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Recap: what should RS do?



- 3 -

Recap: what data can RS use?



- 4 -



- 5 -

Paradigms of recommender systems
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Non-personalized RS

 Editors selection (think about news)
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Non-personalized RS

 Popularity-based algorithms
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Non-personalized RS

 Seeded / item-based recommendations
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Non-personalized RS

 Case-based / Business rules / Stereotypes

– Age as a proxy to music profile

– If you are abroad, we should not supply you local news

– After buying fruit, recommend vegetable on sale



- 10 -

Non-personalized RS
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Non-personalized RS
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Non-personalized RS
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Non-personalized RS
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Non-personalized RS
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Paradigms of recommender systems



- 17 -

Agenda

 Collaborative Filtering (CF)

– What & why

– User-based nearest-neighbor

– Item-based nearest-neighbor

– Input data types

– Data sparsity problems

– Matrix factorization techniques
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Collaborative Filtering (CF)

 (used to be) The most prominent approach to generate recommendations

– used by large, commercial e-commerce sites

– well-understood, various algorithms and variations exist

– applicable in many domains (book, movies, DVDs, ..)

 Approach

– use the "wisdom of the crowd" to recommend items

 Basic assumption and idea

– Users give ratings to catalog items (implicitly or explicitly)

– Customers who had similar tastes in the past, will have similar tastes in the future



- 19 -

Pure CF Approaches

 Input

– Only a matrix of given user–item ratings

 Output types

– A (numerical) prediction indicating to what degree the current user will like or dislike a certain item

 Less relevant nowadays

 Shown somewhere in the product description

– A top-N list of recommended items

 This is what you need in the end anyway
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User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

 The basic technique
– Given an "active user" (Alice) and an item 𝒊 not yet seen by Alice

 find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have 
rated item 𝒊 [this is the difference from RecSys HelloWorld from last lecture]

 use, e.g. the average of their ratings to predict, if Alice will like item 𝑖

 do this for all items Alice has not seen and recommend the best-rated

 Basic assumption and idea
– If users had similar tastes in the past they will have similar tastes in the future

– User preferences remain stable and consistent over time
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User-based nearest-neighbor collaborative filtering [Rating Prediction variant]

 The basic technique
– Given an "active user" (Alice) and an item 𝑖 not yet seen by Alice

 find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past and who have 
rated item 𝑖

 use, e.g. the average of their ratings to predict, if Alice will like item 𝑖

 do this for all items Alice has not seen and recommend the best-rated

 Basic assumption and idea
– If users had similar tastes in the past they will have similar tastes in the future

– User preferences remain stable and consistent over time

 This might be a problem for long-deployed services

– Apply decay of relevance or remove old data

– Detect changes of preference
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User-based nearest-neighbor collaborative filtering (2)

 Example

– A database of ratings of the current user, Alice, and some other users is given:

– Determine whether Alice will like or dislike Item5, which Alice has not yet rated or seen

– Underlying assumption: user provides explicit rating

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1
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User-based nearest-neighbor collaborative filtering (3)

 Some first questions

– How do we measure similarity?

– How many neighbors should we consider?

– How do we generate a prediction from the neighbors' ratings?

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1
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Measuring user similarity (1)

 A (once upon time) popular similarity measure in KNN: Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

What about something more simple? Jaccard similarity (𝐴 ∩ 𝐵/𝐴 ∪ 𝐵)

- Applicable for simple implicit feedback data

- Explicit => remove bad explicit ratings (this is a baseline, anyway)

Good points of Pearson’s: it considers biases of individual users (someone 
permanently rates higher than somebody else)

𝒔𝒊𝒎 𝒂, 𝒃 =
σ𝒑 ∈𝑷(𝒓𝒂,𝒑 − ത𝒓𝒂)(𝒓𝒃,𝒑 − ത𝒓𝒃)

σ𝒑 ∈𝑷 𝒓𝒂,𝒑 − ത𝒓𝒂
𝟐

σ𝒑 ∈𝑷 𝒓𝒃,𝒑 − ത𝒓𝒃
𝟐
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Measuring user similarity (1)

 A popular similarity measure in user-based KNN : Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

– Underlying assumption: User dislikes what he/she rated below average

 Often not true in reality (we rate only what we liked or highly disliked)

𝒔𝒊𝒎 𝒂, 𝒃 =
σ𝒑 ∈𝑷(𝒓𝒂,𝒑 − ത𝒓𝒂)(𝒓𝒃,𝒑 − ത𝒓𝒃)

σ𝒑 ∈𝑷 𝒓𝒂,𝒑 − ത𝒓𝒂
𝟐

σ𝒑 ∈𝑷 𝒓𝒃,𝒑 − ത𝒓𝒃
𝟐
+ 𝜺

Deviation from average rating on shared items

!!! Will be zero in case of uniform rating !!!
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Measuring user similarity (2)

 A popular similarity measure in user-based KNN : Pearson correlation

𝑎, 𝑏 : users

𝑟𝑎,𝑝 : rating of user 𝑎 for item 𝑝

𝑃 : set of items, rated both by 𝑎 and 𝑏

– Possible similarity values between −1 and 1

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0,85

sim = 0,00

sim = 0,70

sim = -0,79
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Making predictions

 A common prediction function:

 Calculate, whether the neighbors' ratings for the unseen item 𝑖 are higher or lower than their 
average

 Combine the rating differences – use the similarity with 𝑎 as a weight

 Add/subtract the neighbors' bias from the active user's average and use this as a prediction

𝒑𝒓𝒆𝒅 𝒂, 𝒑 = 𝒓𝒂 +
σ𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃 ∗ (𝒓𝒃,𝒑 − 𝒓𝒃)

σ𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃



- 30 -

Making predictions

 A common prediction function:

 Calculate, whether the neighbors' ratings for the unseen item 𝑖 are higher or lower than their 
average

 Combine the rating differences – use the similarity with 𝑎 as a weight

 Add/subtract the neighbors' bias from the active user's average and use this as a prediction

𝒑𝒓𝒆𝒅 𝒂, 𝒑 = 𝒓𝒂 +
σ𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃 ∗ (𝒓𝒃,𝒑 − 𝒓𝒃)

σ𝒃 ∈𝑵 𝒔𝒊𝒎 𝒂, 𝒃

Only matters for rating 
prediction (not ranking)

Similarity-weighting
optional, but mostly works
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Improving the metrics  / prediction function

 Not all neighbor ratings might be equally "valuable"

– Agreement on commonly liked items is not so informative as agreement on controversial items

– Possible solution:  Give more weight to items that have a higher variance

 Value of number of co-rated items

– Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low 

– Incorporate all items rated by users, not just the shared ones

– What if there are lots of users with only 1-2 rated objects?

 Case amplification

– Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.

– 𝑠𝑖𝑚(𝑎, 𝑏)2, variants of softmax etc.

 Neighborhood selection

– Use similarity threshold or fixed number of neighbors

– Hyperparameter tuning

– Should all users be treated equally? (e.g. experienced vs. novice)
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Memory-based and model-based approaches

 User-based KNN is said to be "memory-based"

– the rating matrix is directly used to find neighbors / make predictions

 Everything is calculated at the time of the request

– does not scale for most real-world scenarios (how much can you calculate within 50-100ms?)

– large e-commerce sites / social networks have tens of millions of customers and millions of items

 Model-based approaches

– based on an offline pre-processing or "model-learning" phase

 Represent users and/or items as a set of features, which are easy to operate with

– at run-time, only the learned model is used to make predictions

– models are updated / re-trained periodically

– large variety of techniques used 

– model-building and updating can be computationally expensive

– item-based KNN is an example for model-based approaches
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Item-based collaborative filtering

 Basic idea: 

– Use the similarity between items (and not users) to make predictions

 Tends to be a bit more stable

 Example: 

– Look for items that are similar to Item5 w.r.t. Ratings given by other users

– Take Alice's ratings for these items to predict the rating for Item5

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1
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The cosine similarity measure

 Produces better results in item-to-item filtering (??? Maybe)

 Ratings are seen as vector in n-dimensional space

 Similarity is calculated based on the angle between the vectors

 Adjusted cosine similarity

– take average user ratings into account, transform the original ratings

– 𝑈: set of users who have rated both items 𝑎 and 𝑏

𝒔𝒊𝒎 𝒂, 𝒃 =
𝒂 ∙ 𝒃

𝒂 ∗ |𝒃|

𝒔𝒊𝒎 𝒂, 𝒃 =
σ𝒖∈𝑼(𝒓𝒖,𝒂 − 𝒓𝒖)(𝒓𝒖,𝒃 − 𝒓𝒖)

σ𝒖∈𝑼 𝒓𝒖,𝒂 − 𝒓𝒖
𝟐

σ𝒖∈𝑼 𝒓𝒖,𝒃 − 𝒓𝒖
𝟐
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Making predictions

 A common prediction function:

 Neighborhood size is typically also limited to a specific size

 Not all neighbors are taken into account for the prediction

 An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 
20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

– Outdated, you need to tune hyperparameters yourself

𝒑𝒓𝒆𝒅 𝒖, 𝒑 =
σ𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒖) 𝒔𝒊𝒎 𝒊, 𝒑 ∗ 𝒓𝒖,𝒊

σ𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒖) 𝒔𝒊𝒎 𝒊, 𝒑
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More on ratings – Explicit ratings

 Probably the most precise ratings (ehm... Attribute ratings, reviews, detailed implicit 
feedback nowadays...)

 Most commonly used (1 to 5, 1 to 7 Likert response scales, likes/dislikes)

 Research topics

– Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.

 Different domains addopted other common scales

– Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)

 Booking.com rating

 Main problems

– Users not (always) willing to rate many items

 number of available ratings could be too small → sparse rating matrices → poor recommendation 
quality

– How to stimulate users to rate more items?

– What else to use?
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More on ratings – Implicit ratings

 Typically collected by the web shop or application in which the recommender system 
is embedded

 When a customer buys an item, for instance, many recommender systems interpret 
this behavior as a positive rating

 Clicks, page views, time spent on some page, demo downloads …

 Implicit ratings can be collected constantly and do not require additional efforts from 
the side of the user

 Main problem

– How to interpret the feedback

 Like vs. consume

– For example, a user might not like all the books he or she has bought; the user also might 
have bought a book for someone else

 Implicit ratings can be used in addition to explicit ones; question of correctness of 
interpretation
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Data sparsity problems

 Cold start problem

– How to recommend new items? What to recommend to new users?

 Straightforward approaches

– Ask/force users to rate a set of items (they will hate you)

 Recommend new items more often (get feedback quickly)

– Use another method (e.g., content-based, demographic or simply non-
personalized) in the initial phase (bias problems, but generally OK)

– Default voting: assign default values to items that only one of the two users to 
be compared has rated (Breese et al. 1998) (... And the performance is...)

 Alternatives

– Use better algorithms (beyond nearest-neighbor approaches)

– Simple example: 

 Assume "transitivity" of neighborhoods
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Data sparsity problem for nearest neighbors

 Which user is closer to the current one?

 Which object is closer to the current one?

– among the rated objects
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KNN Models for Sparse Datasets and Ranking Prediction

 Calculating estimated rating for each object is time-consuming and unnecessary

– Often, we do not need object’s rating, but only ranking of a top-k objects

 For many objects, there are no similar user who rated this object

– No way to reliably estimate rating

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?
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KNN Models for Sparse Datasets and Ranking Prediction

 Calculating estimated rating for each object is time-consuming and unnecessary

– Often, we do not need object’s rating, but only ranking of a top-k objects

 For many objects, there are no similar user who rated this object

– No way to reliably estimate rating

=> Forget about Item3, we have plenty of other items to recommend

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?
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KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other items

– Sum scores for all unknown items rated by the neighbors [other aggregation variants possible]

– Return items with highest scores
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KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other item

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 1 ?

User2 ? 4 ? ? 5 5 4

User3 ? ? 1 ? ? 1 4

User4 1 ? 4 2 ? 5 ?

0.5

0.35

NaN/0

-0.45

𝒔𝒊𝒎 𝒂, 𝒃 =
σ𝒑 ∈𝑷(𝒓𝒂,𝒑 − ത𝒓𝒂)(𝒓𝒃,𝒑 − ത𝒓𝒃)

σ𝒑 ∈𝑷 𝒓𝒂,𝒑 − ത𝒓𝒂
𝟐

σ𝒑 ∈𝑷 𝒓𝒃,𝒑 − ത𝒓𝒃
𝟐
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KNN Models for Sparse Datasets and Ranking Prediction

 User-based KNN for ranking:
– Select K closest neighbors, who rated also some other item

– Sum scores for all unknown items rated by the neighbors

– Return items with highest scores

 Item5, Item6,…

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 1 ?

User2 ? 4 ? ? 5 5 4

0.5

0.35

?/0 3.25 2.25 1.4

𝒔𝒄𝒐𝒓𝒆 𝒂, 𝒑 =෍
𝒃 ∈𝑵

𝒔𝒊𝒎 𝒂, 𝒃 ∗ (𝒓𝒃,𝒑 − 𝒓𝒃)



- 47 -

Item-based KNN for Ranking Prediction

 2003 paper: Amazon.com Recommendations Item-to-Item Collaborative Filtering

– https://dl.acm.org/citation.cfm?id=642471

 Recommend items that are similar (based on other user ratings) to the items already liked by Alice

Item1 Item2 Item3 Item4 Item5 Item6 Item7

Alice 5 3 ? 4 ? ? ?

User1 5 3 ? ? 3 2 ?

User2 ? 5 ? ? 5 5 5

User3 ? ? 1 ? ? 1 3

User4 1 ? 4 2 ? 4 ?
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Item-based KNN for Ranking Prediction

 Recommend items that are similar (based on other user ratings) to the items already liked by Alice

 Offline preprocessing:

 Output: similarity matrix of all objects (or top-k most similar)

 Online:

– For each rated object 𝑜𝑎 add 𝑠𝑖𝑚 𝑜𝑎 , 𝑜𝑏 ∗ (𝑟𝑎,𝑢 − ഥ𝑟𝑢) to the score of object 𝑜𝑏

– Recommend objects with highest scores

For each item in product catalog, I1 

For each customer C who purchased I1 

For each item I2 purchased by customer C 

Record that a customer purchased I1 and I2 

For each item I2 

Compute the similarity between I1 and I2 (i.e. Jaccard)
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NSWI166 – Introduction to Recommender Systems
and User Preferences – Lecture #3

Ladislav Peska & Peter Vojtas

Ladislav.peska@matfyz.cuni.cz, S208

https://www.ksi.mff.cuni.cz/~peska/vyuka/NSWI166

https://www.ksi.mff.cuni.cz/

mailto:Ladislav.peska@matfyz.cuni.cz
https://www.ksi.mff.cuni.cz/~peska/vyuka/NSWI166
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Organization

 Active reading #1 deadline: 10.3. 2024

– Submit via SIS -> Study Group Roaster

 Labs #1 deadlines this/next Sunday

– Submit via SIS -> Study Group Roaster

 Get to know Pandas / Numpy / Scipy + Scikit-learn

– Not strictly needed to pass, but can greatly simplify your life
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Recap

Item vs. User KNN? How are ratings distributed?
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Recap

What is COLD START?
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Data sparsity problems

 Cold start problem

– How to recommend new items? What to recommend to new users?

 Straightforward approaches

– Ask/force users to rate a set of items (they will hate you)

 Recommend new items more often (get feedback quickly)

– Use another method (e.g., content-based, demographic or simply non-personalized) in the initial 
phase (bias problems, but generally OK)

– Default voting: assign default values to items that only one of the two users to be compared has rated 
(Breese et al. 1998) (... And the performance is...)

 Alternatives

– Use better algorithms (beyond nearest-neighbor approaches)



- 54 -

More model-based approaches

 Plethora of different techniques proposed in the last years, e.g.,

– Matrix factorization techniques,

 BPR, Funk SVD, ALS,… 

– Association rule mining

 compare: shopping basket analysis

– Autoencoders

 MultVAE, EASE, ELSA, SANSA, ...

– Graph-based approaches

 Spreading activation, Graph convolutional networks, ...

 Costs of pre-processing 

– Usually not discussed

– Incremental updates possible?

 if not, training should be fast enough
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Example algorithms for sparse datasets

 Recursive CF (Zhang and Pu 2007)

– Assume there is a very close neighbor 𝑛 of 𝑢 who however has not rated the target item 𝑖 yet.

– Idea: 

 Apply CF-method recursively and predict a rating for item 𝑖 for the neighbor

 Use this predicted rating instead of the rating of a more distant direct neighbor

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 ?

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

sim = 0.85

Predict 
rating for
User1

Never saw in praxis



- 56 -

Graph-based methods (1)

 "Spreading activation" (Huang et al. 2004)
– Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information

– Assume that we are looking for a recommendation for User1

– When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and 
Item4

– Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also bought or liked it
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Graph-based methods (2)

 "Spreading activation" (Huang et al. 2004)
– In a standard user-based or item-based CF approach, paths of length 3 will be considered – that is, Item3 is relevant for 

User1 because there exists a three-step path (User1–Item2–User2–Item3) between them

– Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths 
(indirect associations) to compute recommendations

– Using path length 5, for instance
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Graph-based methods (3)

 "Spreading activation" (Huang et al. 2004)

– Idea: Use paths of lengths > 3 
to recommend items

– Length 3: Recommend Item3 to User1

– Length 5: Item1 also recommendable
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Matrix Completion

(Matrix factorization)
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• Given a sparse matrix. We want to fill-in 
the unknown values  

• The values of the matrix  are dependent 
on each other

• Approaches
 Search for similar rows/columns 
 (nearest neighbour collaborative filtering)
 Matrix factorization
 Restricted Boltzmann Machines (RBM)
 ...

Matrix completion

5 ? 1 ? ? ...

? ? 5 ? 4 ...

5 4 2 ? ? ...

? 3 ? 2 5 ...

1 ? 5 ? 4 ...

5 4 ? ? 2 ...

... ... ... ... ... ...
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Matrix factorization

• We estimate matrix M as the product of two 
matrices U and V.  

• Based on the known values of M, we search for U
and V so that their product best estimates the 
(known) values of M
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The projection of 𝑈 and 𝑉𝑇 in the 2 dimensional latent space (𝑈2, 𝑉2
𝑇)
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Problem formulation

• Target function: 
• sum of squared errors + regularization
•

•

• where  λ is the weight of the regularization term 
• (i. e., a constant giving the importance of the 
• regularization term)
• Minimization of the above loss function using stochastic gradient 

descent (or any other incremental optimization algorithms)
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Matrix Factorization Algorithm

# Gradient Descent

def gradient_descent(x, y, theta, alpha, num_iters):

m = len(y)

for i in range(num_iters):

h = np.dot(x, theta)

loss = h - y

gradient = np.dot(x.T, loss) / m

theta = theta - alpha * gradient

return theta

# Stochastic Gradient Descent

def stochastic_gradient_descent(x, y, theta, alpha, num_iters):

m = len(y)

for i in range(num_iters):

for j in range(m):

h = np.dot(x[j], theta)

loss = h - y[j]

gradient = x[j].T * loss

theta = theta - alpha * gradient

return theta
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Matrix Factorization Algorithm

Input: matrix M with n rows and m columns, integer K,

learning rate lr, regularization param lambda

1. Create U and V matrices and initialize their values randomly 

2. (U has n rows, K columns; V has K rows, m columns)

3. While U x V does not approximate M well enough

4. (or the maximal number of iterations is not reached)

5. For each known element x of M

6. Let i and j denote the row and column of x

7. Let x’ be the dot product of the corresponding

8. row of U and column of V

9. err = x’ – x

10. for (k=0; k < K; k++) 

11. 𝑢𝒊,𝒌  𝑢𝒊,𝒌- lr*err*𝒗𝒌,𝒋 - lambda*𝑢𝒊,𝒌
12. 𝒗𝒌,𝒋  𝒗𝒌,𝒋− lr∗err∗𝒖𝒊,𝒌 − lambda∗𝒗𝒌,𝒋
13. end for

14. end for

15. end while
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Matrix Factorization Algorithm

Input: matrix M with n rows and m columns, integer K,

learning rate lr, regularization param lambda

1. Create U and V matrices and initialize their values randomly 

2. (U has n rows, K columns; V has K rows, m columns)

3. While U x V does not approximate M well enough

4. (or the maximal number of iterations is not reached)

5. For each known element x of M

6. Let i and j denote the row and column of x

7. Let x’ be the dot product of the corresponding

8. row of U and column of V

9. err = x’ – x

10. for (k=0; k < K; k++) 

11. 𝑢𝒊,𝒌  𝑢𝒊,𝒌- lr*err*𝒗𝒌,𝒋 - lambda*𝑢𝒊,𝒌
12. 𝒗𝒌,𝒋  𝒗𝒌,𝒋− lr∗err∗𝒖𝒊,𝒌 − lambda∗𝒗𝒌,𝒋
13. end for

14. end for

15. end while

Iterations

Training 

examples

Error on 

example

For all latent 

factors

Update user 

and item vectors

Derivate loss function, update „against“ derivate’s direction 

by the magnitude of lr. For derivations alternate considering 

of 𝑢𝒊,𝒌 and 𝒗𝒌,𝒋 as variables (everything else as constants)
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High-level view of matrix factorization 
algorithm

• Random initialization of U and V
• While U x V does not approximate the known values of M well enough

– Choose a known value of M, we denote it by x
– Adjust the values of the corresponding row and column of U and V respectively, 

so that the approximation becomes better 
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Example for an adjustment step

(2*2)+(1*1) = 5 which equals to the selected value 
we do not do anything
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Example for an adjustment step

(3*1)+(2*3) = 9
9 > 4  we decrease the values of the 
corresponding rows so that their products will be 
closer to 4
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Example for an adjustment step

(3*1)+(2*3) = 9
9 > 4  we decrease the values of the 
corresponding rows so that their products will be 
closer to 4
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Why is the algorithm „good”?

1. The adjustment should be proportional to the error  let it be 
ε-times the error

– In the current example: error = 9 – 4 = 5
– with ε=0.1 we will decrease all the values in the corresponding 

rows and columns by 0.1*5=0.5

(3*1)+(2*3) = 9
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2. We should take into account how much each value of the row/column 
contributes to the error

– For the selected row: 
– 3 is multiplied by 1  3 is adjusted by ε*5*1 = 0.5
– 2 is multiplied by 3  2 is adjusted by ε*5*3 = 1.5
– For the selected column respectively: 
– ε*5*3=1.5 and ε*5*2=1.0 

Why is the algorithm „good”?
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3. We prefer simpler models (avoid overfitting). 
• At each adjustment step: subtract additionally 
• λ-times the value

– For the selected row:  subtract  additionally 
– λ*3 from 3, and λ*2 from 2 . 
– For the selected column respectively: λ*1 and λ*3 

Why is the algorithm „good”?
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- Number of latent factors
- Learning rate
- Amount of regularization
- Stopping criteria (number of iterations + early stopping options)

How to select the right ones?
- Hyperparameter tuning

- Try different configurations and evaluate on validation data
- Select the best performing variant and re-train on all data
- grid search / random search / Bayesian / Evolutionary ...

What are the MF’s Hyperparameters?
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Questions?
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Issues + Disadvantages of classical MF

• Static set of items and users (what about new ones?)
• Batch-trained – newest response is never in the models
• Iterative local updates possible, but new users/items are stil a problem

• Optimize w.r.t. Irrelevant error (RMSE)
• Learning rate vs. Regularization hyperparameters
• Local optimum vs. global optimum; convergence speed

- More ellaborated optimizers
- https://ruder.io/optimizing-gradient-descent/

• Memory-efficient implementation
– sparse representation of M
– Sparse matrix in scipy.sparse (i,j,value)

- Too many items / users to fit into memory
- „Pipeline approaches” pre-filter candidates first via some simple alg. Use more complex alg. For a subset
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Learning rate vs. Regularization vs. Num of factors 
hyperparameters
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More ellaborated optimizers

Momentum-like updates (accumulated directions)

Plain SGD With Momentum

Adaptive learning rates (AdaGrad, AdaDelta, RMSprop)

https://www.ruder.io/optimizing-gradient-descent/

- smaller updates (i.e. low learning rates) for parameters associated with frequently occurring features, 
- larger updates (i.e. high learning rates) for parameters associated with infrequent features

Time-decaying factor / floating window

https://www.ruder.io/optimizing-gradient-descent/
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More ellaborated optimizers

https://www.ruder.io/optimizing-gradient-descent/

https://www.ruder.io/optimizing-gradient-descent/
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 Merges neighborhood models with latent factor models

 Latent factor models

– good to capture weak signals in the overall data

 Neighborhood models

– good at detecting strong relationships between close items

 Combination in one prediction single function 

– Local search method such as stochastic gradient descent to determine 
parameters

– Add penalty for high values to avoid over-fitting

2008: Factorization meets the neighborhood: a multifaceted collaborative 

filtering model, Y. Koren, ACM SIGKDD





Kiu

iuiui

T

uiuui
bqp

bbqpqpbbr
),(

22222

,,
)()(min

***



i
T
uiuui qpbbr  ˆ



- 81 -

Optimizing w.r.t. Incorrect metric

True Pred 1 Pred 2

3 4.1 0.05

4 3.9 1.2

5 3.8 9.5

What is RMSE of both predictors?
Which one is better + why?
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BPR matrix factorization

Instead of rating errors, focus on ranking correctness
- Triples of user, good and bad object
- For these pairs, good object should be rated higher than the bad one
- (unary feedbak originally, but graded possible)
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Multiple Content Alignments

BPR algorithm

 Matrix factorization/completion

 Ranking-oriented optimization
– Based on BPR MF1

– Binary implicit feedback

– Train set triples (user, good, bad object)

 Maximize distance in rating of good and bad obj.

 Individual updates for both user, good object and bad object

1Rendle et al.: BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI 2009
HT 2017, Prague
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 σ∀(𝑢,𝑔,𝑏) ln 𝜎 Ƹ𝑟𝑢,𝑔 − Ƹ𝑟𝑢,𝑏 −𝜆 𝑈 2 + 𝑉 2.

Train set
Regularization

Ranking correctness

Ƹ𝑟𝑖,𝑗 ≔ 𝒖𝑖 × 𝒐𝑗
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Multiple Content Alignments

BPR algorithm

 What about weak spots of this method?

HT 2017, Prague
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Questions?
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Collaborative Filtering Issues

 Pros: 
– well-understood, works well in some domains, no knowledge engineering required

 Cons:
– requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

 What is the best CF method?
– In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between 

methods are often very small (1/100)

 How to evaluate the prediction quality? (separate lecture on this – gets even more important nowdays)

– MAE / RMSE: What does an MAE of 0.7 actually mean?

– Serendipity (novelty and surprising effect of recommendations)

 Not yet fully understood (still true)

 What about multi-dimensional ratings? not many application domains

– instead, what about implicit feedback?
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EASE: optimization
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EASE: optimization
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Questions?
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EASE: features

 Pros: 
– Users represented through interacted items => no need for partial updates

– Simple implementation, usually quite fast, very good performance

 Cons:
– Quadratic complexity w.r.t. number of items (good for Netflix, bad for Amazon)

 We proposed some works to alleviate this


