

NSWI166 – Introduction to Recommender Systems and User Preferences – Lecture #2

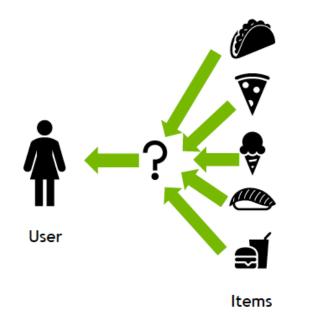
Ladislav Peska & Peter Vojtas <u>Ladislav.peska@matfyz.cuni.cz</u>, S208 <u>https://www.ksi.mff.cuni.cz/~peska/</u> <u>vyuka/NSWI166</u>

Lecture: Wed 9:00 S5 (:-/) Labs: Wed 10:40 S6 (every two weeks) 2/1, ZK+Z, 4 credits

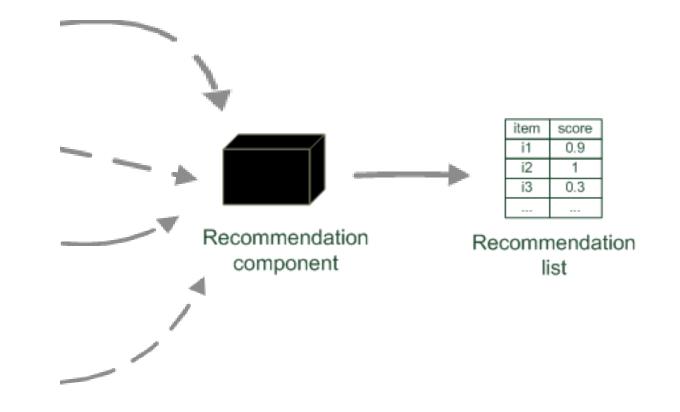
https://www.ksi.mff.cuni.cz/

- 1 -

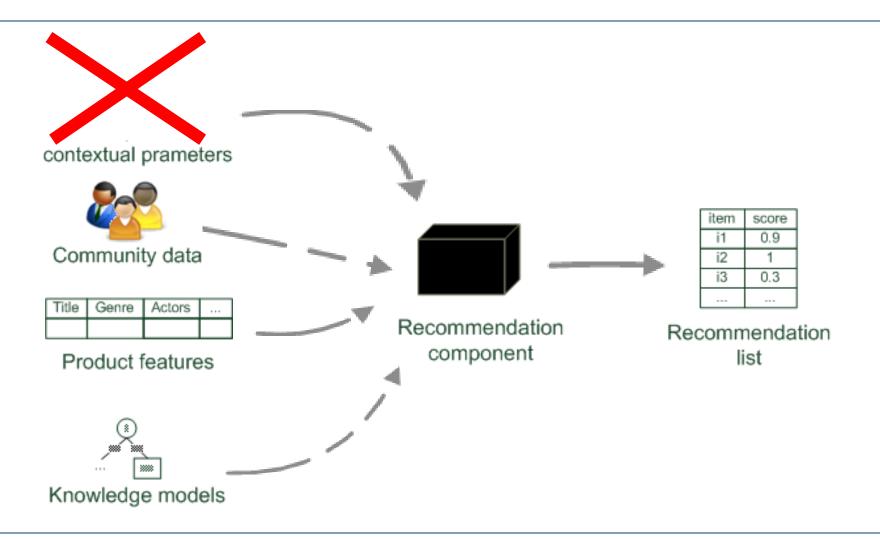
Recap: what should RS do?



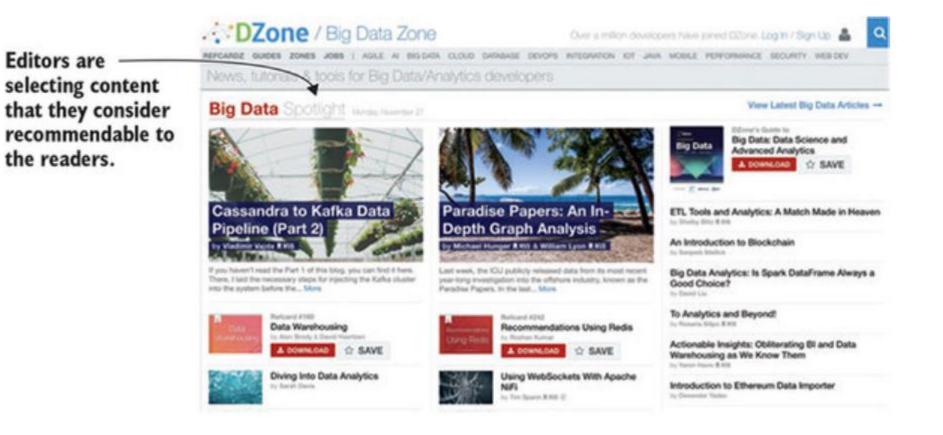
Recap: what data can RS use?



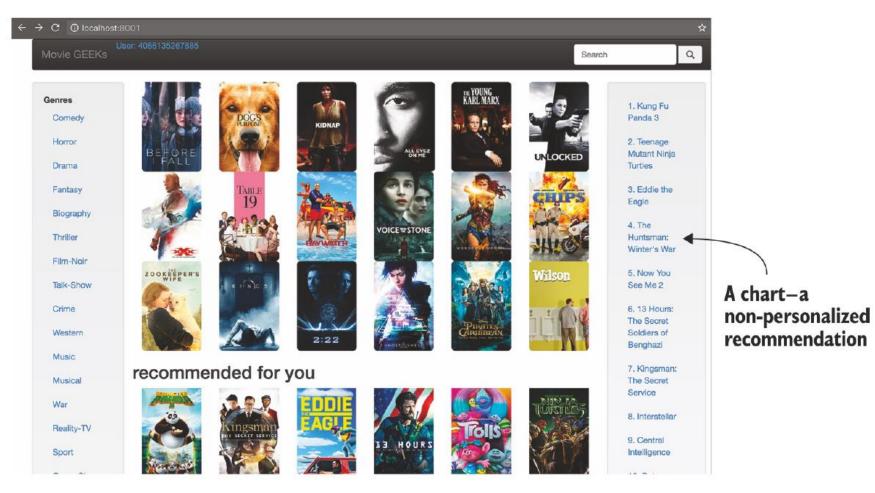
Paradigms of recommender systems



Editors selection (think about news)



Popularity-based algorithms

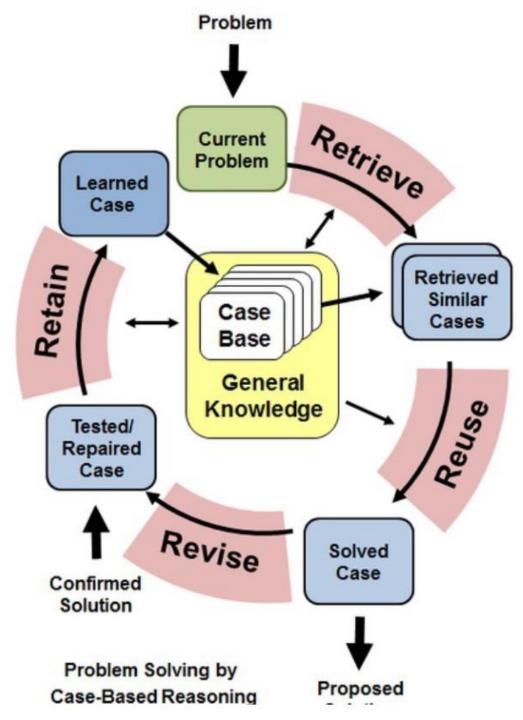


- Seeded / item-based recommendations
 - Similar to a search query
 - Can be an item, a product, or an article
 - Frequently Bought Together (FBT) category
 - affinity analysis or, in more familiar terms, shopping basket analysis

Frequently Bought Together

- This item: Frostfire Large 2 Person Instant Popup Tent £24 99
 ■
- Rew Set of 2 x 180cm Camping Yoga Roll Eva Foll Foam backed Sleeping Mat Mattress Tent Festival... £8.69
- Yellowstone Essential Mummy Sleeping Bag £9.81

- Case-based / Business rules / Stereotypes
 - Age as a proxy to music profile
 - If you are abroad, we should not supply you local news
 - After buying fruit, recommend vegetable on sale



Association rules

- 1. { bread, yogurt }
- 2. { milk, bread, carrots, }
- 3. { bread, carrots }
- 4. { bread, milk }
- 5. { milk, chocolate, carrots }
- 6. { milk, chocolate, yogurt, bread }

1-6 are called Itemsets Which make a good recommendation?

oncepts for frequen ning

Support represents the popularity of that product of all the product transactions.

Confidence can be interpreted as the likelihood of purchasing both the products A and B.

Support

- T(), all transactions = 6
- S(bread \rightarrow milk) = 3/6
- S(chocolate \rightarrow carrots) = 1/6
- S(chocolate \rightarrow milk) = 2/6

- 1. { bread, yogurt }
- 2. { milk, bread, carrots, }
- 3. { bread, carrots }
- 4. { bread, milk }
- 5. { milk, chocolate, carrots }
- 6. { milk, chocolate, yogurt, bread }

$$S(X \to Y) = \frac{|T(X AND Y)|}{T()}$$

Confidence: bread and milk

- T(bread AND milk) = {milk,bread,carrots},{bread,milk},{milk,dates,yogurt,bread}
- T(bread) = {milk,bread,carrots},{bread,carrots},{bread,milk},{milk,dates,yogurt,bread}

{ bread, yogurt }
{ milk, bread, carrots, }
{ bread, carrots }
{ bread, milk }
{ milk, chocolate, carrots }
{ milk, chocolate, yogurt, bread }

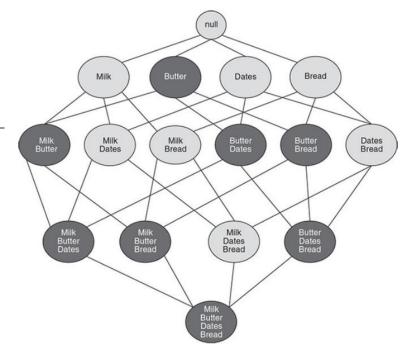
{ bread, yogurt }
{ milk, bread, carrots, }
{ bread, carrots }
{ bread, milk }
{ milk, chocolate, carrots }
{ milk, chocolate, yogurt, bread }

 $c(X \rightarrow Y) = \frac{|T(X \text{ AND } Y)|}{T(X)}$

 $c(bread \rightarrow milk) = \frac{|T(bread AND milk)|}{|T(bread)|}$

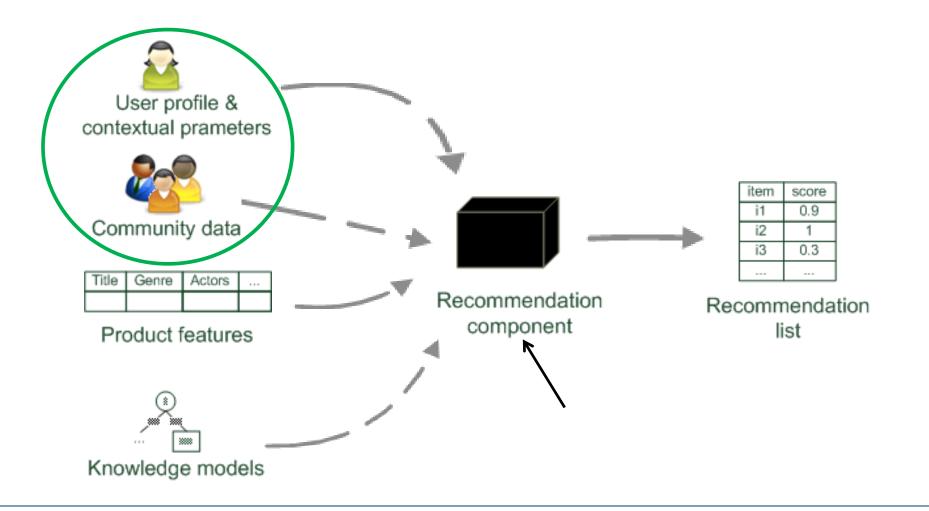
Possible Procedure

- 1. Settle on a minimum support and minimum confidence level.
- **2**. Get all transactions.
- **3**. Create a list of itemsets, <u>one for each element (e.g.</u>, bread), and calculate their *support*
- **4**. Build a list of itemsets containing <u>more than one item</u> and calculate support
- **5**. Iterate through the itemsets and remove the ones that do not fulfill the confidence requirement.



Collaborative Filtering

Paradigms of recommender systems



Agenda

Collaborative Filtering (CF)

- What & why
- User-based nearest-neighbor
- Item-based nearest-neighbor
- Input data types
- Data sparsity problems
- Matrix factorization techniques

Collaborative Filtering (CF)

(used to be) The most prominent approach to generate recommendations

- used by large, commercial e-commerce sites
- well-understood, various algorithms and variations exist
- applicable in many domains (book, movies, DVDs, ..)
- Approach
 - use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF Approaches

Input

– Only a matrix of given user–item ratings

Output types

- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - Less relevant nowadays
 - Shown somewhere in the product description
- A top-N list of recommended items
 - This is what you need in the end anyway

Pure CF Approaches

Input

– Only a matrix of given user–item ratings

Output types

- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - Less relevant nowadays
 - Shown somewhere in the product description
- A top-N list of recommended items
 - This is what you need in the end anyway

User-based neares

The basic techniq

- Given an "active
 - find a set of u rated item i [
 - use, e.g. the a
 - do this for all
- Basic assumption
 - If users had simila
 - User preferences

ion variant] e past and who have THE REAL PROPERTY - 21 -

User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

The basic technique

- Given an "active user" (Alice) **and an item** *i* not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item *i* [this is the difference from RecSys HelloWorld from last lecture]
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
 - If users had similar tastes in the past they will have similar tastes in the future
 - User preferences remain stable and consistent over time

User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

The basic technique

- Given an "active user" (Alice) and an item *i* not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have rated item i
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated
- Basic assumption and idea
 - If users had similar tastes in the past they will have similar tastes in the future
 - User preferences remain stable and consistent over time
 - This might be a problem for long-deployed services
 - Apply decay of relevance or remove old data
 - Detect changes of preference

User-based nearest-neighbor collaborative filtering (2)

Example

- A database of ratings of the current user, Alice, and some other users is given:

	ltem1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen
- Underlying assumption: user provides explicit rating

User-based nearest-neighbor collaborative filtering (3)

Some first questions

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

	ltem1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

- A (once upon time) popular similarity measure in KNN: Pearson correlation
 - a, b : users
 - $r_{a,p}$: rating of user a for item p
 - *P* : set of items, rated both by *a* and *b*
 - Possible similarity values between -1 and 1

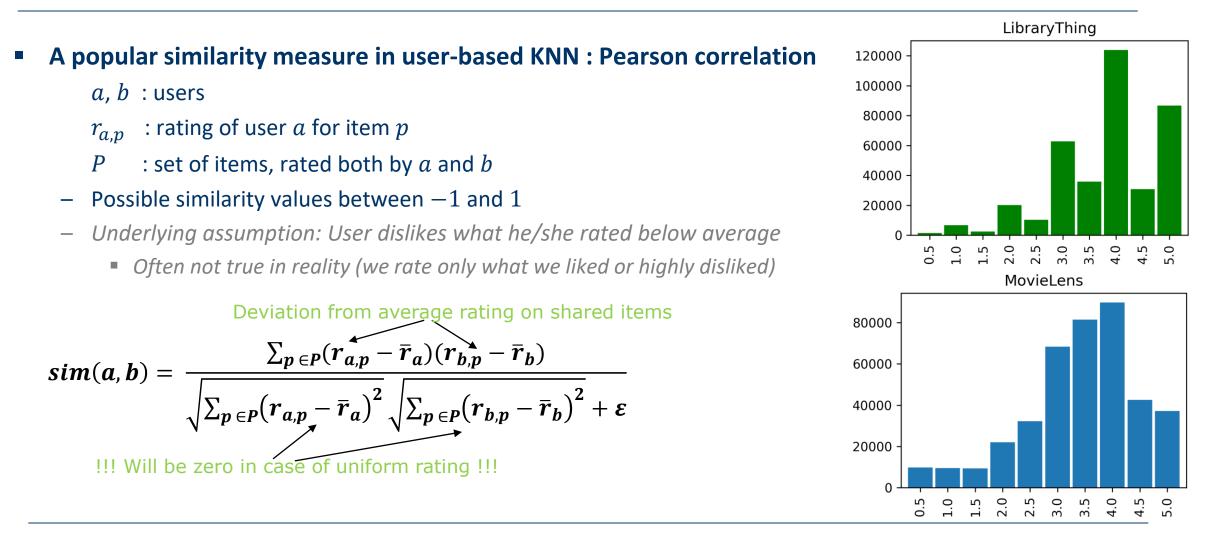
$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

What about something more simple? Jaccard similarity $(A \cap B/A \cup B)$

- Applicable for simple implicit feedback data
- Explicit => remove bad explicit ratings (this is a baseline, anyway)

Good points of Pearson's: it considers biases of individual users (someone permanently rates higher than somebody else)

Measuring user similarity (1)



Measuring user similarity (2)

- A popular similarity measure in user-based KNN : Pearson correlation
 - *a*, *b* : users
 - $r_{a,p}$: rating of user *a* for item *p*
 - *P* : set of items, rated both by *a* and *b*
 - Possible similarity values between -1 and 1

	ltem1	ltem2	ltem3	ltem4	ltem5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0,85
User2	4	3	4	3	5	sim = 0,00
User3	3	3	1	5	4	sim = 0,70
User4	1	5	5	2	1	sim = -0,79

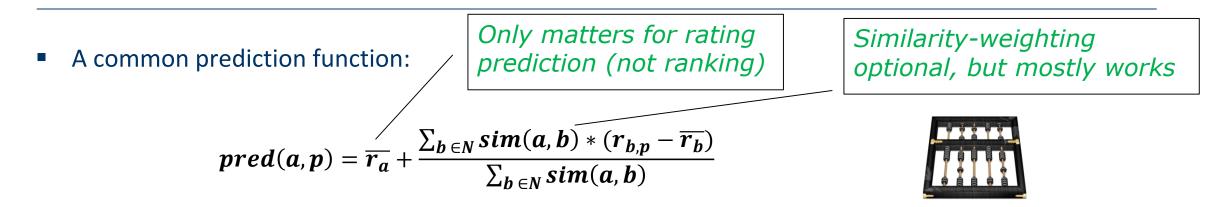
Making predictions

A common prediction function:

$$pred(a, p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b, p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Making predictions



- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity with *a* as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Improving the metrics / prediction function

Not all neighbor ratings might be equally "valuable"

- Agreement on commonly liked items is not so informative as agreement on controversial items
- **Possible solution**: Give more weight to items that have a higher variance

Value of number of co-rated items

- Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
- Incorporate all items rated by users, not just the shared ones
- What if there are lots of users with only 1-2 rated objects?

Case amplification

- Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- $sim(a, b)^2$, variants of softmax etc.

Neighborhood selection

- Use similarity threshold or fixed number of neighbors
- Hyperparameter tuning
- Should all users be treated equally? (e.g. experienced vs. novice)

Memory-based and model-based approaches

User-based KNN is said to be "memory-based"

- the rating matrix is directly used to find neighbors / make predictions
 - Everything is calculated at the time of the request
- does not scale for most real-world scenarios (how much can you calculate within 50-100ms?)
- large e-commerce sites / social networks have tens of millions of customers and millions of items

Model-based approaches

- based on an offline pre-processing or "model-learning" phase
 - Represent users and/or items as a set of features, which are easy to operate with
- at run-time, only the learned model is used to make predictions
- models are updated / re-trained periodically
- large variety of techniques used
- model-building and updating can be computationally expensive
- *item*-based KNN is an example for model-based approaches

Item-based collaborative filtering

Basic idea:

- Use the similarity between items (and not users) to make predictions
 - Tends to be a bit more stable

• Example:

- Look for items that are similar to Item5 *w.r.t.* Ratings given by other users
- Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	ltem3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- Produces better results in item-to-item filtering (??? Maybe)
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$sim(\vec{a},\vec{b}) = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|*|\vec{b}|}$$

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - U: set of users who have rated *both items a and b*

$$sim(\vec{a},\vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Making predictions

A common prediction function:

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)
 - Outdated, you need to tune hyperparameters yourself

More on ratings – Explicit ratings

- Probably the most precise ratings (ehm... Attribute ratings, reviews, detailed implicit feedback nowadays...)
- Most commonly used (1 to 5, 1 to 7 Likert response scales, *likes/dislikes*)
- Research topics
 - Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.
 - Different domains addopted other common scales
 - Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)
 - Booking.com rating
- Main problems
 - Users not (always) willing to rate many items
 - number of available ratings could be too small → sparse rating matrices → poor recommendation quality
 - How to stimulate users to rate more items?
 - What else to use?

More on ratings – Implicit ratings

- Typically collected by the web shop or application in which the recommender system is embedded
- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating
- Clicks, page views, time spent on some page, demo downloads ...
- Implicit ratings can be collected constantly and do not require additional efforts from the side of the user
- Main problem
 - How to interpret the feedback
 - Like vs. consume
 - For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else
- Implicit ratings can be used in addition to explicit ones; question of correctness of interpretation

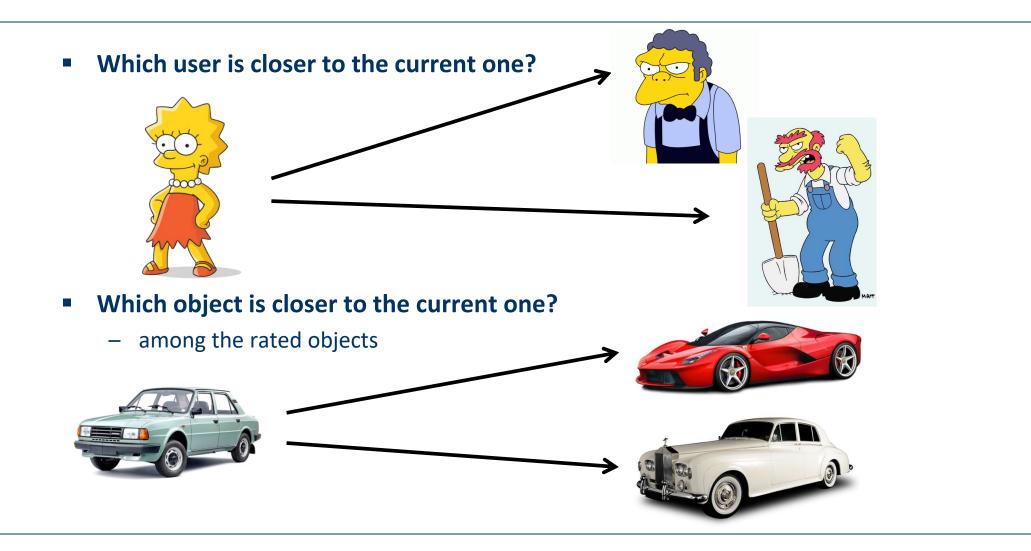
Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items (they will hate you)
 - Recommend new items more often (get feedback quickly)
 - Use another method (e.g., content-based, demographic or simply nonpersonalized) in the initial phase (bias problems, but generally OK)
 - Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998) (... And the performance is...⁽ⁱ⁾)

Alternatives

- Use better algorithms (beyond nearest-neighbor approaches)
- Simple example:
 - Assume "transitivity" of neighborhoods

Data sparsity problem for nearest neighbors



- Calculating estimated rating for each object is time-consuming and unnecessary
 - Often, we do not need object's rating, but only ranking of a top-k objects
- For many objects, there are no similar user who rated this object
 - No way to reliably estimate rating

		ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7	
rity	Alice	5	3	?	4	?	?	?	No
similarity	User1	5	3	?	?	3	2	?	shar
	User2	?	5	?	?	5	5	5	ared o
Negative	User3	?	?	1	?	?	1	3	objects
Ne	User4	1	?	4	2	?	4	?	ts

- Calculating estimated rating for each object is time-consuming and unnecessary
 - Often, we do not need object's rating, but only ranking of a top-k objects
- For many objects, there are no similar user who rated this object
 - No way to reliably estimate rating

=> Forget about Item3, we have plenty of other items to recommend

		ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7	
rity	Alice	5	3	?	4	?	?	?	No
similarity	User1	5	3	?	?	3	2	?	shar
	User2	?	5	?	?	5	5	5	red o
Negative	User3	?	?	1	?	?	1	3	objects
Ne	User4	1	?	4	2	?	4	?	ts

User-based KNN for ranking:

- Select K closest neighbors, who rated also some other items
- Sum scores for all unknown items rated by the neighbors [other aggregation variants possible]
- Return items with highest scores

$$score(a, p) = \sum_{b \in N} sim(a, b) * (r_{b,p} - \overline{r_b})$$

User-based KNN for ranking:

- Select K closest neighbors, who rated also some other item

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

		ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7
	Alice	5	3	?	4	?	?	?
0.5	User1	5	3	?	?	3	1	?
0.35	User2	?	4	?	?	5	5	4
NaN/O	User3	?	?	1	?	?	1	4
-0.45	User4	1	?	4	2	?	5	?

User-based KNN for ranking:

- Select K closest neighbors, who rated also some other item
- Sum scores for all unknown items rated by the neighbors
- Return items with highest scores
 - Item5, Item6,...

		ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7
	Alice	5	3	?	4	?	?	?
0.5	User1	5	3	?	?	3	1	?
0.35	User2	?	4	?	?	5	5	4
				?/0		3.25	2.25	1.4
	$score(a, p) = \sum_{b \in N} sim(a, b) * (r_{b,p} - \overline{r_b})$							

Item-based KNN for Ranking Prediction

- 2003 paper: Amazon.com Recommendations Item-to-Item Collaborative Filtering
 - https://dl.acm.org/citation.cfm?id=642471
- Recommend items that are similar (based on other user ratings) to the items already liked by Alice

ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7
Alice 5	3	?	4	?	?	?
User1 5	3	?	?	3	2	?
User2 ?	5	?	?	5	5	5
User3 ?	?	1	?	?	1	3
User4 1	?	4	2	?	4	?
				\int		<i></i>

Item-based KNN for Ranking Prediction

- Recommend items that are similar (based on other user ratings) to the items already liked by Alice
- Offline preprocessing:

For each item in product catalog, I1
For each customer C who purchased I1
For each item I2 purchased by customer C
Record that a customer purchased I1 and I2
For each item I2
Compute the similarity between I1 and I2 (i.e. Jaccard)

- Output: similarity matrix of all objects (or top-k most similar)
- Online:
 - For each rated object o_a add $sim(o_a, o_b) * (r_{a,u} \overline{r_u})$ to the score of object o_b
 - Recommend objects with highest scores

NSWI166 – Introduction to Recommender Systems and User Preferences – Lecture #3

Ladislav Peska & Peter Vojtas <u>Ladislav.peska@matfyz.cuni.cz</u>, S208 <u>https://www.ksi.mff.cuni.cz/~peska/vyuka/NSWI166</u>

- 49 -

https://www.ksi.mff.cuni.cz/

Organization

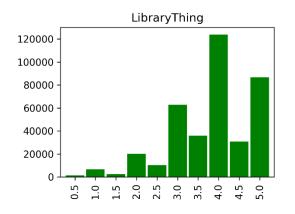
- Active reading #1 deadline: 10.3. 2024
 - Submit via SIS -> Study Group Roaster
- Labs #1 deadlines this/next Sunday
 - Submit via SIS -> Study Group Roaster
- Get to know Pandas / Numpy / Scipy + Scikit-learn
 - Not strictly needed to pass, but can greatly simplify your life

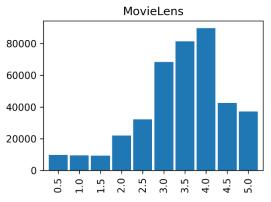
Recap

Item vs. User KNN?

	ltem1	ltem2	ltem3	ltem4	ltem5	ltem6	ltem7
Alice	5	3	?	4	?	?	?
User1	5	3	?	?	3	2	?
User2	?	5	?	?	5	5	5
User3	?	?	1	?	?	1	3
User4	1	?	4	2	?	4	?

How are ratings distributed?





Recap

What is COLD START?

Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items (they will hate you)
 - Recommend new items more often (get feedback quickly)
 - Use another method (e.g., content-based, demographic or simply non-personalized) in the initial phase (bias problems, but generally OK)
 - Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998) (... And the performance is...⁽³⁾)

Alternatives

Use better algorithms (beyond nearest-neighbor approaches)

More model-based approaches

- Plethora of different techniques proposed in the last years, e.g.,
 - Matrix factorization techniques,
 - BPR, Funk SVD, ALS,...
 - Association rule mining
 - compare: shopping basket analysis
 - Autoencoders
 - MultVAE, EASE, ELSA, SANSA, ...
 - Graph-based approaches
 - Spreading activation, Graph convolutional networks, ...
- Costs of pre-processing
 - Usually not discussed
 - Incremental updates possible?
 - *if not, training should be fast enough*

Example algorithms for sparse datasets

- Recursive CF (Zhang and Pu 2007)
 - Assume there is a very close neighbor *n* of *u* who however has not rated the target item *i* yet.
 - Idea:
 - Apply CF-method recursively and predict a rating for item *i* for the neighbor
 - Use this predicted rating instead of the rating of a more distant direct neighbor

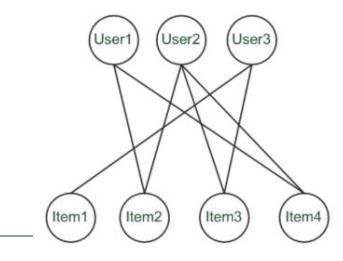
Never saw in praxis

		ltem1	ltem2	Item3	ltem4	ltem5	
Ali	ce	5	3	4	4	? 🗖	
Use	er1	3	1	2	3	?	sim = 0.85
Use	er2	4	3	4	3	5	Predict
Use	er3	3	3	1	5	4	rating for
– Use	er4	1	5	5	2	1	User1

Graph-based methods (1)

"Spreading activation" (Huang et al. 2004)

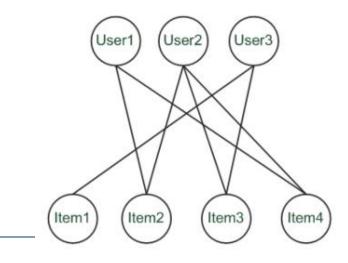
- Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
- Assume that we are looking for a recommendation for User1
- When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and Item4
- Thus *Item3* will be recommended to *User1* because the nearest neighbor, *User2*, also bought or liked it



Graph-based methods (2)

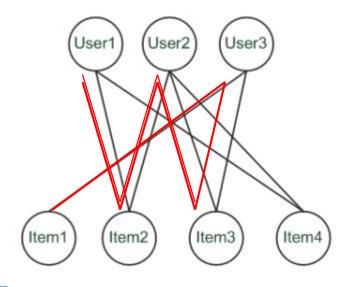
"Spreading activation" (Huang et al. 2004)

- In a standard user-based or item-based CF approach, paths of length 3 will be considered that is, *Item3* is relevant for User1 because there exists a three-step path (User1–Item2–User2–Item3) between them
- Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
- Using path length 5, for instance



Graph-based methods (3)

- "Spreading activation" (Huang et al. 2004)
 - Idea: Use paths of lengths > 3 to recommend items
 - Length 3: Recommend Item3 to User1
 - Length 5: Item1 also recommendable



Matrix Completion (Matrix factorization)

Matrix completion

- Given a sparse matrix. We want to fill-in the unknown values
 The values of the matrix are dependent
 - on each other

5	?	1	?	?	•••
?	?	5	?	4	
5	4	2	?	?	•••
?	3	?	2	5	
1	?	5	?	4	•••
5	4	?	?	2	
	••••	••••			•••

Approaches

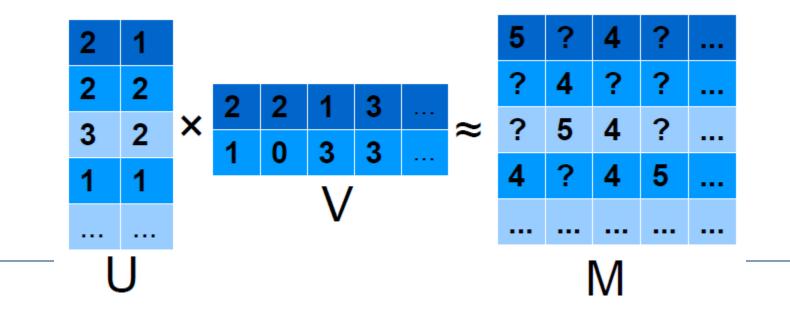
•

- Search for similar rows/columns
- (nearest neighbour collaborative filtering)
- Matrix factorization
- Restricted Boltzmann Machines (RBM)

- ...

Matrix factorization

- We estimate matrix *M* as the product of two matrices *U* and *V*.
- Based on the known values of *M*, we search for *U* and *V* so that their product best estimates the (known) values of *M*



The projection of U and V^T in the 2 dimensional latent space (U_2, V_2^T)

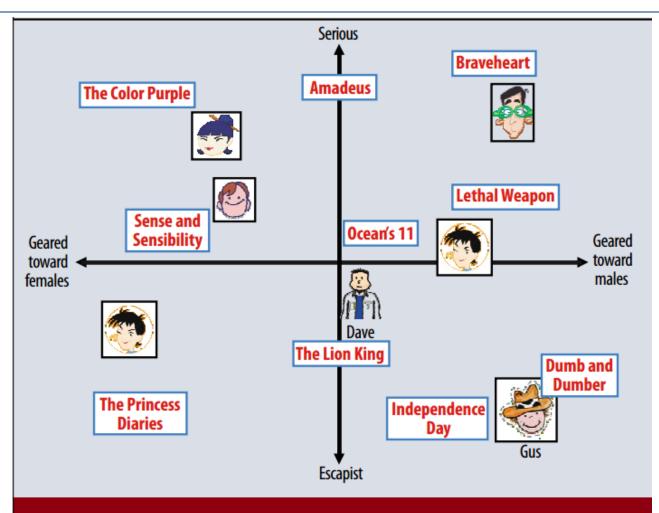


Figure 2. A simplified illustration of the latent factor approach, which characterizes both users and movies using two axes—male versus female and serious versus escapist.

Problem formulation

• Target function:

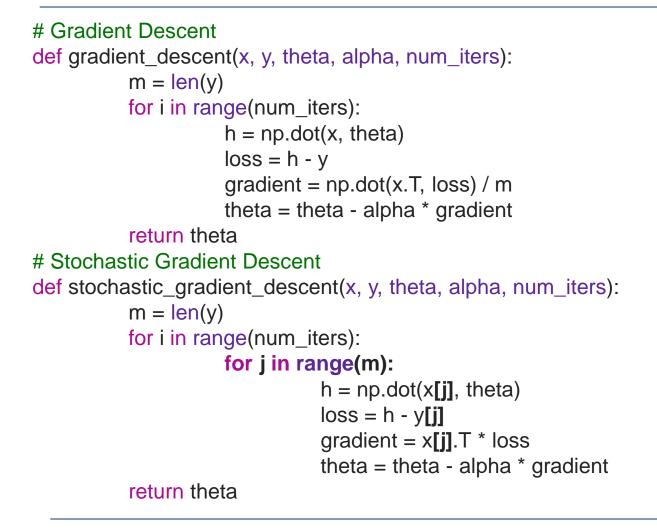
٠

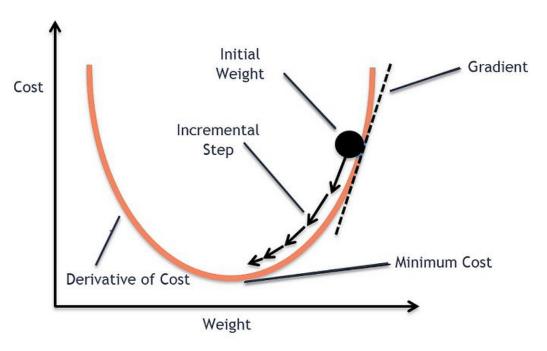
sum of squared errors + regularization

$$\sum_{i,j} \left(m_{i,j} - \sum_{k=0}^{K} u_{i,k} v_{k,j} \right)^2 + \lambda \left(\sum_{i,j} u_{i,j}^2 + \sum_{i,j} v_{i,j}^2 \right)$$

- where λ is the weight of the regularization term
- (i. e., a constant giving the importance of the
- regularization term)
- Minimization of the above loss function using stochastic gradient descent (or any other incremental optimization algorithms)

Matrix Factorization Algorithm

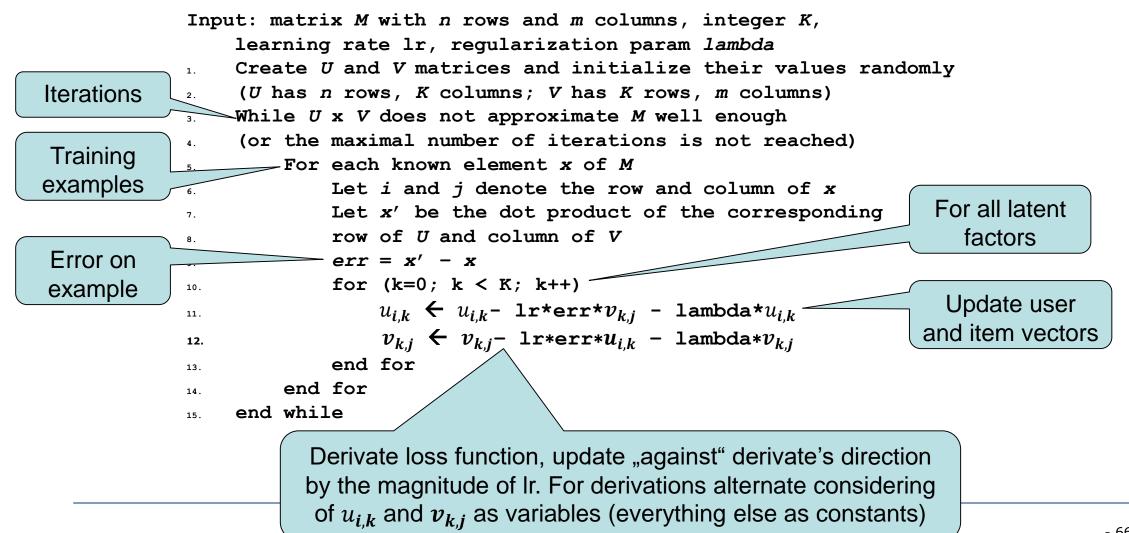




Matrix Factorization Algorithm

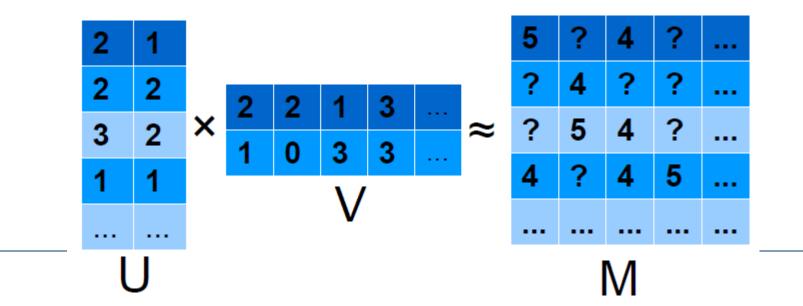
Input: matrix M with n rows and m columns, integer K ,
learning rate lr, regularization param lambda
1. Create U and V matrices and initialize their values randomly
2. (U has n rows, K columns; V has K rows, m columns)
3. While <i>U</i> x <i>V</i> does not approximate <i>M</i> well enough
4. (or the maximal number of iterations is not reached)
5. For each known element x of M
6. Let i and j denote the row and column of x
Let x' be the dot product of the corresponding
$s. \qquad \text{row of } U \text{ and column of } V$
err = x' - x
10. for $(k=0; k < K; k++)$
$u_{i,k} \leftarrow u_{i,k} - \texttt{lr} + \texttt{err} + v_{k,j} - \texttt{lambda} + u_{i,k}$
12. $v_{k,j} \leftarrow v_{k,j}$ - lr*err* $u_{i,k}$ - lambda* $v_{k,j}$
13. end for
14. end for
15. end while

Matrix Factorization Algorithm

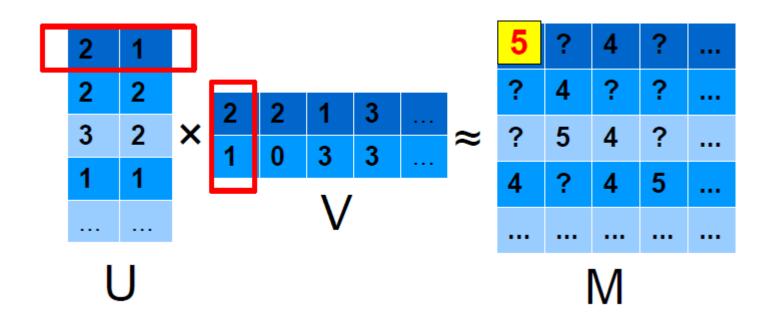


High-level view of matrix factorization algorithm

- Random initialization of U and V
- While U x V does not approximate the known values of M well enough
 - Choose a known value of *M*, we denote it by *x*
 - Adjust the values of the corresponding row and column of U and V respectively, so that the approximation becomes better

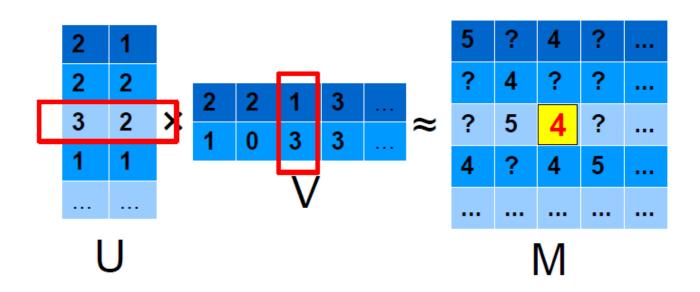


Example for an adjustment step



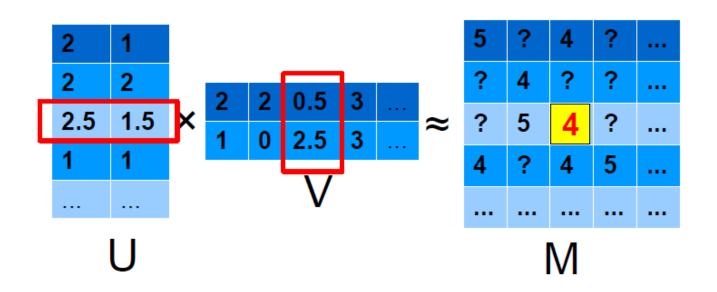
(2*2)+(1*1) = 5 which equals to the selected value \rightarrow we do not do anything

Example for an adjustment step



(3*1)+(2*3) = 99 > 4 \rightarrow we decrease the values of the corresponding rows so that their products will be closer to 4

Example for an adjustment step

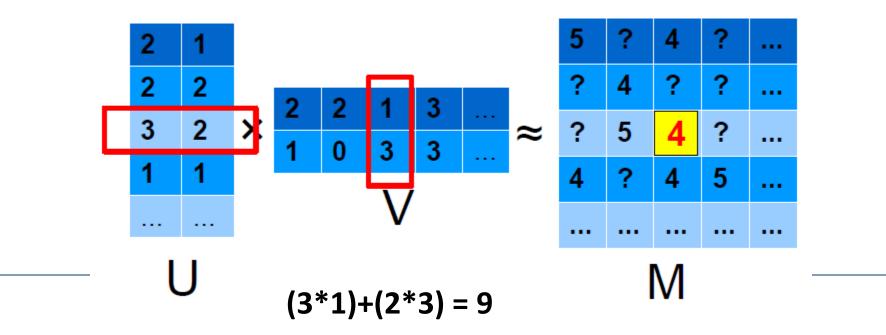


(3*1)+(2*3) = 99 > 4 \rightarrow we decrease the values of the corresponding rows so that their products will be closer to 4

Why is the algorithm "good"?

1. The adjustment should be proportional to the error \rightarrow let it be ϵ -times the error

- In the current example: error = 9 4 = 5
- with ϵ =0.1 we will decrease all the values in the corresponding rows and columns by 0.1*5=0.5

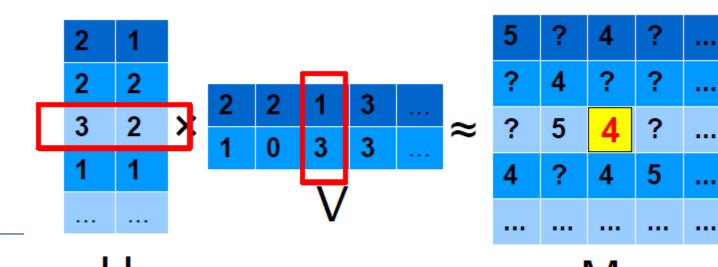


- 71 -

Why is the algorithm "good"?

2. We should take into account how much each value of the row/column contributes to the error

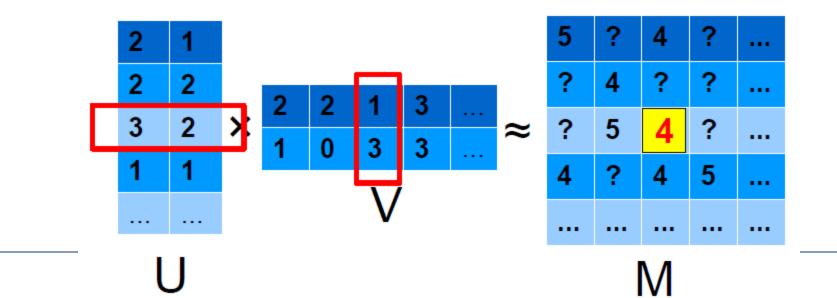
- For the selected row:
- 3 is multiplied by 1 \rightarrow 3 is adjusted by $\epsilon^*5^*1 = 0.5$
- 2 is multiplied by 3 \rightarrow 2 is adjusted by ϵ *5*3 = 1.5
- For the selected column respectively:
- $\epsilon^*5^*3\text{=}1.5$ and $\epsilon^*5^*2\text{=}1.0$



Why is the algorithm "good"?

3. We prefer simpler models (avoid overfitting).

- At each adjustment step: subtract additionally
- · λ -times the value
 - For the selected row: subtract additionally
 - $\lambda*3$ from 3, and $\lambda*2$ from 2 .
 - For the selected column respectively: λ^*1 and λ^*3

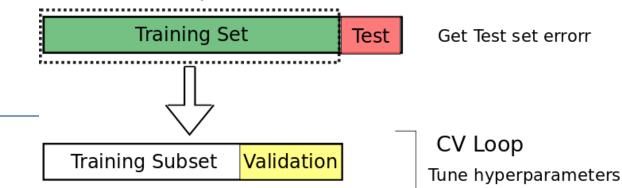


What are the MF's Hyperparameters?

- Number of latent factors
- Learning rate
- Amount of regularization
- Stopping criteria (number of iterations + early stopping options)

How to select the right ones?

- Hyperparameter tuning
 - Try different configurations and evaluate on validation data
 - Select the best performing variant and re-train on all data
 - grid search / random search / Bayesian / Evolutionary ...



Questions?

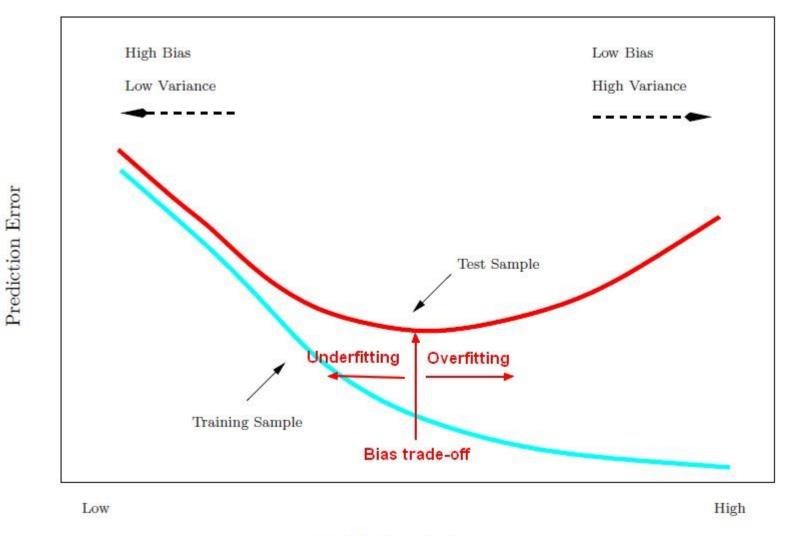
Issues + Disadvantages of classical MF

- Static set of items and users (what about new ones?)
 - Batch-trained newest response is never in the models
 - Iterative local updates possible, but new users/items are stil a problem
- Optimize w.r.t. Irrelevant error (RMSE)
- Learning rate vs. Regularization hyperparameters
- Local optimum vs. global optimum; convergence speed
 - More ellaborated optimizers

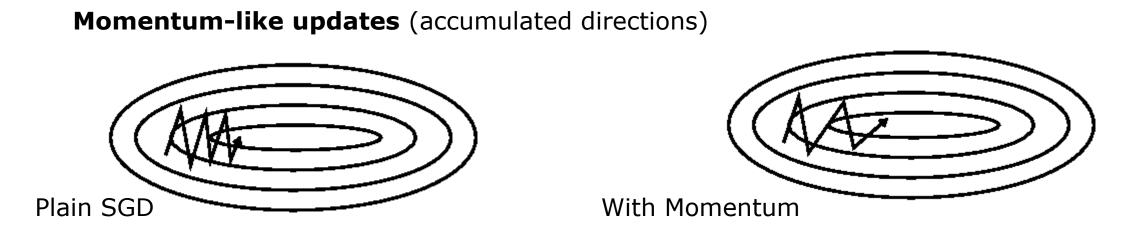
•

- https://ruder.io/optimizing-gradient-descent/
- Memory-efficient implementation
 - sparse representation of M
 - Sparse matrix in scipy.sparse (i,j,value)
- Too many items / users to fit into memory
 - "Pipeline approaches" pre-filter candidates first via some simple alg. Use more complex alg. For a subset

Learning rate vs. Regularization vs. Num of factors hyperparameters



More ellaborated optimizers

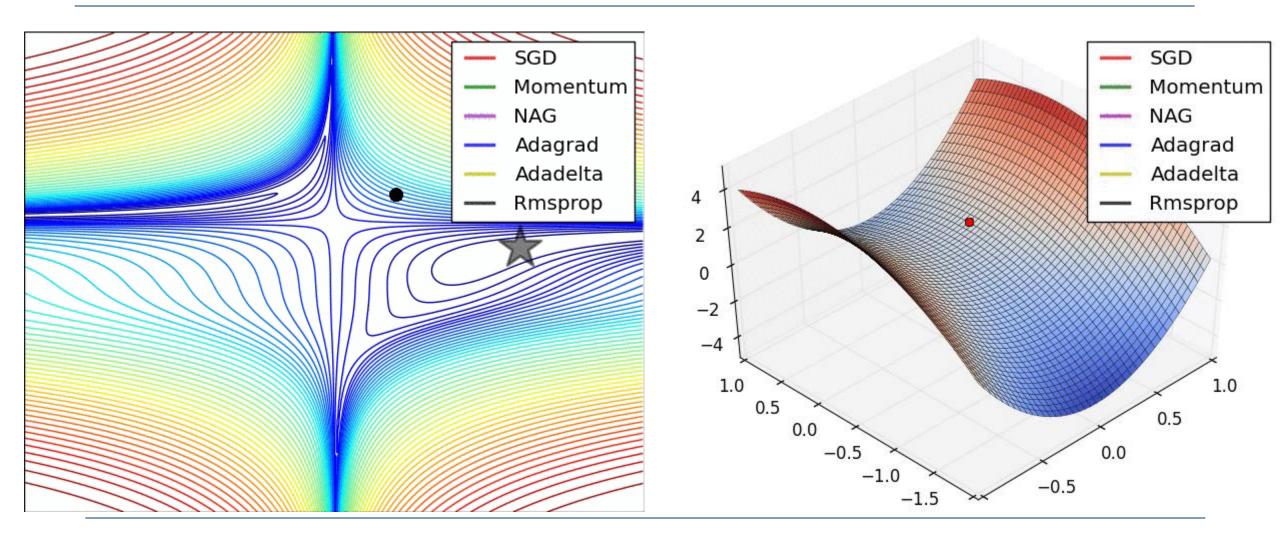


Adaptive learning rates (AdaGrad, AdaDelta, RMSprop)

- smaller updates (i.e. low learning rates) for parameters associated with frequently occurring features,
- larger updates (i.e. high learning rates) for parameters associated with infrequent features

Time-decaying factor / floating window

More ellaborated optimizers



2008: Factorization meets the neighborhood: a multifaceted collaborative filtering model, Y. Koren, ACM SIGKDD

- Merges neighborhood models with latent factor models
- Latent factor models
 - good to capture weak signals in the overall data
- Neighborhood models
 - good at detecting strong relationships between close items
- Combination in one prediction single function
 - Local search method such as stochastic gradient descent to determine parameters
 - Add penalty for high values to avoid over-fitting

$$\hat{r}_{ui} = \mu + b_u + b_i + p_u^T q_i$$

$$\min_{p_*,q_*,b_*} \sum_{(u,i)\in K} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda(||p_u||^2 + ||q_i||^2 + b_u^2 + b_i^2)$$

Optimizing w.r.t. Incorrect metric

True	Pred 1	Pred 2
3	4.1	0.05
4	3.9	1.2
5	3.8	9.5

What is RMSE of both predictors? Which one is better + why?

BPR matrix factorization

Instead of rating errors, focus on ranking correctness

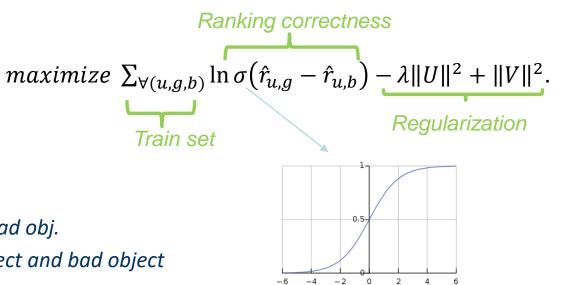
- Triples of user, good and bad object
- For these pairs, good object should be rated higher than the bad one
- (unary feedbak originally, but graded possible)

BPR algorithm

Matrix factorization/completion

$$\mathbf{R} \approx \mathbf{U}\mathbf{O}^{T} = \begin{bmatrix} \mu_{1}^{T} \\ \mu_{2}^{T} \\ \vdots \\ n \times f \end{bmatrix} \times \underbrace{\begin{bmatrix} \sigma_{1} & \sigma_{2} & \dots \end{bmatrix}}_{f \times m} \qquad \hat{r}_{i,j} \coloneqq \mathbf{u}_{i} \times \mathbf{o}_{j}$$

- Ranking-oriented optimization
 - Based on BPR MF¹
 - Binary implicit feedback
 - Train set triples (user, good, bad object)
 - Maximize distance in rating of good and bad obj.
 - Individual updates for both user, good object and bad object



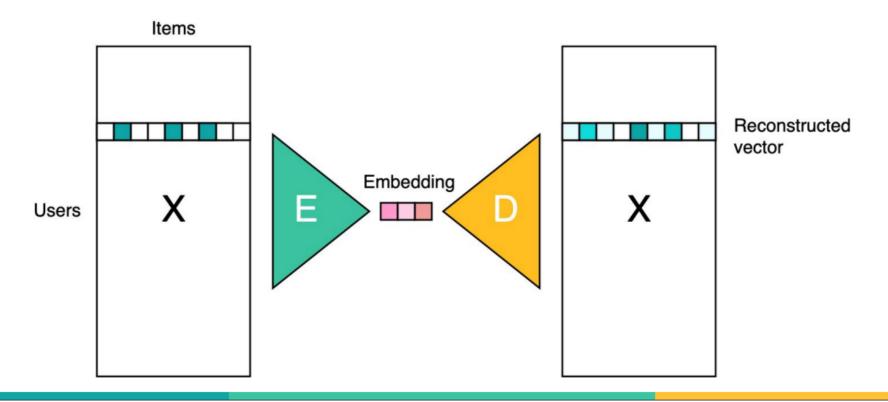
BPR algorithm

What about weak spots of this method?

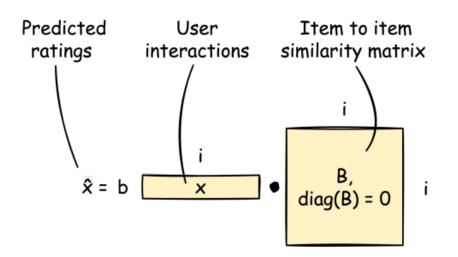
Questions?

Interaction Autoencoders

- Autoencoder = self-supervised representation learning technique
- In RecSys context: Train a ML model to reconstruct rows of (sparse) interaction matrix X
- Denoising AutoEncoders (DAE), Variational AutoEncoder (VAE) etc.



- EASE is a linear autoencoder model with closed-form solution
 - linear regression but with huge model capacity
 - Encoder and decoder fused together
- EASE trains item-to-item weight matrix
- Diagonal of weights constrained to zero to prevent trivial solutions



Collaborative Filtering Issues

- Pros:
- well-understood, works well in some domains, no knowledge engineering required
- Cons:
 - requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

What is the best CF method?

 In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)

How to evaluate the prediction quality? (separate lecture on this – gets even more important nowdays)

- MAE / RMSE: What does an MAE of 0.7 actually mean?
- Serendipity (novelty and surprising effect of recommendations)
 - Not yet fully understood (still true)

What about multi-dimensional ratings? not many application domains

- instead, what about implicit feedback?

EASE: optimization

EASE learns a linear mapping to predict user interactions using the following objective:

$$\min_B \|X-XB\|_F^2 + \lambda \|B\|_F^2$$

where:

- X is the user-item interaction matrix (binary: 1 if user interacted, 0 otherwise),
- *B* is the trainable weight matrix (excluding diagonal elements),
- λ is the **regularization parameter** (controls overfitting),
- $\|\cdot\|_{F}^{2}$ is the **Frobenius norm** (sum of squared differences).

Closed-Form Solution

The optimal solution for B is computed using **ridge regression**, leading to:

$$B = (G + \lambda I)^{-1}G$$

where:

- $G = X^T X$ is the item-item Gram matrix (co-occurrence of items),
- I is the identity matrix (to prevent trivial solutions),
- The diagonal of B is set to zero to prevent trivial identity mapping.

Questions?

EASE: features

Pros:

- Users represented through interacted items => no need for partial updates
- Simple implementation, usually quite fast, very good performance

Cons:

- Quadratic complexity w.r.t. number of items (good for Netflix, bad for Amazon)
 - We proposed some works to alleviate this