe             | 1.0 | -0.716 | -0.762 | -0.005 |
| Ann             | —   | 1.0    | 0.972  | 0.565  |
| Mary            | —   | —      | 1.0    | 0.6    |
| Steve           | —   | —      | —      | 1.0    |

#### user-based

$$\begin{array}{l} & \mathcal{U}_{Titanic} = \{Joe, Ann, Mary\}, \, \mathcal{N}_{Titanic}^{Steve,2} = \{Mary, Ann\} \\ & \overline{\phi}_{Steve} = \frac{11}{3} = 3.67, \, \overline{\phi}_{Mary} = \frac{12}{4} = 3, \, \overline{\phi}_{Ann} = \frac{13}{4} = 3.25 \\ & \hat{\phi}_{ST} = \overline{\phi}_{S} + \frac{s_{pc}(S,M) \cdot (\phi_{MT} - \overline{\phi}_{M}) + s_{pc}(S,A) \cdot (\phi_{AT} - \overline{\phi}_{A})}{|s_{pc}(S,M)| + |s_{pc}(S,A)|} = 3.67 + \frac{0.6 \cdot (4-3) + 0.565 \cdot (5-3.25)}{0.6 + 0.565} = 1.36 \end{array}$$

#### item-based

• 
$$\mathcal{I}_{\underline{S}teve} = \{\underline{P}ulp \ Fiction, \underline{I}ron \ Man, The \ \underline{M}ummy\}, \ \mathcal{N}_{\underline{S}teve}^{\underline{T}itanic, 2} = \{\underline{I}ron \ Man, The \ \underline{M}ummy\}$$

• 
$$\overline{\phi}_T = \frac{10}{3} = 3.34, \ \overline{\phi}_I = \frac{11}{3} = 3.67, \ \overline{\phi}_M = \frac{9}{3} = 3$$

• 
$$\hat{\phi}_{ST} = \overline{\phi}_T + \frac{s_{pc}(T,I) \cdot (\phi_{SI} - \overline{\phi}_I) + s_{pc}(T,M) \cdot (\phi_{SM} - \overline{\phi}_M)}{|s_{pc}(T,I)| + |s_{pc}(T,M)|} = 3.34 + \frac{-.815 \cdot (4 - 3.67) - .581 \cdot (4 - 3)}{0.815 + 0.581} = 2.73$$



# Matrix factorization



#### A latent space representation

Map users and items to a common latent space

- where dimensions or **factors** represent
  - items' implicit properties
  - users' **interest** in items' hidden properties



<sup>1</sup>The picture is taken from Y. Koren et al. (2009). Matrix Factorization Techniques for Recommender Systems. Computer 42 (8).



Tutorial on Recommender Systems

Matrix factorization

# Known factorization models (1/2)

 $\phi$  represented as a user-item matrix  $\Phi^{n\times m}$ 

• n users, m items



 $<sup>^{2}</sup>$  The picture is taken from wikipedia.

# Known factorization models (1/2)

 $\phi$  represented as a user-item matrix  $\Phi^{n\times m}$ 

• n users, m items

#### Principal Component Analysis (PCA)

- transform data to a new coordinate system
  - variances by any projection of the data lies on coordinates in decreasing order



 $^{2}$  The picture is taken from wikipedia.



### Known factorization models (2/2)

Singular Value Decomposition (SVD)

 $\Phi = W^{n \times k} \Sigma^{k \times k} H^{n \times k^T}$ 

•  $W^T W = I, H^T H = I$ 

- column vectors of W are orthonormal eigenvectors of  $\Phi \Phi^T$
- column vectors of H are orthonormal eigenvectors of  $\Phi^T \Phi$
- $\Sigma$  contains eigenvalues of W in descending order

<sup>&</sup>lt;sup>2</sup>A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).



<sup>&</sup>lt;sup>1</sup>T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data. Neural Information Processing, LNCS. 4984.

# Known factorization models (2/2)

Singular Value Decomposition (SVD)

 $\Phi = W^{n \times k} \Sigma^{k \times k} H^{n \times k^T}$ 

•  $W^T W = I, \ H^T H = I$ 

- column vectors of W are orthonormal eigenvectors of  $\Phi\Phi^T$
- column vectors of H are orthonormal eigenvectors of  $\Phi^T\Phi$
- $\Sigma$  contains eigenvalues of W in descending order

#### PCA, SVD computed algebraically

- $\Phi$  is a **big** and **sparse** matrix
  - approximations of  $PCA^1$ ,  $SVD^2$

#### <sup>1</sup>T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data. Neural Information Processing, LNCS. 4984.

<sup>2</sup>A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).

# MF – rating prediction (1/2)

recommendation task

• to find  $\hat{\phi} : \mathcal{U} \times \mathcal{I} \to \mathbb{R}$  such that  $acc(\hat{\phi}, \phi, \mathcal{T})$  is maximal



43/75

recommendation task

- to find  $\hat{\phi} : \mathcal{U} \times \mathcal{I} \to \mathbb{R}$  such that  $acc(\hat{\phi}, \phi, \mathcal{T})$  is maximal
  - acc is the **expected** accuracy on  $\mathcal{T}$
  - training  $\hat{\phi}$  on  $\mathcal{D}$  such that the **empirical** loss  $err(\hat{\phi}, \phi, \mathcal{D})$  is minimal



recommendation task

- to find  $\hat{\phi} : \mathcal{U} \times \mathcal{I} \to \mathbb{R}$  such that  $acc(\hat{\phi}, \phi, \mathcal{T})$  is maximal
  - *acc* is the **expected** accuracy on  $\mathcal{T}$
  - training  $\hat{\phi}$  on  $\mathcal{D}$  such that the **empirical** loss  $err(\hat{\phi}, \phi, \mathcal{D})$  is minimal

a simple, approximative MF model

- only  $W^{n \times k}$  and  $H^{m \times k}$
- k the number of factors

$$\Phi^{n \times m} \approx \hat{\Phi}^{n \times m} = W H^T$$

• predicted rating  $\hat{\phi}_{ui}$  of the user u for the item i

$$\hat{\phi}_{ui} = w_u h_i^T$$



# MF – rating prediction (2/2)

the loss function  $err(\hat{\phi}, \phi, \mathcal{D})$ 

• squared loss

$$err(\hat{\phi}, \phi, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} e_{ui}^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - \hat{\phi}_{ui})^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - w_u h_i^T)^2$$



# MF – rating prediction (2/2)

the **loss** function  $err(\hat{\phi}, \phi, \mathcal{D})$ 

• squared loss

$$err(\hat{\phi}, \phi, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} e_{ui}^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - \hat{\phi}_{ui})^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - w_u h_i^T)^2$$

#### the objective function

- regularization term  $\lambda \ge 0$  to prevent overfitting
  - penalizing the magnitudes of parameters

$$f(\hat{\phi}, \phi, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - w_u h_i^T)^2 + \lambda(\|W\|^2 + \|H\|^2)$$



# MF – rating prediction (2/2)

the loss function  $err(\hat{\phi}, \phi, \mathcal{D})$ 

• squared loss

$$err(\hat{\phi}, \phi, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} e_{ui}^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - \hat{\phi}_{ui})^2 = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - w_u h_i^T)^2$$

#### the objective function

- regularization term  $\lambda \ge 0$  to prevent overfitting
  - penalizing the magnitudes of parameters

$$f(\hat{\phi}, \phi, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - w_u h_i^T)^2 + \lambda(\|W\|^2 + \|H\|^2)$$

The task is to find parameters W and H such that, given  $\lambda$ , the objective function  $f(\hat{\phi}, \phi, \mathcal{D})$  is minimal.





#### Gradient descent

How to find a minimum of an "objective" function  $f(\Theta)$ ?

- in case of MF,  $\Theta = W \cup H$ , and
- $f(\Theta)$  refers to the error of approximation of  $\Phi$  by  $WH^T$



45/75

#### Gradient descent

How to find a minimum of an "objective" function  $f(\Theta)$ ?

- in case of MF,  $\Theta = W \cup H$ , and
- $f(\Theta)$  refers to the error of approximation of  $\Phi$  by  $WH^T$

Gradient descent

**input:**  $f, \alpha, \Sigma^2$ , stopping criteria initialize  $\Theta \sim \mathcal{N}(0, \Sigma^2)$ 

repeat

 $\Theta \leftarrow \Theta - \alpha \frac{\partial f}{\partial \Theta}(\Theta)$ until approximate minimum is reached return  $\Theta$ 



#### Gradient descent

How to find a minimum of an "objective" function  $f(\Theta)$ ?

- in case of MF,  $\Theta = W \cup H$ , and
- $f(\Theta)$  refers to the error of approximation of  $\Phi$  by  $WH^T$

Gradient descent

**input:**  $f, \alpha, \Sigma^2$ , stopping criteria initialize  $\Theta \sim \mathcal{N}(0, \Sigma^2)$ 

repeat

 $\Theta \leftarrow \Theta - \alpha \frac{\partial f}{\partial \Theta}(\Theta)$ **until** approximate minimum is reached **return**  $\Theta$ 

stopping criteria

• 
$$|\Theta^{old} - \Theta| < \epsilon$$

- maximum number of iterations reached
- a combination of both



if f can be written as

$$f(\Theta) = \sum_{i=1}^{n} f_i(\Theta)$$



if f can be written as

$$f(\Theta) = \sum_{i=1}^{n} f_i(\Theta)$$

Stochastic gradient descent (SGD)

**input:**  $f_i, \alpha, \Sigma^2, stopping criteria$ initialize  $\Theta \sim \mathcal{N}(0, \Sigma^2)$ 

 $\mathbf{repeat}$ 

for all *i* in random order do  $\Theta \leftarrow \Theta - \alpha \frac{\partial f_i}{\partial \Theta}(\Theta)$ end for until approximate minimum is reached return  $\Theta$ 



# MF with SGD

**updating** parameters **iteratively** for each data point  $\phi_{ui}$  in the opposite direction of the **gradient** of the objective function at the given point until a **convergence** criterion is fulfilled.

• updating the vectors  $w_u$  and  $h_i$  for the data point  $(u, i) \in D$ 



### MF with SGD

**updating** parameters **iteratively** for each data point  $\phi_{ui}$  in the opposite direction of the **gradient** of the objective function at the given point until a **convergence** criterion is fulfilled.

• updating the vectors  $w_u$  and  $h_i$  for the data point  $(u, i) \in D$ 

$$\frac{\partial f}{\partial w_u}(u,i) = -2(e_{ui}h_i - \lambda w_u)$$
$$\frac{\partial f}{\partial h_i}(u,i) = -2(e_{ui}w_u - 2\lambda h_i)$$

$$w_u(u,i) \leftarrow w_u - \alpha \frac{\partial f}{\partial w_u}(u,i) = w_u + \alpha (e_{ui}h_i - \lambda w_u)$$

$$h_i(u,i) \leftarrow h_i - \alpha \frac{\partial f}{\partial h_i}(u,i) = h_i + \alpha (e_{ui}w_u - \lambda h_i)$$

where  $\alpha > 0$  is a **learning rate**.



Hyper-parameters: k, iters (the max number of iteration),  $\alpha, \lambda, \Sigma^2$  $W \leftarrow \mathcal{N}(0, \Sigma^2)$  $H \leftarrow \mathcal{N}(0, \Sigma^2)$ for  $iter \leftarrow 1, \ldots, iters \cdot |\mathcal{D}|$  do draw randomly (u, i) from  $\mathcal{D}$  $\phi_{ui} \leftarrow 0$ for  $j \leftarrow 1, \ldots, k$  do  $\hat{\phi}_{ui} \leftarrow \hat{\phi}_{ui} + W[u][j] \cdot H[i][j]$ end for  $e_{ui} = \phi_{ui} - \hat{\phi}_{ui}$ for  $j \leftarrow 1, \ldots, k$  do  $W[u][j] \leftarrow W[u][j] + \alpha * (e_{ui} * H[i][j] - \lambda * W[u][j])$  $H[i][j] \leftarrow H[i][j] + \alpha * (e_{ui} * W[u][j] - \lambda * H[i][j])$ end for end for return  $\{W, H\}$ 





#### MF with $SGD - Example^2$

Let's have the following hyper-parameters:  $K = 2, \ \alpha = 0.1, \ \lambda = 0.15, \ iter = 150, \ \sigma^2 = 0.01$ 

|          | 1 | 4 | 5 |   | 3 |
|----------|---|---|---|---|---|
| $\Phi =$ | 5 | 1 |   | 5 | 2 |
| Ŧ        | 4 | 1 | 2 | 5 |   |
|          |   | 3 | 4 |   | 4 |

Results are:

|     | 1.1995242 | 1.1637173   |
|-----|-----------|-------------|
| W = | 1.8714619 | -0.02266505 |
| • • | 2.3267753 | 0.27602595  |
|     | 2.033842  | 0.539499    |

| $H^T - I$ | 1.6261001   | 1.1259034 | 2.131041  | 2.2285593  | 1.6074764  |
|-----------|-------------|-----------|-----------|------------|------------|
| 11 —      | -0.40649664 | 0.7055319 | 1.0405376 | 0.39400166 | 0.49699315 |

#### Results<sup>1</sup> are:

| <u>^</u>        | 1.477499 | 2.171588 | 3.767126 | 3.131717 | 2.506566 |
|-----------------|----------|----------|----------|----------|----------|
| $\Phi \equiv 0$ | 3.052397 | 2.091094 | 3.964578 | 4.161733 | 2.997066 |
| -               | 3.671365 | 2.814469 | 5.245668 | 5.294111 | 3.877419 |
|                 | 3.087926 | 2.670543 | 4.895569 | 4.745101 | 3.537480 |

<sup>1</sup>Note, that these hyper-parameters are just picked up in an ad-hoc manner. One should search for the "best" hyper-parameter combinations using e.g. grid-search (a brute-force approach).

 $^{2}$  Thanks to my colleague Thai-Nghe Nguyen for computing an example.



**baseline** estimate

• user-item bias

$$b_{ui} = \mu + b_u' + b_i''$$

- $\mu$  average rating across the whole  $\mathcal{D}$
- b', b'' vectors of user and item biases, respectively



**baseline** estimate

• user-item bias

$$b_{ui} = \mu + b_u' + b_i''$$

- $\mu$  average rating across the whole  $\mathcal{D}$
- b', b'' vectors of user and item biases, respectively

prediction

$$\hat{\phi}_{ui} = \mu + b_{u}^{'} + b_{i}^{''} + w_{u}h_{i}$$



**baseline** estimate

• user-item bias

$$b_{ui} = \mu + b_u' + b_i''$$

- μ average rating across the whole D
  b', b'' vectors of user and item biases, respectively

prediction

$$\hat{\phi}_{ui} = \mu + b_{u}^{'} + b_{i}^{''} + w_{u}h_{i}$$

objective function to minimize

$$f(\phi, \hat{\phi}, \mathcal{D}) = \sum_{(u,i)\in\mathcal{D}} (\phi_{ui} - \mu - b'_u - b''_i - w_u h_i)^2 + \lambda(\|W\|^2 + \|H\|^2 + {b'}^2 + {b''}^2)$$



Tutorial on Recommender Systems

Matrix factorization

#### Biased MF with SGD

similar to unbiased MF

• initialize average and biases

$$\mu = \frac{\sum_{(u,i)\in\mathcal{D}}}{|\mathcal{D}|}$$
$$b' \leftarrow (\overline{\phi}_{u_1}, \dots, \overline{\phi}_{u_n})$$
$$b'' \leftarrow (\overline{\phi}_{i_1}, \dots, \overline{\phi}_{i_m})$$



#### Biased MF with SGD

similar to unbiased MF

• initialize average and biases

$$\mu = \frac{\sum_{(u,i)\in\mathcal{D}}}{|\mathcal{D}|}$$
$$b' \leftarrow (\overline{\phi}_{u_1}, \dots, \overline{\phi}_{u_n})$$
$$b'' \leftarrow (\overline{\phi}_{i_1}, \dots, \overline{\phi}_{i_m})$$

• update average and biases

$$\mu \leftarrow \mu - \frac{\partial f}{\partial \mu}(u, i) = \mu + \alpha e_{ui}$$
$$b' \leftarrow b' - \frac{\partial f}{\partial b'}(u, i) = b' + \alpha (e_{ui} - \lambda b')$$
$$b'' \leftarrow b'' - \frac{\partial f}{\partial b''}(u, i) = b'' + \alpha (e_{ui} - \lambda b'')$$



Tutorial on Recommender Systems

Matrix factorization

#### $\mathrm{MF}-\mathrm{item}\ \mathrm{recommendation}$

to predict a personalized ranking score<sup>1</sup>  $\hat{\phi}_{ui}$ 

- how the item i is preferred to other items for the user u
- to find W and H such that  $\hat{\Phi} = W H^T$

$$\hat{\phi}_{ui} = w_u h_i^T$$



<sup>&</sup>lt;sup>1</sup>S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback. 25th Conference on Uncertainty in Artificial Intelligence.

#### MF-item recommendation

to predict a personalized ranking score<sup>1</sup>  $\hat{\phi}_{ui}$ 

- how the item i is preferred to other items for the user u
- to find W and H such that  $\hat{\Phi} = W H^T$

$$\hat{\phi}_{ui} = w_u h_i^T$$

problem: positive feedback only

• pairwise ranking data

$$\mathcal{D}_p = \{(u, i, j) \in \mathcal{D} | i \in \mathcal{I}_u \land j \in \mathcal{I} \setminus \mathcal{I}_u\}$$



<sup>&</sup>lt;sup>1</sup>S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback. 25th Conference on Uncertainty in Artificial Intelligence.



#### **Bayesian formulation** of the problem

- $\succ$  the unknown preference structure (ordering)
  - we use the derived pairwise ranking data  $\mathcal{D}_p$
- $\Theta$  parameters of an arbitrary prediction model
  - in case of MF,  $\Theta = W \cup H$

 $p(\Theta|\succ) \propto p(\succ |\Theta) p(\Theta)$ 



#### **Bayesian formulation** of the problem

- $\succ$  the unknown preference structure (ordering)
  - we use the derived pairwise ranking data  $\mathcal{D}_p$
- $\Theta$  parameters of an arbitrary prediction model
  - in case of MF,  $\Theta = W \cup H$

$$p(\Theta| \succ) \propto p(\succ |\Theta)p(\Theta)$$

#### **prior** probability

- assume independence of parameters
- assume,  $\Theta \sim N(0, \frac{1}{\lambda}I)$

$$p(\Theta) = \prod_{\theta \in \Theta} \sqrt{\frac{\lambda}{2\pi}} e^{-\frac{1}{2}\lambda\theta^2}$$



#### likelihood

- assume users' feedbacks are independent
- assume, ordering of each pair is independent

$$p(\succ |\Theta) = \prod_{u \in \mathcal{U}} p(\succ_u |\Theta) = \prod_{(u,i,j) \in \mathcal{D}_p} p(i \succ_u j | \Theta)$$



#### likelihood

- assume users' feedbacks are independent
- assume, ordering of each pair is independent

$$p(\succ |\Theta) = \prod_{u \in \mathcal{U}} p(\succ_u |\Theta) = \prod_{(u,i,j) \in \mathcal{D}_p} p(i \succ_u j | \Theta)$$

• using the ranking scores  $\hat{\phi}$ 

$$p(i \succ_u j | \Theta) = p(\hat{\phi}_{ui} - \hat{\phi}_{uj} > 0) = \sigma(\hat{\phi}_{ui} - \hat{\phi}_{uj}) = \frac{1}{1 + e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}}$$





maximum a posteriori estimation of  $\Theta$ 

$$\underset{\Theta}{\arg\max} p(\Theta,\succ) =$$



maximum a posteriori estimation of  $\Theta$ 

 $\mathop{\arg\max}_{\Theta} p(\Theta,\succ) =$ 

$$\underset{\Theta}{\arg\max} p(\succ |\Theta)p(\Theta) =$$



maximum a posteriori estimation of  $\Theta$ 

 $\mathop{\arg\max}_{\Theta} p(\Theta,\succ) =$ 

$$\underset{\Theta}{\arg\max} p(\succ |\Theta)p(\Theta) =$$

$$\underset{\Theta}{\arg\max} \ln p(\succ |\Theta)p(\Theta) =$$



maximum a posteriori estimation of  $\Theta$ 

$$\arg \max_{\Theta} p(\Theta, \succ) =$$

$$\arg \max_{\Theta} p(\succ |\Theta) p(\Theta) =$$

$$\arg \max_{\Theta} \ln p(\succ |\Theta) p(\Theta) =$$

$$\arg \max_{\Theta} \ln n \prod_{(u,i,j) \in \mathcal{D}_p} \sigma(\hat{\phi}_{ui} - \hat{\phi}_{uj}) \sqrt{\frac{\lambda}{2\pi}} e^{-\frac{1}{2}\lambda\theta^2}$$



maximum a posteriori estimation of  $\Theta$ 

$$\arg \max_{\Theta} p(\Theta, \succ) =$$

$$\arg \max_{\Theta} p(\succ |\Theta) p(\Theta) =$$

$$\arg \max_{\Theta} ln \ p(\succ |\Theta) p(\Theta) =$$

$$\arg \max_{\Theta} ln \ \prod_{(u,i,j)\in\mathcal{D}_p} \sigma(\hat{\phi}_{ui} - \hat{\phi}_{uj}) \sqrt{\frac{\lambda}{2\pi}} \ e^{-\frac{1}{2}\lambda\theta^2}$$

$$\arg \max_{\Theta} \underbrace{\sum_{(u,i,j)\in\mathcal{D}_p} ln \ \sigma(\hat{\phi}_{ui} - \hat{\phi}_{uj}) - \lambda ||\Theta||^2}_{BPR-OPT}$$



Tutorial on Recommender Systems

Matrix factorization

# Finding parameters for BPR-OPT

#### Stochastic gradient ascent

$$\frac{\partial BPR - OPT}{\partial \Theta} \propto \sum_{(u,i,j)\in\mathcal{D}_p} \frac{e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}}{1 + e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}} \frac{\partial}{\partial \Theta} (\hat{\phi}_{ui} - \hat{\phi}_{uj}) - \lambda \Theta$$



# Finding parameters for BPR-OPT

#### Stochastic gradient ascent

$$\frac{\partial BPR - OPT}{\partial \Theta} \propto \sum_{(u,i,j)\in\mathcal{D}_p} \frac{e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}}{1 + e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}} \frac{\partial}{\partial \Theta} (\hat{\phi}_{ui} - \hat{\phi}_{uj}) - \lambda \Theta$$
$$\frac{\partial}{\partial \theta} (\hat{\phi}_{ui} - \hat{\phi}_{uj}) = \begin{cases} (h_i - h_j) & if \ \theta = w_u \\ w_u & if \ \theta = h_i \\ -w_u & if \ \theta = h_j \\ 0 & else \end{cases}$$



# Finding parameters for BPR-OPT

#### Stochastic gradient ascent

$$\frac{\partial BPR - OPT}{\partial \Theta} \propto \sum_{(u,i,j)\in\mathcal{D}_p} \frac{e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}}{1 + e^{-(\hat{\phi}_{ui} - \hat{\phi}_{uj})}} \frac{\partial}{\partial \Theta} (\hat{\phi}_{ui} - \hat{\phi}_{uj}) - \lambda \Theta$$
$$\frac{\partial}{\partial \theta} (\hat{\phi}_{ui} - \hat{\phi}_{uj}) = \begin{cases} (h_i - h_j) & if \ \theta = w_u \\ w_u & if \ \theta = h_i \\ -w_u & if \ \theta = h_j \\ 0 & else \end{cases}$$

<u>LearnBPR</u>

**input:**  $f_i, \alpha, \Sigma^2, stopping criteria$ initialize  $\Theta \sim \mathcal{N}(0, \Sigma^2)$ 

repeat

draw  $(u, i, j) \in \mathcal{D}_p$  randomly  $\Theta \leftarrow \Theta + \alpha \frac{\partial BPR - OPT}{\partial \Theta}(\Theta)$  **until** approximate maximum is reached **return**  $\Theta$ 

Tutorial on Recommender Systems



56/75

#### BPR-OPT vs AUC

#### Area under the ROC curve (AUC)

• probability that the ranking of a randomly drawn pair is correct

$$AUC = \sum_{u \in \mathcal{U}} AUC(u) = \frac{1}{|\mathcal{U}|} \frac{1}{|\mathcal{I}_u| |\mathcal{I} \setminus \mathcal{I}_u|} \sum_{(u,i,j) \in \mathcal{D}_p} \delta(\hat{\phi}_{ui} \succ \hat{\phi}_{uj})$$

• 
$$\delta(\hat{\phi}_{ui} \succ \hat{\phi}_{uj}) = 1$$
 if  $\hat{\phi}_{ui} \succ \hat{\phi}_{uj}$ , and 0, else



75