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NSWI166 — Introduction to Recommender Systems
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Recap: what should RS do?




Recap: what data can RS use?
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Non-personalized RS

= Editors selection (think about news)
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Non-personalized RS

= Popularity-based algorithms
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Non-personalized RS

= Seeded / item-based recommendations

* Similar to a search query
* Can be an item, a product, or an article

* Frequently Bought Together (FBT) category

* affinity analysis or, in more familiar terms, shopping
basket analysis

Frequently Bought Together

Total prce £43 49

ewbvw

| Add a1 twee to Bashet

¥ This item: Frostfire Large 2 Person Instant Popup Tent £24 99
¥ New Set of 2 x 180cm Camping Yoga Roll Eva Foll Foam backed Slesping Mat Mattress Tent Festiva

¢ Yellowstone Essential Mummy Sleeping Bag £9 81




Non-personalized RS

= Case-based / Business rules / Stereotypes

Age as a proxy to music profile
If you are abroad, we should not supply you local news
After buying fruit, recommend vegetable on sale

Problem
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Association
rules

1. { bread, yogurt }
2. { milk, bread, carrots, }

3. { bread, carrots }
4. { bread, milk }
5. { milk, chocolate, carrots }

6. { milk, chocolate, yogurt, bread }

1-6 are called Itemsets

Which make a good recommendation?




Concepts for freg uenC\'}"’-Ef:.-:ff

mining

Support represents the
popularity of that product
of all the product
transactions.

Confidence can be
Interpreted as the
likelihood of purchasing
both the products A and B.




* T(), all transactions =6 1. { bread, yogurt }

* S(chocolate = carrots) = 1/6 = L R, c;rro‘ts}

5. { milk, chocolate, carrots }

I'T(X AND Y)

S(X>Y) = o



| I(XAND Y)|
T(X)

| T(bread AND milk)|
| T(bread)|

c(X>Y) =

Confidence: bread and milk

¢ (bread = malk) =

* T(bread AND milk) =
{milk,bread,carrots},{bread, milk},{milk,dates,yogurt,bread}

* T(bread) =
{milk,bread,carrots},{bread,carrots},{bread, milk},{milk,dates,yogurt, bread}

{ bread, yogurt } { bread, yogurt }

{ milk, bread, carrots, } { milk, bread, carrots, }
{ bread, carrots } { bread, carrots }

{ bread, milk } { bread, milk }

{ milk, chocolate, carrots }

. { milk, chocolate, carrots }
{ milk, chocolate, yogurt, bread }

{ milk, chocolate, yogurt, bread }



Non-personalized RS

Possible Procedure

1. Settle on a minimum support and minimum confidence level.

2. Get all transactions.

3. Create a list of itemsets, one for each element (e.g., bread), and
calculate their support

4. Build a list of itemsets containing more than one item and calculate
support

5. lterate through the itemsets and remove the ones that do not fulfill
the confidence requirement.
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Collaboratlve F|Iter|ng
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Paradigms of recommender systems

Llser profile &
contextual prameters

&f

\,

item | score
il 0.9
Community data = I 2 | 1
i3 | 03
[Title | Genre | Aclors
Recommendation Recommendation
Product features < component list
® \
fw,ﬁ:as .,-"'f
—_—

Knowledge models




Agenda

= Collaborative Filtering (CF)

What & why

User-based nearest-neighbor
ltem-based nearest-neighbor
Input data types

Data sparsity problems

Matrix factorization techniques
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Collaborative Filtering (CF)

= (used to be) The most prominent approach to generate recommendations
— used by large, commercial e-commerce sites
— well-understood, various algorithms and variations exist
— applicable in many domains (book, movies, DVDs, ..)

= Approach

— use the "wisdom of the crowd" to recommend items

= Basic assumption and idea
— Users give ratings to catalog items (implicitly or explicitly)
— Customers who had similar tastes in the past, will have similar tastes in the future

-18 -



Pure CF Approaches

= |nput

— Only a matrix of given user—item ratings

= Qutput types
— A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
= [ess relevant nowadays
= Shown somewhere in the product description

— A top-N list of recommended items
= This is what you need in the end anyway

-19 -



Pure CF Approaches

= |nput

— Only a matrix of given user—item ratings

= Qutput types
— A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
= [ess relevant nowadays
= Shown somewhere in the product description

— A top-N list of recommended items
= This is what you need in the end anyway
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User-based neares /&% = ion variant]
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User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

= The basic technique

— Given an "active user" (Alice) and an item i not yet seen by Alice

» find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have
rated item i [this is the difference from RecSys HelloWorld from last lecture]

= use, e.g. the average of their ratings to predict, if Alice will like item i
= do this for all items Alice has not seen and recommend the best-rated

= Basic assumption and idea
— If users had similar tastes in the past they will have similar tastes in the future
— User preferences remain stable and consistent over time
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User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

= The basic technique

— Given an "active user" (Alice) and an item i not yet seen by Alice

» find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have
rated item i

= use, e.g. the average of their ratings to predict, if Alice will like item i
= do this for all items Alice has not seen and recommend the best-rated

= Basic assumption and idea
— If users had similar tastes in the past they will have similar tastes in the future
— User preferences remain stable and consistent over time
= This might be a problem for long-deployed services
— Apply decay of relevance or remove old data
— Detect changes of preference
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User-based nearest-neighbor collaborative filtering (2)

Example

— A database of ratings of the current user, Alice, and some other users is given:

-mmmm

Alice

Userl
User2
User3
Userd

R W B W

3
1
3
3
5

4
2
4
1
5

N W W B

= &~ U1 W

— Determine whether Alice will like or dislike Item5, which Alice has not yet rated or seen

— Underlying assumption: user provides explicit rating

e
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User-based nearest-neighbor collaborative filtering (3)

=  Some first questions
— How do we measure similarity?
— How many neighbors should we consider?
— How do we generate a prediction from the neighbors' ratings?

-mmmm

Alice 5 3 4 4

Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 1 5 5 2 1




Measuring user similarity (1)

= A (once upon time) popular similarity measure in KNN: Pearson correlation
a, b :users
Tap -ratingof usera foritemp
P :setof items, rated both by a and b
— Possible similarity values between —1 and 1

Zp eP(ra,p _ T‘a) (rb,p - T‘b)
\/Zp eP(ra,p — T‘a)z \/Zp EP(rb;P o Fb)z

What about something more simple? Jaccard similarity (A N B/A U B)
- Applicable for simple implicit feedback data
- Explicit => remove bad explicit ratings (this is a baseline, anyway)

Good points of Pearson’s: it considers biases of individual users (someone
permanently rates higher than somebody else)

sim(a,b) =
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Measuring user similarity (1)

a, b :users

A popular similarity measure in user-based KNN : Pearson correlation

Tap :ratingofuser a foritemp

P :setof items, rated both by a and b
— Possible similarity values between —1 and 1

— Underlying assumption: User dislikes what he/she rated below average
= Often not true in reality (we rate only what we liked or highly disliked)

Zp EP(ra,p - ?a) (rb,p - ?b)

sim(a,b) =

\/Zp eP(ra,p - Fa)z \/Zp EP(rb,p - ?b)z T &

S
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Measuring user similarity (2)

= A popular similarity measure in user-based KNN : Pearson correlation

a,b

Ta,p
P
— Possible similarity values between —1 and 1

-mmmm

Alice

Userl
User2
User3
Userd

. users

P W B W Ul

o w W =, W

: rating of user a foritem p

: set of items, rated both by a and b

4
2
4
1
5

N Ul W W B

~ B~ U1 W

sim=0,85
sim =0,00
sim=0,70
sim=-0,79
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Making predictions

= A common prediction function:

__ 2penSim(a,b)  (rp, —Tp)
pred(a,p) =7, + XpenSim(a,b)

= Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their
average

= Combine the rating differences — use the similarity with a as a weight

= Add/subtract the neighbors' bias from the active user's average and use this as a prediction

- 29 -



Making predictions

= A common prediction function: prediction (not ranking) o tiomal, but mostly works
7 Ypensim(a,b) x (rp, —Tp) msvasa )

pred(a,p) =7, +

11

XpenSim(a,b)

= Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their
average

= Combine the rating differences — use the similarity with a as a weight

= Add/subtract the neighbors' bias from the active user's average and use this as a prediction
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Improving the metrics / prediction function

= Not all neighbor ratings might be equally "valuable™
— Agreement on commonly liked items is not so informative as agreement on controversial items
— Possible solution: Give more weight to items that have a higher variance

= Value of number of co-rated items
— Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
— Incorporate all items rated by users, not just the shared ones
— What if there are lots of users with only 1-2 rated objects?

= Case amplification
— Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- sim(a, b)?, variants of softmax etc.

= Neighborhood selection
— Use similarity threshold or fixed number of neighbors
— Hyperparameter tuning

— Should all users be treated equally? (e.q. experienced vs. novice)
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Memory-based and model-based approaches

= User-based KNN is said to be "memory-based"
— the rating matrix is directly used to find neighbors / make predictions
= Fverything is calculated at the time of the request
— does not scale for most real-world scenarios (how much can you calculate within 50-100ms?)
— large e-commerce sites / social networks have tens of millions of customers and millions of items

= Model-based approaches
— based on an offline pre-processing or "model-learning" phase
= Represent users and/or items as a set of features, which are easy to operate with
— at run-time, only the learned model is used to make predictions
— models are updated / re-trained periodically
— large variety of techniques used
— model-building and updating can be computationally expensive
— item-based KNN is an example for model-based approaches

-32-



Item-based collaborative filtering

= Basicidea:
— Use the similarity between items (and not users) to make predictions
= Tends to be a bit more stable

= Example:
— Look for items that are similar to Item5 w.r.t. Ratings given by other users
— Take Alice's ratings for these items to predict the rating for ltem5

-mmmm

Alice 3 4

Userl 3 3 ﬂ 1 2 /_ 3 ) 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 1 5 5 2 1




The cosine similarity measure

= Produces better results in item-to-item filtering (??? Maybe)
= Ratings are seen as vector in n-dimensional space

= Similarity is calculated based on the angle between the vectors

., = a ¢ b
sim(a, b) ==
la| = |b|
= Adjusted cosine similarity

— take average user ratings into account, transform the original ratings
— U: set of users who have rated both items a and b

ZueU (ru,a _ r_u) (ru,b - r_u)

(Becorua -2 Sucolrun - 72)°

sim(d,b) =
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Making predictions

A common prediction function:

i i RESAMA
ZiEratedItem(u) Slm(l' p) * Ty '

2iEratedI tem(u) s im(i' p)

pred(u,p) =

[T

= Neighborhood size is typically also limited to a specific size
= Not all neighbors are taken into account for the prediction

= An analysis of the Movielens dataset indicates that "in most real-world situations, a neighborhood of
20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

— Outdated, you need to tune hyperparameters yourself

- 35 -



More on ratings — Explicit ratings

= Probably the most precise ratings (ehm... Attribute ratings, reviews, detailed implicit
feedback nowadays...)

=  Most commonly used (1to 5, 1 to 7 Likert response scales, likes/dislikes)

= Research topics

— Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.

= Different domains addopted other common scales
— Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)

® Booking.com rating

=  Main problems

— Users not (always) willing to rate many items

= number of available ratings could be too small = sparse rating matrices - poor recommendation
quality

— How to stimulate users to rate more items?
— What else to use?
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More on ratings — Implicit ratings

Typically collected by the web shop or application in which the recommender system
is embedded

When a customer buys an item, for instance, many recommender systems interpret
this behavior as a positive rating

Clicks, page views, time spent on some page, demo downloads ...

Implicit ratings can be collected constantly and do not require additional efforts from
the side of the user

Main problem
— How to interpret the feedback
= Like vs. consume

— For example, a user might not like all the books he or she has bought; the user also might
have bought a book for someone else

Implicit ratings can be used in addition to explicit ones; question of correctness of
interpretation

- 38 -



Data sparsity problems

= Cold start problem

— How to recommend new items? What to recommend to new users?

= Straightforward approaches
— Ask/force users to rate a set of items (they will hate you)
= Recommend new items more often (get feedback quickly)

— Use another method (e.g., content-based, demographic or simply non-
personalized) in the initial phase (bias problems, but generally OK)

— Default voting: assign default values to items that only one of the two users to
be compared has rated (Breese et al. 1998) (... And the performance is...©)

=  Alternatives

— Use better algorithms (beyond nearest-neighbor approaches)
— Simple example:
= Assume "transitivity" of neighborhoods

-390 -



Data sparsity problem for nearest neighbors

=  Which user is closer to the current one? Eo,,

‘(I
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KNN Models for Sparse Datasets and Ranking Prediction

= (Calculating estimated rating for each object is time-consuming and unnecessary

— Often, we do not need object’s rating, but only ranking of a top-k objects

= For many objects, there are no similar user who rated this object

— No way to reliably estimate rating

©
E Userl ? ? 3 2 ?
a User2 ? 5 ? ? 5 5 5
>
I User3 ? ? 1 ? ? 1 3
o
i Userd 1 ? 4 2 ? 4 ?

s109[qo paJeys oN




KNN Models for Sparse Datasets and Ranking Prediction

= (Calculating estimated rating for each object is time-consuming and unnecessary
— Often, we do not need object’s rating, but only ranking of a top-k objects

= For many objects, there are no similar user who rated this object

— No way to reliably estimate rating

=> Forget about Item3, we have plenty of other items to recommend

©
E Userl ? ? 3 2 ?
a User2 ? 5 ? ? 5 5 5
>
o User3 ? ? 1 ? ? 1 3
o
= User4 1 ? 4 2 ? 4 ?

s109[qo paJeys oN




KNN Models for Sparse Datasets and Ranking Prediction

= User-based KNN for ranking:
— Select K closest neighbors, who rated also some other items
— Sum scores for all unknown items rated by the neighbors [other aggregation variants possible]
— Return items with highest scores

score(a,p) = Z sim(a,b) * (rp, — Tp)
b eN
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KNN Models for Sparse Datasets and Ranking Prediction

= User-based KNN for ranking:

— Select K closest neighbors, who rated also some other item
Zp eP(ra,p o ?a) (rb,p _ ?b)

\/Zp eP(ra,p - 7_'61)2 \/Zp EP(rb,p o Tﬂb)z

sim(a,b) =

B T T O T

(0.5 Userl> -
@ ? 4 ? ?

NaN/0O User3 ? ? 1 ? ?
-0.45 User4 1 ? 4 y) ?

(92
v - U R
&~ b
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KNN Models for Sparse Datasets and Ranking Prediction

= User-based KNN for ranking:
— Select K closest neighbors, who rated also some other item
— Sum scores for all unknown items rated by the neighbors

— Return items with highest scores
= |tem5, Items,...

I N 3 N T T T

(0.5  Useri> 2 ? 3 1 ?
@ ? 4 ? ? 5 5 4
?2/0 3.25 2.25 1.4

score(a,p) = Z sim(a, b) x (rp, —Tp)
b eEN
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Item-based KNN for Ranking Prediction

= 2003 paper: Amazon.com Recommendations Item-to-Item Collaborative Filtering
—  https://dl.acm.org/citation.cfm?id=642471

= Recommend items that are similar (based on other user ratings) to the items already liked by Alice

T ems | vamz | tems | ams | tems | rems | em

Userl 5 ? ? 2 ?
User2 ? ? ? 5 5
User3 ? 1 ? 1 3
Userd 1 4 ?

N\

S__“7 7




Item-based KNN for Ranking Prediction

Recommend items that are similar (based on other user ratings) to the items already liked by Alice
Offline preprocessing:

For each item in product catalog, Il
For each customer C who purchased Il
For each item I2 purchased by customer C
Record that a customer purchased I1 and IZ2
For each item I2
Compute the similarity between Il and I2 (i.e. Jaccard)

Output: similarity matrix of all objects (or top-k most similar)

Online:
— For each rated object 0, add sim(og, 0p) * (75, — 73,) to the score of object o,

— Recommend objects with highest scores
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Organization

Active reading #1 deadline: 10.3. 2024
— Submit via SIS -> Study Group Roaster

Labs #1 deadlines this/next Sunday
— Submit via SIS -> Study Group Roaster

Get to know Pandas / Numpy / Scipy + Scikit-learn

— Not strictly needed to pass, but can greatly simplify your life

- 50 -



Recap

Item vs. User KNN? How are ratings distributed?

III“EHIIﬁﬂﬂﬁﬁllﬁﬂﬂﬁﬁilﬂﬂﬂﬁﬁﬂ LibraryThing

Userl ? ? 3 2 ? 100000
User2 ? 5 ? ? 5 5 5 80000 1
User3 ? ? 1 ? ? 1 3 60000
Userd 1 ? 4 2 ? 4 ? 40000 -
20000 -
Q-

n o in O N o n 9O wn o

S H A N N m m < < 9

MovieLens

80000 A
60000 -
40000 -
20000 -
O_
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Recap

F

What is COLD START?

-52-



Data sparsity problems

= Cold start problem

— How to recommend new items? What to recommend to new users?

= Straightforward approaches

— Ask/force users to rate a set of items (they will hate you)
= Recommend new items more often (get feedback quickly)

— Use another method (e.g., content-based, demographic or simply non-personalized) in the initial
phase (bias problems, but generally OK)

— Default voting: assign default values to items that only one of the two users to be compared has rated
(Breese et al. 1998) (... And the performance is...©)

=  Alternatives

— Use better algorithms (beyond nearest-neighbor approaches)
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More model-based approaches

= Plethora of different techniques proposed in the last years, e.g.,
— Matrix factorization techniques,
= BPR, Funk SVD, ALS,...
— Association rule mining
= compare: shopping basket analysis
— Autoencoders
= MultVAE, EASE, ELSA, SANSA, ...
— Graph-based approaches
= Spreading activation, Graph convolutional networks, ...

= Costs of pre-processing
— Usually not discussed

— Incremental updates possible?
= jf not, training should be fast enough




Example algorithms for sparse datasets

= Recursive CF (Zhang and Pu 2007)

— Assume there is a very close neighbor n of u who however has not rated the target item i yet.

— Idea:
= Apply CF-method recursively and predict a rating for item i for the neighbor
= Use this predicted rating instead of the rating of a more distant direct neighbor

Never saw in praxis
-mmmm

Alice 3 4 4

sim =0.85
Userl 3 1 2 3 ?
User2 4 3 4 3 5 Predict
User3 3 3 1 5 4 rating for
Userd 1 5 5 2 1 Userl
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Graph-based methods (1)

= "Spreading activation" (Huang et al. 2004)
— Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
— Assume that we are looking for a recommendation for User1

— When using a standard CF approach, User2 will be considered a peer for User1 because they both bought /tem2 and
Item4

— Thus Item3 will be recommended to Userl because the nearest neighbor, User2, also bought or liked it
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Graph-based methods (2)

= "Spreading activation" (Huang et al. 2004)

— Inastandard user-based or item-based CF approach, paths of length 3 will be considered — that is, /tem3 is relevant for
Userl because there exists a three-step path (User1-Item2—-User2—Item3) between them

— Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths
(indirect associations) to compute recommendations

— Using path length 5, for instance

-57 -



Graph-based methods (3)

= "Spreading activation" (Huang et al. 2004)

— Idea: Use paths of lengths > 3
to recommend items

— Length 3: Recommend Item3 to Userl
— Length 5: Item1 also recommendable
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Matrix Completion
(Matrix factorization)




Matrix completion

Given a sparse matrix. We want to fill-in

o e e ------

The values of the matrix are dependent

on each other
------
------

Approaches
— Search for similar rows/columns
— (nearest neighbour collaborative filtering)
— Matrix factorization
— Restricted Boltzmann Machines (RBM)
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Matrix factorization

. We estimate matrix M as the product of two
matrices U and V.

. Based on the known values of M, we search for U
and V so that their product best estimates the
(known) values of M

_
. -
a U mees

U W



The projection of U and V7 in the 2 dimensional latent space (U,, V)

The Color Purple

Sense and
Sensibility

Geared
toward
females

ﬁ

oy

The Princess
Diaries

Serious

1

Amadeus

Braveheart

Ocean’s 11

The Lion King Dumb and
{ Dumber
Independence o a
Day =4
Gus
Escapist

Geared
toward
males

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.




Problem formulation

Target function:
sum of squared errors + regularization
K

Z [-m.!;_._,_,- Z'{Lh;ﬂ:‘kﬂ-)g i A(Zuflj 1 ZiffT)

%] k=0 L, £y

where A is the weight of the regularization term

(i. e., a constant giving the importance of the

regularization term)

Minimization of the above loss function using stochastic gradient
descent (or any other incremental optimization algorithms)
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Matrix Factorization Algorithm

# Gradient Descent
def gradient_descent(x, y, theta, alpha, num_iters):

= len(y)

for i in range(num_iters):

h = np.dot(x, theta)
loss=h-y

gradient = np.dot(x.T, loss) / m
theta = theta - alpha * gradient

return theta
# Stochastic Gradient Descent
def stochastic_gradient_descent(x, y, theta, alpha, num_iters):

= len(y)

for i in range(num_iters):

for j in range(m):
h = np.dot(x[j], theta)
loss = h - y[j]
gradient = x[j].T * loss
theta = theta - alpha * gradient

return theta

Cost

Initial

. Gradient
Weight ,'
2 \ : II /
)
| /]
u

Incremental

Derivative of Cost ==
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Matrix Factorization Algorithm

Input: matrix M with n rows and m columns, integer K,
learning rate lr, regularization param lambda

1. Create U and V matrices and initialize their wvalues randomly

(U has n rows, K columns; V has K rows, m columns)

3. While U x V does not approximate M well enough

a. (or the maximal number of iterations is not reached)

5. For each known element x of M

6. Let i and j denote the row and column of x

7. Let x’ be the dot product of the corresponding

8. row of U and column of V

9. err = x' - x

10. for (k=0; k < K; k++)

11. Uik < Uik~ lr*err*vk,j - lambda*ui,k

12. Vij € Vj— lrxerr*u;; — lambdaxv;

13. end for

14. end for

15. end while

N
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Matrix Factorization Algorithm

Input: matrix M with n rows and m columns, integer K,
learning rate lr, regularization param lambda

p 1. Create U and V matrices and initialize their wvalues randomly
lterations 2. (U has n rows, K columns; V has K rows, m columns)

- 3. While U x V does not approximate M well enough

4 . a. (or the maximal number of iterations is not reached)
TTa”“ng For each known element x of M

§ examples : Let i and j denote the row and column of x
7. Let x’ be the dot product of the corresponding For all latent
\_i_ﬁ“___‘i,_row of U and column of V factors

Error on . err = x' - x

exan"ﬂe J 10. for (k=0; k < K; k++) 4////////(
11. Uik < Uik~ lr*err*vk,j - lambda*ui,k Update user
vy € V= lrxerrsu;;, - lambda*vy; and item vectors
13. end for
1a. end for

15. end while

Derivate loss function, update ,against® derivate’s direction
by the magnitude of Ir. For derivations alternate considering

L of u;x and v ; as variables (everything else as constants) J
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High-level view of matrix factorization
algorithm

. Random initialization of U and V
. While U x V does not approximate the known values of M well enough

— Choose a known value of M, we denote it by x
— Adjust the values of the corresponding row and column of U and V respectively,
so that the approximation becomes better

? 5 4 7?7 ..
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Example for an adjustment step

S EaE.

o
v mEEs

U V]

(2*2)+(1*1) = 5 which equals to the selected value
- we do not do anything
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Example for an adjustment step

N—
. .-ﬁ ? 5 E ? .
4745 .

______ V
U V]

(3*1)+(2*3) =9

9 >4 - we decrease the values of the
corresponding rows so that their products will be
closer to 4
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Example for an adjustment step

2 1 5lzlaf2 ]
.....

EREd o SEnng
v EmEEE

U Y

(3*1)+(2*3) =9

9 >4 - we decrease the values of the
corresponding rows so that their products will be
closer to 4
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Why is the algorithm ,,good”?

1. The adjustment should be proportional to the error - let it be
e-times the error
— In the current example: error=9-4=5
— with €=0.1 we will decrease all the values in the corresponding
rows and columns by 0.1*5=0.5

TN
EEEE”
V

U V]

(3*1)+(2*3) =9 - 71 -



Why is the algorithm ,,good”?

2. We should take into account how much each value of the row/column
contributes to the error

— For the selected row:

— 3is multiplied by 1 = 3 is adjusted by €*5*1 = 0.5

— 2 is multiplied by 3 = 2 is adjusted by €*5*3 = 1.5

— For the selected column respectively:

- €*5*3=1.5 and €*5*2=1.0

U M



Why is the algorithm ,,good”?

3. We prefer simpler models (avoid overfitting).
. At each adjustment step: subtract additionally
. A-times the value
— For the selected row: subtract additionally
— A*3 from 3, and A*2 from 2.
— For the selected column respectively: A*1 and A*3

EEEEE
mmmmm 2R
mosme = 25 47

lllll
U IVI
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What are the MF’s Hyperparameters?

- Number of latent factors
- Learning rate
- Amount of regularization

- Stopping criteria (number of iterations + early stopping options)

How to select the right ones?
- Hyperparameter tuning

- Try different configurations and evaluate on validation data
- Select the best performing variant and re-train on all data

- grid search / random search / Bayesian / Evolutionary ..

Training Subset

Validation

Get Test set errorr

CV Loop

Tune hyperparameters



Questions?




Issues + Disadvantages of classical MF

Static set of items and users (what about new ones?)

Batch-trained — newest response is never in the models

Iterative local updates possible, but new users/items are stil a problem
Optimize w.r.t. Irrelevant error (RMSE)
Learning rate vs. Regularization hyperparameters

Local optimum vs. global optimum; convergence speed
More ellaborated optimizers

https://ruder.io/optimizing-gradient-descent/
Memory-efficient implementation
— sparse representation of M
— Sparse matrix in scipy.sparse (i,j,value)
Too many items / users to fit into memory
,Pipeline approaches” pre-filter candidates first via some simple alg. Use more complex alg. For a subset
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Learning rate vs. Regularization vs. Num of factors

hyperparameters

Prediction Error

High Bias Low Bias
Low Variance High Variance
- m—m—m——_——— D e e e - o
Test Sample
'y
Underfitting | Overfitting
-+ >
Training Sample
Bias trade-off
Low High

Model Complexity
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More ellaborated optimizers

Momentum-like updates (accumulated directions)

With Momentum

Plain

Adaptive learning rates (AdaGrad, AdaDelta, RMSprop)

- smaller updates (i.e. low learning rates) for parameters associated with frequently occurring features,
- larger updates (i.e. high learning rates) for parameters associated with infrequent features

Time-decaying factor / floating window

https://www.ruder.io/optimizing-gradient-descent/
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More ellaborated optimizers

\\\Q&ia;énm :
\ —  Momentum [
e NAG :
— Adagrad |
Adadelta
Rmsprop

-  SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

ROHIND,

s,
I
AN
o
ol

1.0

https://www.ruder.io/optimizing-gradient-descent/
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2008: Factorization meets the neighborhood: a multifaceted collaborative
filtering model, Y. Koren, ACM SIGKDD

= Merges neighborhood models with latent factor models

= Latent factor models
— good to capture weak signals in the overall data

= Neighborhood models
— good at detecting strong relationships between close items

= Combination in one prediction single function

— Local search method such as stochastic gradient descent to determine
parameters

— Add penalty for high values to avoid over-fitting
. T
fi=#x+b,+b +p,q

p[r,]}lnb* Z(r‘“ —p=b, b - pqu)z +/1(H puH2 +Hqu2 +bu2 +bi2)

P (u)i)eK
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Optimizing w.r.t. Incorrect metric

True  |Predl ______ |Pred2
3 4.1 0.05

4 3.9 1.2

5 3.8 9.5

What is RMSE of both predictors?
Which one is better + why?
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BPR matrix factorization

Instead of rating errors, focus on ranking correctness

- Triples of user, good and bad object
- For these pairs, good object should be rated higher than the bad one

- (unary feedbak originally, but graded possible)
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BPR algorithm

= Matrix factorization/completion

1]
R~UO' = ,u-lz- X[Gl o9 ] fi,j =U; X0
: f xm
|
nx f
= Ranking-oriented optimization maximize Yy, o000 (Ffug — Fup) — AUIZ + V]2

— Based on BPR MF!
— Binary implicit feedback

— Train set triples (user, good, bad object) /
= Maximize distance in rating of good and bad obj. /

= |ndividual updates for both user, good object and bad object L

HT 2017, Prague Ladislav Peska: Linking Content Information with BPR via -83 -
1Rendle et al.: BPR: Bayesian Personalized Ranking from Implicit Fegtlidagle COt2008lignments



BPR algorithm

= What about weak spots of this method?

HT 2017, Prague Ladislav Peska: Linking Content Information with BPR via
Multiple Content Alignments
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Questions?




Interaction Autoencoders

Autoencoder = self-supervised representation learning technique
* |n RecSys context: Train a ML model to reconstruct rows of
(sparse) interaction matrix X

e Denoising AutoEncoders (DAE), Variational AutoEncoder (VAE) etc.

ltems

EEEE ENEE Reconstructed

| vector

Embedding

Users X BN X




EASE

e EASE is a linear autoencoder model with closed-form solution
— linear regression but with huge model capacity

— Encoder and decoder fused together
e EASE trains item-to-item weight matrix

e Diagonal of weights constrained to zero to prevent trivial solutions

Predicted User Item to item
ratings interactions  similarity matrix

\

B

x>
1
o
-
L

/

diag(B‘) =0

°

Steck, Harald. "Embarrassingly shallow autoencoders for sparse data." in The World Wide Web Conference, pp. 3251-3257. 2019.




Collaborative Filtering Issues

" Pros: el
— well-understood, works well in some domains, no knowledge engineering required

= Cons: gL

— requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

=  What is the best CF method?

— In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between
methods are often very small (1/100)

= How to evaluate the prediction quality? (separate lecture on this — gets even more important nowdays)
— MAE / RMSE: What does an MAE of 0.7 actually mean?

— Serendipity (novelty and surprising effect of recommendations)
= Not yet fully understood (still true)

=  What about multi-dimensional ratings? not many application domains
— instead, what about implicit feedback?
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EASE: optimization

EASE learns a linear mapping to predict user interactions using the following objective:

min | X — XB|% + | B3

where:
e X is the user-item interaction matrix (binary: 1 if user interacted, 0 otherwise),
e B is the trainable weight matrix (excluding diagonal elements),
e ) is the regularization parameter (controls overfitting),

o |- H% is the Frobenius norm (sum of squared differences).
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EASE: optimization

Closed-Form Solution

The optimal solution for B is computed using ridge regression, leading to:

B=(G+\)'G

where:
e G = XTX is the item-item Gram matrix (co-occurrence of items),
e [ is the identity matrix (to prevent trivial solutions),

e The diagonal of B is set to zero to prevent trivial identity mapping.
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Questions?




EASE: features

= Pros:
— Users represented through interacted items => no need for partial updates
— Simple implementation, usually quite fast, very good performance

= Cons:

— Quadratic complexity w.r.t. number of items (good for Netflix, bad for Amazon)
= We proposed some works to alleviate this
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