
Deep Learning for Recommender Systems

Alexandros Karatzoglou (Scientific Director @ Telefonica Research)
alexk@tid.es, @alexk_z

Balázs Hidasi (Head of Research @ Gravity R&D)
balazs.hidasi@gravityrd.com, @balazshidasi

RecSys’17, 29 August 2017, Como

mailto:alexk@tid.es
mailto:balazs.hidasi@gravityrd.com

Why Deep Learning?

ImageNet challenge error rates (red line = human performance)

Why Deep Learning?

Complex Architectures

Neural Networks are Universal Function
Approximators

Depending on dataset
size, traditional ML

may make sense

Inspiration for Neural Learning

Neural Model

Neuron a.k.a. Unit

Feedforward Multilayered Network

Learning

Stochastic Gradient Descent

• Generalization of (Stochastic) Gradient Descent

Stochastic Gradient Descent

Backpropagation

Backpropagation

• Does not work well in plain a
normal” multilayer deep network

• Vanishing Gradients

• Slow Learning

• SVM’s easier to train

• 2nd Neural Winter

Modern Deep Networks

• Ingredients:

• Rectified Linear Activation
function a.k.a. ReLu

Modern Deep Networks

• Ingredients:

• Dropout:
Prevent

overfitting by
redundancy

Dropout
verteces

changes over
iterations

Modern Deep Networks

• Ingredients:

• Mini-batches:

– Stochastic Gradient Descent

– Compute gradient over many (50 -100) data points
(minibatch) and update.

Modern Feedforward Networks

• Ingredients:

• Adagrad a.k.a. adaptive learning rates

Decrease step size
over time

In a factor-wise
fashion

https://ruder.io/optimizing-gradient-descent/

• Feature extraction directly from the content
• Image, text, audio, etc.
• Instead of metadata
• For hybrid algorithms

• Heterogenous data handled easily

• CB + CF + context + …

• Sequential behaviour modeling (RNNs/Transformers)

• Beyond RecSys paradigms

• RecSys + LLM / conversational RecSys

• RecSys is a complex domain
• Deep learning worked well in other complex domains
• Worth a try

Deep Learning for RecSys

• As of 2017, main topics:
• Learning item embeddings

• Deep collaborative filtering

• Feature extraction directly from content

• Session-based recommendations with RNN

• In 2025

• Most of newly proposed RecSys algorithms are based on
neural networks

• LLM integration at various stages of recommendations

• Combining heterogeneous inputs

• Modality translation (e.g., job posting <-> applicant’s CV)

Research directions in DL-RecSys

• Start simple
• Add improvements later

• Optimize code
• GPU/CPU optimizations may differ

• Scalability is key

• Opensource code

• Experiment (also) on public datasets

• Don’t use very small datasets

• Don’t work on irrelevant tasks, e.g. rating prediction

Best practices

Item embeddings & 2vec models

Embeddings

• Embedding: a (learned) real value vector
representing an entity
– Also known as:

• Latent feature vector

• (Latent) representation

– Similar entities’ embeddings are similar

• Use in recommenders:
– Initialization of item representation in more advanced

algorithms

– Item-to-item recommendations

Matrix factorization as learning
embeddings

• MF: user & item embedding learning
– Similar feature vectors

• Two items are similar
• Two users are similar
• User prefers item

– MF representation as a simplictic neural
network
• Input: one-hot encoded user ID
• Input to hidden weights: user feature matrix
• Hidden layer: user feature vector
• Hidden to output weights: item feature matrix
• Output: preference (of the user) over the items

• „Matrix factorization“ in EasyStudy is implemented like this…

U

I

R ≈

0,0,...,0,1,0,0,...0

u

𝑟u,1, 𝑟u,2, … ,𝑟u,m

𝑊U

𝑊I

Word2Vec

• [Mikolov et. al, 2013a]
• Representation learning of words
• Shallow model
• Data: (target) word + context pairs

– Sliding window on the document
– Context = words near the target

• In sliding window
• 1-5 words in both directions

• Two models
– Continous Bag of Words (CBOW)
– Skip-gram (pairwise relevance)

Word2Vec - CBOW

• Continuous Bag of Words
• Maximalizes the probability of the target word given the

context
• Model

– Input: one-hot encoded words
– Input to hidden weights

• Embedding matrix of words

– Hidden layer
• Sum of the embeddings of the words in the context

– Hidden to output weights
– Softmax transformation

• Smooth approximation of the max operator
• Highlights the highest value

– Output: likelihood of words of the corpus given the context

• Embeddings are taken from the input to hidden matrix
– Hidden to output matrix also has item representations (but not

used)

Learning

„Fake“
Prediction

Our TRUE target -
embedings

Word2Vec – Skip-gram

• Maximalizes the probability of the
context, given the target word

• Model
– Input: one-hot encoded word
– Input to hidden matrix: embeddings
– Hidden state

• Item embedding of target

– Softmax transformation

– Output: likelihood of context words
(given the input word)

Learning
pairwise

prediction

„Fake“
Prediction

Shared input/output
weights for the same

words

Word2Vec – Skip-gram

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word2Vec – Skip-gram

Word2Vec – Skip-gram

• Shared weights for the same input and output word
• Afterwards, apply softmax to get a probability distribution

• Still, too many weights -> sample negative elements to be updated
• Negative sampling, http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Paragraph2vec, doc2vec

• [Le & Mikolov, 2014]

• Learns representation of
paragraph/document

• Based on CBOW model

• Paragraph/document
embedding added to the
model as global context

...2vec for Recommendations

Replace words with items in a session/user profile

Prod2Vec

• [Grbovic et. al, 2015]
• Skip-gram model on products

– Input: i-th product purchased by the user
– Context: the other purchases of the user

• Bagged prod2vec model
– Input: products purchased in one basket by the user

• Basket: sum of product embeddings

– Context: other baskets of the user

• Learning user representation
– Follows paragraph2vec
– User embedding added as global context
– Input: user + products purchased except for the i-th
– Target: i-th product purchased by the user

• [Barkan & Koenigstein, 2016] proposed the same model later as item2vec
– Skip-gram with Negative Sampling (SGNS) is applied to event data

Prod2Vec

[Grbovic et. al, 2015]

pro2vec skip-gram model on products

Bagged Prod2Vec

[Grbovic et. al, 2015]

bagged-prod2vec model updates

User-Prod2Vec

[Grbovic et. al, 2015]

User embeddings for user to product predictions

Utilizing more information

• Meta-Prod2vec [Vasile et. al, 2016]
– Based on the prod2vec model
– Uses item metadata

• Embedded metadata
• Added to both the input and the context

– Losses between: target/context item/metadata
• Final loss is the combination of 5 of these losses

• Content2vec [Nedelec et. al, 2017]
– Separate modules for multimodel information

• CF: Prod2vec
• Image: AlexNet (a type of CNN)
• Text: Word2Vec and TextCNN

– Learns pairwise similarities
• Likelihood of two items being bought together

I

𝑖t

item(t)

item(t-1) item(t+2)meta(t+1)

Classifier

meta(t-1)

M

𝑚t

meta(t)

Classifier Classifier Classifier Classifier

item(t)

Follow-up Development

• Usually, 1-2 years after a new network is adopted for NPL, it is tested in
RecSys domain
– https://github.com/NVIDIA-Merlin/Transformers4Rec

https://github.com/NVIDIA-Merlin/Transformers4Rec

Feature extraction from content

• Deep learning is capable of direct feature extraction
– Work with content directly
– Instead (or beside) metadata

• Images
– E.g.: product pictures, video thumbnails/frames
– Extraction: convolutional networks
– Applications (e.g.):

• Fashion
• Video

• Text
– E.g.: product description, content of the product, reviews
– Extraction

• RNNs
• 1D convolution networks
• Weighted word embeddings
• Paragraph vectors
• BERT, CLIP, LLMs

– Applications (e.g.):
• News
• Books
• Publications

• Music/audio
– Extraction: convolutional networks (or RNNs)

Images in recommenders

• Visual BPR [He & McAuley, 2016]
– Model composed of

• Bias terms
• MF model
• Visual part

– Pretrained CNN features
– Dimension reduction through „embedding”
– The product of this visual item feature and a learned user feature vector is used in the

model

• Visual bias
– Product of the pretrained CNN features and a global bias vector over its features

– BPR loss
– Tested on clothing datasets (9-25% improvement)

Whole new fashion RecSys research
emerged after this. E.g. finding
outfits (i.e. Products matching

together)

Music representations

• [Oord et. al, 2013]
– Extends iALS/WMF with audio

features
• To overcome cold-start

– Music feature extraction
• Time-frequency representation
• Applied CNN on 3 second

samples
• Latent factor of the clip: average

predictions on consecutive
windows of the clip

– Integration with MF
• (a) Minimize distance between

music features and the MF’s
feature vectors

• (b) Replace the item features
with the music features
(minimize original loss)

Neural Collaborative Filtering

• NeuMF (He et al., 2017)
• Instead of a simple dot product, try MLP

• Theoretically, learn more complex
dependencies

• Reported improvements, but…

https://d2l.ai/chapter_references/zreferences.html#id106

Neural Collaborative Filtering

• NeuMF (He et al., 2017)
• Instead of a simple dot product, try MLP

• Reported improvements, but…

https://d2l.ai/chapter_references/zreferences.html#id106

Neural Collaborative Filtering

• NeuMF / NCF (He et al., 2017)
• Instead of a simple dot product, try MLP

• Reported improvements, but…

• … w.r.t. under-optimized baselines

• Often, simple KNN approaches wins
if tuned properly

https://d2l.ai/chapter_references/zreferences.html#id106

Session-based Recommendations

with RNNs

Recurrent Neural Networks

𝑡=

1

• Input: sequential information (𝑥 𝑡
𝑇)• Hidden state (ℎ𝑡):

– representation of the sequence so far

– influenced by every element of the

sequence up to t

• ℎ 𝑡 = 𝑓 𝑊𝑥 𝑡 + 𝑈ℎ𝑡 ;1 + 𝑏

RNN-based machine learning

• Sequence to value
– Encoding, labeling

– E.g.: time series classification

• Value to sequence
– Decoding, generation

– E.g.: sequence generation

• Sequence to sequence

– Simultaneous
• E.g.: next-click prediction

– Encoder-decoder architecture
• E.g.: machine translation

• Two RNNs (encoder &

decoder)

– Encoder produces a vector describing the sequence

» Last hidden state

» Combination of hidden states (e.g. mean pooling)

» Learned combination of hidden states

– Decoder receives the summary and generates a new sequence

» The generated symbol is usually fed back to the decoder

» The summary vector can be used to initialize the decoder

» Or can be given as a global context

• Attention mechanism (optionally)

ℎ1 ℎ2 ℎ3

𝑥1 𝑥2 𝑥3

𝑦

ℎ1 ℎ2 ℎ3

𝑥

𝑦1 𝑦2 𝑦3

ℎ1 ℎ2 ℎ3

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

1 2 3ℎ𝑒 ℎ𝑒 ℎ𝑒

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

1ℎ𝑑
2 3ℎ𝑑 ℎ𝑑

𝑠

𝑠 𝑠 𝑠𝑦1 𝑦20

Exploding/Vanishing gradients

• ℎ𝑡 = 𝑓 𝑊𝑥 𝑡 + 𝑈ℎ𝑡−1+ 𝑏
• Gradient of ℎ 𝑡 wrt. 𝑥1

– Simplification: linear activations
• In reality: bounded

–
𝛛ℎ 𝑡 =

𝛛ℎ 𝑡 𝛛ℎ 𝑡−1 ⋯𝛛ℎ2 𝛛ℎ1 = 𝑈 𝑡−1𝑊
𝛛ℎ 𝑡−1 𝛛ℎ 𝑡−2𝛛𝑥1 𝛛ℎ1 𝛛𝑥1

• 𝑈 2 < 1 vanishing gradients
– The effect of values further in the past is neglected

– The network forgets

• 𝑈 2 > 1 exploding gradients
– Gradients become very large on longer sequences

– The network becomes unstable

Handling exploding gradients

• Gradient clipping
– If the gradient is larger than a threshold, scale it

back to the threshold
– Updates are not accurate

– Vanishing gradients are not solved

• Enforce 𝑈 2 = 1
– Unitary RNN

– Unable to forget

• Gated networks
– Long-Short Term Memory (LSTM)

– Gated Recurrent Unit (GRU)

– (and a some other variants)

Long-Short Term Memory (LSTM)

• [Hochreiter & Schmidhuber, 1999]
• Instead of rewriting the hidden state during

update, add a delta

– 𝑠𝑡 = 𝑠 𝑡−1 + Δ𝑠𝑡
– Keeps the contribution of earlier inputs relevant

• Information flow is controlled by gates
– Gates depend on input and the hidden state

– Between 0 and 1

– Forget gate (f): 0/1 reset/keep hidden state

– Input gate (i): 0/1 don’t/do consider the contribution
of the input

– Output gate (o): how much of the memory is written to
the hidden state

• Hidden state is separated into two (read before
you write)
– Memory cell (c): internal state of the LSTM cell

– Hidden state (h): influences gates, updated from
the memory cell

𝐶

ℎ

IN

OU

T

+

+

i

f

o

Gated Recurrent Unit (GRU)

• [Cho et. al, 2014]

• Simplified information flow

– Single hidden state

– Input and forget gate merged

update gate (z)

– No output gate

– Reset gate (r) to break

information flow from previous

hidden state

• Similar performance to LSTM ℎ

z

r

IN

OUT

+

Session-based recommendations

• Sequence of events
– User identification problem

– Disjoint sessions (instead of consistent user history)

• Tasks
– Next click prediction

– Predicting intent

• Classic algorithms can’t cope with it well
– Item-to-item recommendations as approximation in

live systems

• Area revitalized by RNNs

GRU4Rec

• [Hidasi et. al, 2015]

• Network structure
– Input: one hot encoded item ID

– Optional embedding layer

– GRU layer(s)

– Output: scores over all items

– Target: the next item in the session

• Adapting GRU to session-
based recommendations
– Sessions of (very) different length & lots of

short sessions: session-parallel mini-
batching

– Lots of items (inputs, outputs): sampling on
the output

– The goal is ranking: listwise loss
functions on pointwise/pairwise scores

GRU layer

One-hot vector

Weighted output

Scores on items

f()

One-hot vector

ItemID (next)

ItemID

GRU4Rec

• Observations
– Similar accuracy with/without embedding

– Multiple layers rarely help
• Sometimes slight improvement with 2 layers

• Sessions span over short time, no need for multiple time

scales

– Quick conversion: only small changes after 5-10

epochs

– Upper bound for model capacity
• No improvement when adding additional units after a

certain threshold

• This threshold can be lowered with some techniques

• Results
– 20-30% improvement over item-to-item

recommendations

GRU4Rec

• Observations
– Similar accuracy with/without embedding

– Multiple layers rarely help
• Sometimes slight improvement with 2 layers

• Sessions span over short time, no need for multiple time

scales

– Quick conversion: only small changes after 5-10

epochs

– Upper bound for model capacity
• No improvement when adding additional units after a

certain threshold

• This threshold can be lowered with some techniques

Session KNN variants may outperform deep learning approaches

Additional topics

Context-awareness
Explanations and interface

Multi-stakeholder and multi-objective
Fairness and biases

Context-aware RecSys

Context-awareness
Eating alone vs. With friends vs. On a conference

Usual tase vs. The end of December
While in homepage vs. in headset category

RecSys: Context-aware

Context-awareness
Simple method for context incorporation into matrix factorization

Key design choice:
which contextual axes

and values / granularity
to consider?

Nowadays, more
convenient to

model through DL

Explanations in RecSys
This item was recommended to you because…
- Improve Transparency / Validity checking / Trust in the system /

Persuasiveness / Simplify decision-making / Understand domain,…

- Many different strategies, interfaces, use-cases and source data tried so far

Explanations in RecSys

Explanations in RecSys

User Control in RecSys

Normally, it is enough if the system provides the user with recommendations
- But sometimes, the user has certain specific needs / wishes

- Joint models for search and recommendation
- Conversational recommender systems
- Adding controlability/steering for recommendations

- Set high level objectives; re-ranking

- Finer-grained interests („levers“), in-process

Multi-stakeholder RecSys

Multi-objective RecSys
- You are not alone in the system, others have their needs too
- You may have multiple needs hard to sum into a single objective

Multi-Stakeholder RecSys

• Why we need MOO in this context
– The end user is not the only stakeholder

– RecSys should be built by considering the item utility
from the perspective of different stakeholders

64

Multi-Stakeholder RecSys

50

• Objective definitions
– It varies from domains to domains

– For each stakeholder, there’s at least one objective
• E-Commerce or Marketplace

– Buyer: user preferences on items, budget

– Seller: profits

– Platform: commission fees

– Delivery company: costs and profits

• Job seeking
– Job seeker: user preferences

– Recruiter: talent requirements

Fairness in Recommender Systems

Tutorial from: https://fairness-tutorial.github.io/

Bias and Fairness Issues

Fairness Issues

Fairness Issues

Fairness Issues

Fairness Issues

Cascade of Biases

1Tobias Schnabel, Adith Swaminathan, Ashudeep

Singh, Navin Chandak, and Thorsten Joachims. 2016.

Recommendations as Treatments: Debiasing Learning

and Evaluation. In ICML.

2B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney,

“Collaborative filtering and the missing at random

assumption,” in UAI, 2007

3 4 2 5

1 3 2 5

2 3 4 4

3 4 5

3 5

3 4 4

•Selection Bias

• Definition: Selection bias happens in explicit feedback data as

users are free to choose which items to rate, so that the

observed ratings are not a representative sample of all

ratings.

Selection bias

pT (u, i) pD (u,i)

17

1 1 0 1

0 1 0 1

0 1 1 1

1 1

0 0

0 1 1 1

Exposure bias

pT (u, i) pD (u,i)

•Exposure Bias

• Definition: Exposure bias happens in implicit feedback data as

users are only exposed to a part of specific items.

• Explanation: A user generates behaviors on exposed items, making

the observed user‐item distribution deviate from the ideal

one pD (u, i) .

18

•Exposure Bias

1 1 0 1

0 1 0 1

0 1 1 1

1 1

0 0

0 1 1 1

1 1

1 1 1

Dislike

Implicit feedback

pT (u,i | r 0) 0

Exposure bias

pT (u, i) pD (u, i)

Unware

Exposure
Policy of RS

User
Background

Item
Popularity

19

3 4 5

3 4

3 4 3

3 4 5

3 5

3 3 4

3 4 3 5

Public opinions

•Conformity Bias

• Definition: Conformity bias happens as users tend to behave

similarly to the others in a group, even if doing so goes against

their own judgment.

Conformity bias

pT (r|u, i) pD (r | u, i)

20

pT (u, i) pD (u,i)

User exposure will be

affected by the position

pT (r | u, i) pD (r | u, i)

User judgments also will be

affected by the position

1 1 0 1

0 1 0 1

0 1 1 1

1 1 1

1

1 1

21

•Position Bias (Presentation Bias more generally)

• Definition: Position bias happens as users tend to interact with

items in higher position of the recommendation list.

Position bias

De-biasing Off-line Evaluation

 https://dl.acm.org/doi/pdf/10.1145/3240323.3240355

nDCG, AUC, MAP,...

Propensity score

https://dl.acm.org/doi/pdf/10.1145/3240323.3240355

Outlook

More complex task-specific architectures (bit boring)
Scalability issues (sparse EASE variants)

User controll + Large Language Models (Conversational RecSys)
Evaluation issues (evergreen)
System -> Ecosystem (normal in industry, not so much in papers)

