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Natural Language Processing

e Syntax (grammar induction, stemming,...),

e Semantics (translation, language generation, chatbots, sentiment analysis,
question answering,...),

e Speech (speech recognition, text-to-speech)

e and much more



Approaches

1. Rule-based

o Grammars, patterns, heuristics etc.
2. “Traditional” Machine Learning

o Mostly probabilistic modeling, decision trees etc.
3. Neural Networks

o Vector representations of words are learned
o Learning rules thanks to the large amount of data
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Vaswani, Ashish et al. “Attention is All you Need.” NIPS (2017).




Translation Task Example
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High Level Look
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Closer Look into the Transformer

Softmax )
’ )
Linear
S )
& DECODER #2
§ & 4
< Add & Normalize )
) : ( Feed Forward ) ( Feed Forward )
] I St )
[*( Add & Normalize } 2 »( Add & Normalize )
- I} 7 | % )
z E ( Feed Forward ) ( Feed Forward ) """" :"( Encoder-Decoder Attention )
=yl By i — [y Sean e i e i L )
g ,-»( Add & Normalize ) ,9( Add & Normalize )
| — [ —
' Self-Attention ' Self-Attention
b s focccccccccccccnnn-- A o R S
TR @ @ (I,; é
x [T 1] e[ [T 1]

Thinking Machines



Self-Attention
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Self-Attention
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Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to
R with weight matrices  Q/K/V matrices produce the output of the layer
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Closer Look into the Transformer
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Attention Visualization
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BERT Embedding
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Conclusion, results, takeaways

e Context meaning can captured
e Superhuman results at various tasks

e Lot of parameters (largest models have ~ 11B params)
o Large corpus is needed (C4 dataset has ~ 750 GB)
o The model has great capacity

e The computation can be parallelised



Rank Name Model URL Score
1 SuperGLUE Human BaselinesSuperGLUE Human Baselines C);. 89.8

2 T5 Team - Google T5 C};' 88.9

3 Facebook Al RoBERTa C’J‘ 84.6

4 IBM Research Al BERT-mtl 73.5

5 SuperGLUE Baselines BERT++ [:}J' 71.5
BERT C);' 69.0

Most Frequent Class C};. 47 1

CBoW B 44.5

Outside Best C’J‘ -

SuperGLUE Benchmark (super.gluebenchmark.com)




Reading Comprehension with Commonsense Reasoning Dataset

~PASSAGE

(CNN) -- A day after her sister Serena's comeback was ended in Eastbourne, Venus Williams suffered a similar fate losing in
the quarterfinals to Daniela Hantuchova. The Slovak battled hard in blustery conditions on the south coast of England as
she recorded a 6-2 5-7 6-2 win -- her first over Venus in 11 meetings. Williams had been out of action for five months
with an abdominal injury before returning for the warm-up tournament ahead of Wimbledon and showed flashes of her
old self in the second set. Hantuchova told the WTA's official web site: "l was not thinking about our other matches at all.
| was just focusing on my game today.

« Daniela Hantuchova knocks Venus Williams out of Eastbourne 6-2 5-7 6-2

« It is the first time Hantuchova has beaten Williams in 11 matches

« Slovak will now face fifth seed Petra Kvitova after she beat Agnieszka Radwanska

« Mario Bartoli will face Australian Sam Stosur in other semifinal

QUERY

Hantuchova breezed through the first set in just under 40 minutes after breaking Williams' serve twice to take it 6-2 and led the
second 4-2 before X hit her stride.




Fashion Recommendation

Challenges:
e Just a few “standard” attributes
e Various customers’ preferences @ """""""
e Changing trends m
e Short lifetime of items ‘@' “ - " &‘

Bottom Set
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Approaches

1. Rule-based

2. Machine Learning
o Usually uses CNN for images features extraction

Examples:

e Sequence modelling task - Bi-LSTM network
e Fixed number of items in one outfit with fully-connected NN
e Dyadic Co-occurrences (Siamese Network)



Polyvore Dataset

21 889 user-created outfits from polyvore.com
Contains images and basic information about

the products
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Dyadic Co-occurrences (Siamese Network)

Step 1: Data collection Step 2: Training data generation = Step 3: Siamese CNNs Step 4: Recommendation
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Fixed number of items in one outfit with

fully-connected NN
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Sequence modelling task (Bi-LSTM network)




Self-attention for Outfit Generation

Intuition behind the self-attention:
e When choosing shoes, pay attention to the color of the belt
Approach:

Extract features with CNN

Treat fashion item as a word and an outfit as its context (sentence)
Use special tokens/embeddings representing product category
Train on masked outfits



Challenges

e How to embed fashion products?
o NLP transformers use sub-word embedding and the dictionary has a fixed size
o Areimage representations learned on a classification task good enough?
o  What about positional embeddings?
e Which part of transformer to use?
o GPT uses only decoder blocks
o BERT uses only encoder blocks
o T5 states that the full transformer is the most convenient choice
e How big?
o Relatively small dataset
o Alot of parameters
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Style2Vec
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