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Iterative recommendation
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Rating prediction – example

simpc(i, j) Titanic Pulp Fiction Iron Man Forrest Gump The Mummy
Titanic 1.0 -0.956 -0.815 NaN -0.581

Pulp Fiction – 1.0 0.948 NaN 0.621
Iron Man – – 1.0 NaN 0.243

Forrest Gump – – – 1.0 NaN
The Mummy – – – – 1.0

NaN values are usually converted to zero (rare in case of enough data)

simpc(u, v) Joe Ann Mary Steve
Joe 1.0 -0.716 -0.762 -0.005
Ann – 1.0 0.972 0.565
Mary – – 1.0 0.6
Steve – – – 1.0

user-based
• UTitanic = {Joe, Ann,Mary}, NSteve,2

Titanic
= {Mary,Ann}

• φSteve = 11
3

= 3.67, φMary = 12
4

= 3, φAnn = 13
4

= 3.25

• φ̂ST = φS +
spc(S,M)·(φMT−φM )+spc(S,A)·(φAT−φA)

|spc(S,M)|+|spc(S,A)|
= 3.67+

0.6·(4−3)+0.565·(5−3.25)
0.6+0.565

= 1.36

item-based
• ISteve = {Pulp Fiction, Iron Man,The Mummy}, N

Titanic,2
Steve

= {Iron Man,The Mummy}

• φT = 10
3

= 3.34, φI = 11
3

= 3.67, φM = 9
3

= 3

• φ̂ST = φT +
spc(T,I)·(φSI−φI )+spc(T,M)·(φSM−φM )

|spc(T,I)|+|spc(T,M)|
= 3.34+

−.815·(4−3.67)−.581·(4−3)
0.815+0.581

= 2.73
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Matrix factorization



A latent space representation

Map users and items to a common latent space
• where dimensions or factors represent

• items’ implicit properties

• users’ interest in items’ hidden properties

1

1
The picture is taken from Y. Koren et al. (2009). Matrix Factorization Techniques for

Recommender Systems. Computer 42 (8).
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Known factorization models (1/2)

φ represented as a user-item matrix Φn×m

• n users, m items

2
The picture is taken from wikipedia.
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Known factorization models (1/2)

φ represented as a user-item matrix Φn×m

• n users, m items

Principal Component Analysis (PCA)

• transform data to a new coordinate system

• variances by any projection of the data lies on coordinates in
decreasing order

2

2
The picture is taken from wikipedia.
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Known factorization models (2/2)

Singular Value Decomposition (SVD)

Φ = Wn×kΣk×kHn×kT

• WTW = I, HTH = I

• column vectors of W are orthonormal eigenvectors of ΦΦT

• column vectors of H are orthonormal eigenvectors of ΦTΦ

• Σ contains eigenvallues of W in descending order

1
T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data.

Neural Information Processing, LNCS. 4984.
2
A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value

Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).
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Known factorization models (2/2)

Singular Value Decomposition (SVD)

Φ = Wn×kΣk×kHn×kT

• WTW = I, HTH = I

• column vectors of W are orthonormal eigenvectors of ΦΦT

• column vectors of H are orthonormal eigenvectors of ΦTΦ

• Σ contains eigenvallues of W in descending order

PCA, SVD computed algebraically

• Φ is a big and sparse matrix
• approximations of PCA1, SVD2

1
T.Raiko et al. (2007). Principal Component Analysis for Sparse High-Dimensional Data.

Neural Information Processing, LNCS. 4984.
2
A.K. Menon and Ch. Elkan (2011). Fast Algorithms for Approximating the Singular Value

Decomposition. ACM Trans. Knowl. Discov. Data 5 (2).
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MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T ) is maximal
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MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T ) is maximal
• acc is the expected accuracy on T
• training φ̂ on D such that the empirical loss err(φ̂, φ,D) is minimal
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MF – rating prediction (1/2)

recommendation task

• to find φ̂ : U × I → R such that acc(φ̂, φ, T ) is maximal
• acc is the expected accuracy on T
• training φ̂ on D such that the empirical loss err(φ̂, φ,D) is minimal

a simple, approximative MF model

• only Wn×k and Hm×k

• k – the number of factors

Φn×m ≈ Φ̂n×m = WHT

• predicted rating φ̂ui of the user u for the item i

φ̂ui = wuh
T
i
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MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2ui =
∑

(u,i)∈D

(φui−φ̂ui)
2 =

∑

(u,i)∈D

(φui−wuh
T
i )

2
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MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2ui =
∑

(u,i)∈D

(φui−φ̂ui)
2 =

∑

(u,i)∈D

(φui−wuh
T
i )

2

the objective function

• regularization term λ ≥ 0 to prevent overfitting
• penalizing the magnitudes of parameters

f(φ̂, φ,D) =
∑

(u,i)∈D

(φui − wuh
T
i )

2 + λ(‖W‖2 + ‖H‖2)
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MF – rating prediction (2/2)

the loss function err(φ̂, φ,D)

• squared loss

err(φ̂, φ,D) =
∑

(u,i)∈D

e2ui =
∑

(u,i)∈D

(φui−φ̂ui)
2 =

∑

(u,i)∈D

(φui−wuh
T
i )

2

the objective function

• regularization term λ ≥ 0 to prevent overfitting
• penalizing the magnitudes of parameters

f(φ̂, φ,D) =
∑

(u,i)∈D

(φui − wuh
T
i )

2 + λ(‖W‖2 + ‖H‖2)

The task is to find parameters W and H such that, given λ, the
objective function f(φ̂, φ,D) is minimal.
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Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT
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Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT

Gradient descent

input: f, α,Σ2, stopping criteria
initialize Θ ∼ N (0,Σ2)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ
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Gradient descent

How to find a minimum of an “objective” function f(Θ)?

• in case of MF, Θ = W ∪H, and

• f(Θ) refers to the error of approximation of Φ by WHT

Gradient descent

input: f, α,Σ2, stopping criteria
initialize Θ ∼ N (0,Σ2)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ

stopping criteria

• |Θold −Θ| < ǫ

• maximum number of iterations reached

• a combination of both
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Stochastic gradient descent

if f can be written as

f(Θ) =

n∑

i=1

fi(Θ)

Tutorial on Recommender Systems Matrix factorization 46/75



Stochastic gradient descent

if f can be written as

f(Θ) =

n∑

i=1

fi(Θ)

Stochastic gradient descent (SGD)

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

for all i in random order do
Θ← Θ− α∂fi

∂Θ (Θ)
end for

until approximate minimum is reached
return Θ
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MF with SGD

updating parameters iteratively for each data point φui in the
opposite direction of the gradient of the objective function at the
given point until a convergence criterion is fulfilled.

• updating the vectors wu and hi for the data point (u, i) ∈ D
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MF with SGD

updating parameters iteratively for each data point φui in the
opposite direction of the gradient of the objective function at the
given point until a convergence criterion is fulfilled.

• updating the vectors wu and hi for the data point (u, i) ∈ D

∂f

∂wu
(u, i) = −2(euihi − λwu)

∂f

∂hi
(u, i) = −2(euiwu − 2λhi)

wu(u, i)← wu − α
∂f

∂wu
(u, i) = wu + α(euihi − λwu)

hi(u, i)← hi − α
∂f

∂hi
(u, i) = hi + α(euiwu − λhi)

where α > 0 is a learning rate.
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MF with SGD – Algorithm

Hyper-parameters: k, iters (the max number of iteration), α, λ,Σ2

W ← N (0,Σ2)
H ← N (0,Σ2)
for iter ← 1, . . . , iters · |D| do

draw randomly (u, i) from D
φ̂ui ← 0
for j ← 1, . . . , k do

φ̂ui ← φ̂ui +W [u][j] ·H[i][j]
end for

eui = φui − φ̂ui

for j ← 1, . . . , k do

W [u][j]←W [u][j] + α ∗ (eui ∗H[i][j]− λ ∗W [u][j])
H[i][j]← H[i][j] + α ∗ (eui ∗W [u][j]− λ ∗H[i][j])

end for

end for

return {W , H}
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MF with SGD – Example2

Let’s have the following hyper-parameters:
K = 2, α = 0.1, λ = 0.15, iter = 150, σ2 = 0.01

Φ =
1 4 5 3
5 1 5 2
4 1 2 5

3 4 4

Results are:

W =
1.1995242 1.1637173
1.8714619 -0.02266505
2.3267753 0.27602595
2.033842 0.539499

H
T = 1.6261001 1.1259034 2.131041 2.2285593 1.6074764

-0.40649664 0.7055319 1.0405376 0.39400166 0.49699315

Results1 are:

Φ̂ =
1.477499 2.171588 3.767126 3.131717 2.506566
3.052397 2.091094 3.964578 4.161733 2.997066
3.671365 2.814469 5.245668 5.294111 3.877419
3.087926 2.670543 4.895569 4.745101 3.537480

1
Note, that these hyper-parameters are just picked up in an ad-hoc manner. One should

search for the “best” hyper-parameter combinations using e.g. grid-search (a brute-force
approach).

2
Thanks to my colleague Thai-Nghe Nguyen for computing an example.
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Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′

u + b
′′

i

• µ – average rating across the whole D
• b

′

, b
′′

– vectors of user and item biases, respectively
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Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′

u + b
′′

i

• µ – average rating across the whole D
• b

′

, b
′′

– vectors of user and item biases, respectively

prediction

φ̂ui = µ+ b
′

u + b
′′

i + wuhi
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Biased MF

baseline estimate

• user-item bias
bui = µ+ b

′

u + b
′′

i

• µ – average rating across the whole D
• b

′

, b
′′

– vectors of user and item biases, respectively

prediction

φ̂ui = µ+ b
′

u + b
′′

i + wuhi

objective function to minimize

f(φ, φ̂,D) =
∑

(u,i)∈D

(φui−µ−b
′

u−b
′′

i −wuhi)
2+λ(‖W‖2+‖H‖2+b

′2
+b

′′2
)
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Biased MF with SGD

similar to unbiased MF

• initialize average and biases

µ =

∑

(u,i)∈D

|D|

b
′
← (φu1

, . . . , φun
)

b
′′
← (φi1

, . . . , φim)
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Biased MF with SGD

similar to unbiased MF

• initialize average and biases

µ =

∑

(u,i)∈D

|D|

b
′
← (φu1

, . . . , φun
)

b
′′
← (φi1

, . . . , φim)

• update average and biases

µ← µ−
∂f

∂µ
(u, i) = µ+ αeui

b
′
← b

′
−

∂f

∂b
′ (u, i) = b

′
+ α(eui − λb

′
)

b
′′
← b

′′
−

∂f

∂b
′′ (u, i) = b

′′
+ α(eui − λb

′′
)
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MF – item recommendation

to predict a personalized ranking score1 φ̂ui

• how the item i is preferred to other items for the user u

• to find W and H such that Φ̂ = WHT

φ̂ui = wuh
T
i

1
S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback.

25th Conference on Uncertainty in Artificial Intelligence.
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MF – item recommendation

to predict a personalized ranking score1 φ̂ui

• how the item i is preferred to other items for the user u

• to find W and H such that Φ̂ = WHT

φ̂ui = wuh
T
i

problem: positive feedback only

• pairwise ranking data

Dp = {(u, i, j) ∈ D|i ∈ Iu ∧ j ∈ I \ Iu}

1
S. Rendle et al. (2009). BPR: Bayesian Personalized Ranking from Implicit Feedback.

25th Conference on Uncertainty in Artificial Intelligence.
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MF – Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

• ≻ – the unknown preference structure (ordering)
• we use the derived pairwise ranking data Dp

• Θ – parameters of an arbitrary prediction model
• in case of MF, Θ = W ∪H

p(Θ| ≻) ∝ p(≻ |Θ)p(Θ)
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MF – Bayesian Personalized Ranking (1/3)

Bayesian formulation of the problem

• ≻ – the unknown preference structure (ordering)
• we use the derived pairwise ranking data Dp

• Θ – parameters of an arbitrary prediction model
• in case of MF, Θ = W ∪H

p(Θ| ≻) ∝ p(≻ |Θ)p(Θ)

prior probability

• assume independence of parameters

• assume, Θ ∼ N(0, 1
λ
I)

p(Θ) =
∏

θ∈Θ

√

λ

2π
e−

1
2
λθ2
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MF – Bayesian Personalized Ranking (2/3)

likelihood

• assume users’ feedbacks are independent

• assume, ordering of each pair is independent

p(≻ |Θ) =
∏

u∈U

p(≻u |Θ) =
∏

(u,i,j)∈Dp

p(i ≻u j|Θ)
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MF – Bayesian Personalized Ranking (2/3)

likelihood

• assume users’ feedbacks are independent

• assume, ordering of each pair is independent

p(≻ |Θ) =
∏

u∈U

p(≻u |Θ) =
∏

(u,i,j)∈Dp

p(i ≻u j|Θ)

• using the ranking scores φ̂

p(i ≻u j|Θ) = p(φ̂ui − φ̂uj > 0) = σ(φ̂ui − φ̂uj) =
1

1 + e−(φ̂ui−φ̂uj)
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MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

argmax
Θ

p(Θ,≻) =
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MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

argmax
Θ

p(Θ,≻) =

argmax
Θ

p(≻ |Θ)p(Θ) =

argmax
Θ

ln p(≻ |Θ)p(Θ) =
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MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

argmax
Θ

p(Θ,≻) =

argmax
Θ

p(≻ |Θ)p(Θ) =

argmax
Θ

ln p(≻ |Θ)p(Θ) =

argmax
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)

√

λ

2π
e−

1
2
λθ2
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MF – Bayesian Personalized Ranking (3/3)

maximum a posteriori estimation of Θ

argmax
Θ

p(Θ,≻) =

argmax
Θ

p(≻ |Θ)p(Θ) =

argmax
Θ

ln p(≻ |Θ)p(Θ) =

argmax
Θ

ln
∏

(u,i,j)∈Dp

σ(φ̂ui − φ̂uj)

√

λ

2π
e−

1
2
λθ2

argmax
Θ

∑

(u,i,j)∈Dp

ln σ(φ̂ui − φ̂uj) − λ‖Θ‖2

︸ ︷︷ ︸

BPR−OPT
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Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT

∂Θ
∝

∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ
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Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT

∂Θ
∝

∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ

∂

∂θ
(φ̂ui − φ̂uj) =







(hi − hj) if θ = wu

wu if θ = hi
−wu if θ = hj
0 else
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Finding parameters for BPR-OPT

Stochastic gradient ascent

∂BPR−OPT

∂Θ
∝

∑

(u,i,j)∈Dp

e−(φ̂ui−φ̂uj)

1 + e−(φ̂ui−φ̂uj)

∂

∂Θ
(φ̂ui − φ̂uj)− λΘ

∂

∂θ
(φ̂ui − φ̂uj) =







(hi − hj) if θ = wu

wu if θ = hi
−wu if θ = hj
0 else

LearnBPR

input: fi, α,Σ
2, stopping criteria

initialize Θ ∼ N (0,Σ2)
repeat

draw (u, i, j) ∈ Dp randomly
Θ← Θ+ α∂BPR−OPT

∂Θ (Θ)
until approximate maximum is reached
return Θ
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BPR-OPT vs AUC

Area under the ROC curve (AUC)

• probability that the ranking of a randomly drawn pair is correct

AUC =
∑

u∈U

AUC(u) =
1

|U|

1

|Iu| |I \ Iu|

∑

(u,i,j)∈Dp

δ(φ̂ui ≻ φ̂uj)

• δ(φ̂ui ≻ φ̂uj) = 1 if φ̂ui ≻ φ̂uj , and 0, else
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