
EasyStudy framework
Framework for building user studies

Motivation

• Do not rely solely on offline evaluation

• Online evaluation is expensive

• User studies are possible, but it is time consuming to write it from scratch
(e.g. showing recommended items, preference elicitation, interaction
logging, etc.) We ideally want to make some of those steps reusable.

⇒ EasyStudy framework

Technical Details

• Flask application written in Python, sqlite DB

• Modularity achieved using Flask plugins

• Individual plugins correspond to "templates“ that can be used to create
user studies

• We have an “interface” that has to be satisfied by the plugins (see README
in GitHub)

• Plugin defines some endpoints and the framework ensures their
invocation. The plugin then determines their implementation (can be
almost anything, e.g. reuse some functionality from other plugin, main
app, etc.)

Fastcompare plugin

• Fast comparison of RS algorithms

• Flow: user details ⇒ pref. Elicitation ⇒ n iterations of algorithm
comparison ⇒ final page with statistics.

• User study can be parameterized:

• 2 datasets, various RS algorithms, preference elicitation methods,
number of iterations, size of recommendation, etc.

• The plug-in itself is extensible

• Adding new algorithms, datasets, preference-elicitation methods by
subclassing

• Implicit feedback

Setup
• Repository: https://github.com/pdokoupil/EasyStudy/tree/ndbi021 (contact email is there as well)

• git clone, cd to the repository, then checkout ndbi021 branch

• $env:GIT_LFS_SKIP_SMUDGE="1" [on Windows]
git clone -b ndbi021 https://github.com/pdokoupil/EasyStudy.git" [on Windows]

• GIT_LFS_SKIP_SMUDGE=1 git clone -b ndbi021 https://github.com/pdokoupil/EasyStudy.git [on Mac/Linux]

• Download and extract *.zip files (images, and MovieLens dataset)

• ml_latest_img.zip contains img folder, ml-latest.zip contains ml-latest/*.csv files.
Expected structure is server/static/datasets/ml-latest/*.csv and server/static/datasets/ml-latest/img/*.jpg

• Alternative 1) Local installation: Install needed dependencies in Python venv
• python -m venv easystudy_venv

• ./easystudy_venv/Scripts/activate [on Windows]
• source ./easystudy_venv/bin/activate [on Mac/Linux]

• pip install --upgrade pip or python -m pip install --upgrade pip
• cd ./EasyStudy/server
• pip install -r ./local_requirements.txt (should support Python versions 3.9.x, 3.10.x, 3.11.x, 3.12.x, was tested with 3.9.6, 3.10.11, 3.11.8,

3.12.2) -> ! Specifically, Python >= 3.13 should use local_requirements_py3_13.txt !
• flask --debug run

• Alternative 2) Use docker:

• Build docker image (build_server_container.sh) then run docker container (start_server.sh)

• Administration is available at http://localhost:5000/administration where you have to register an account

• Details in README

https://github.com/pdokoupil/EasyStudy/tree/ndbi021
https://github.com/pdokoupil/EasyStudy.git
https://github.com/pdokoupil/EasyStudy.git
http://herkules.ms.mff.cuni.cz/ligan/easystudy/ml_latest_img.zip
http://herkules.ms.mff.cuni.cz/ligan/easystudy/ml_latest_filtered.zip

Creating a Study

- To verify the installation works as expected, create a first study
- Visit http://127.0.0.1:5000/administration
- “Go to signup page” and create account
- “Submit”, then “Login” with the newly created account
- In “Available templates” there will be “fastcompare” plugin, use the “Create”

button
- Fill-in the configuration (see this example) and then “Create” the study
- Wait until yellow background disappears indicating the study is “Initialized”
- Use “Link” under “Join Url” to open the study

http://127.0.0.1:5000/administration
https://drive.google.com/file/d/1B5LxzLJgTgjiAMi2NJWivnGvIvZwbF1X/view?usp=sharing

Database
- All data is stored in SQLite database (server/instance/db.sqlite)

- Different tools available for viewing the data:
- https://github.com/coleifer/sqlite-web Python package providing

web-based browser (allows exporting the data as JSON/CSV)
- https://sqlitebrowser.org/ (Windows, Mac & Linux supported)
- SQLite Viewer and other VS Code extensions

- Tables of interest:
- userstudy: records for individual user studies
- participation: records for user study participants
- interaction: different interactions from the users

- e.g. elicitation-started, elicitation-ended, selected-item, …
- filter by interaction_type, use json to load the data column

- Loading data from Python: if you use sqlite-web, you can open e.g.
interaction click on Query then Export JSON
- df_interaction = pd.read_json('interaction-export.json',
encoding='utf-8')

- You can use json.loads on individual df_interaction.data entries
(e.g. json.loads(df_interaction.iloc[0].data))

https://github.com/coleifer/sqlite-web
https://sqlitebrowser.org/

Extending the fastcompare plugin

• Adding new algorithms is fairly easy

• It is enough to add implementation of the AlgorithmBase base

• See algorithm_base.py for interface definition

• Also see ease.py for an inspiration

• Details in README

Try yourself
• Create MostPopularPerCategory algorithm

• Generating recommendation of length k:

• If k <= |categories| then sample k unique categories at random and
take most popular item for each of them

• Otherwise sample with replacement and do the same

• Use ML dataset

• Tips: loader.get_all_categories

• loader.get_item_index_categories

• popularity[i] = |users who rated i| / |users|

Note on debugging / testing

- Is not really convenient, usually you learn about issue only once code execution gets
there
- If your algorithm fails in fit, you have to create new study because initialization is

only triggered after study creation
- If it fails in predict, it is enough to start user study from beginning

- Issues are typically reported in terminal window / error_logfile.txt (when running in
docker).

- You can add arbitrary logging via standard Python print function
- *UPDATE starting from 3551522 basic functionality can be tested by simple “unit

test” (i.e. you do not have to create new study and you save some disk space on
cache).
- The tests are in test_algorithm.py which can be executed via run_tests.sh

(or just run pytest from ./server)
- Covers verification of the most basic functionality - fit() does not fail,
predict() returns right number of items and item filtering works as expected.

- Adding new algorithm to tests can be done by extending
tested_algorithm_combinations

https://github.com/pdokoupil/EasyStudy/commit/3551522d86e3b3352b6c00ca0d588b9f73c51814

Troubleshooting common issues 1
- If you cannot checkout ndbi021 branch, ensure your git working tree is empty

(i.e. no files got modified)
- There are multiple reasons why the files could be modified right after cloning

the repository, the most probable culprit is Git behavior when it comes to
replacing LF with CRLF (on Windows)
- Can be disabled by git config --global core.autocrlf false

and then cloning the repository (or just restore the git repo to a clean state
if you don’t like changing your global git config)

- High memory consumption
- Each instance of user study (created via Administration) has its own cache

- Located in server/cache/fastcompare/${STUDY_ID}
- *UPDATE Starting from 0d85fd9 the cache is removed upon study removal

(from administration). In older versions this has to be done by manually
removing per-user-study cache folders

https://github.com/pdokoupil/EasyStudy/commit/0d85fd91da351d781fd9af54316297aebb05691f

Troubleshooting common issues 2
- If you create a new study and it does not get initialized (yellow background

transitioning to white background) within ~10 minutes, there is most likely
some issue
- Data placed at wrong location (see “Setup” slide for where .csv files and img

folder should be placed)
- Runtime issue with packages (rare, but not impossible)
- In any case, check logs for more details (console window output if running

locally, or error_logfile.txt if running in Docker)
- *UPDATE Starting from ffc29e5 if there is error in initialization, study

background turns red and such study can be removed.
- Newly added algorithm does not appear in study creation config

- Ensure you have saved the changes and restarted the server (manual restart
is needed when running in Docker)

- Ensure all methods from AlgorithmBase are implemented in your class
- Ensure class name of new algorithm is unique and matches return value of
name() method

- Ensure you place the class at right place (e.g. create new file next to
ease.py)

https://github.com/pdokoupil/EasyStudy/commit/ffc29e5b3b3b5c8d2ba1025131218ea8f0b4efc3

Project/Assignment
• Part A: Implement new algorithm

• Part B: Add post-processing to the new algorithm and create a user study
that will compare the two new algorithms against baseline (EASE)

• Post-processing can be based on copying Part A and adding
post-processing (e.g. Diversification)

• Part C: Add evaluation

• Either separate script/notebook that will work on data exported from DB, or
override last step of the user study, showing the results to the participant.

• Note: use the ML (movielens) dataset

OLD Content

Project/Assignment
• Part A: Implement new algorithm

• Somewhat more complex / interesting algorithms

• Higher-order EASE, ELSA, SANSA or similar
https://dl.acm.org/doi/pdf/10.1145/3460231.3474273
https://dl.acm.org/doi/abs/10.1145/3523227.3551482
https://dl.acm.org/doi/pdf/10.1145/3604915.3608827

• Any reasonable deep-learning based algorithm
https://arxiv.org/abs/1708.05031

• Any actively de-biasing algorithms
https://dl.acm.org/doi/10.1145/3109859.3109912
https://proceedings.mlr.press/v48/schnabel16.pdf

• Hybrid recommendations combining CF and CB
See active reading #2
https://www.researchgate.net/publication/336718297_Fuzzy_D'Hondt's_Algorithm_for_On-line_Recommendations_Aggregation
https://arxiv.org/abs/1210.5631

• Bridge to some RS framework (Elliot, RecPack, …)

• Suggest…

OLD Content

https://dl.acm.org/doi/pdf/10.1145/3460231.3474273
https://dl.acm.org/doi/abs/10.1145/3523227.3551482
https://dl.acm.org/doi/pdf/10.1145/3604915.3608827
https://arxiv.org/abs/1708.05031
https://dl.acm.org/doi/10.1145/3109859.3109912
https://proceedings.mlr.press/v48/schnabel16.pdf
https://www.researchgate.net/publication/336718297_Fuzzy_D'Hondt's_Algorithm_for_On-line_Recommendations_Aggregation
https://arxiv.org/abs/1210.5631

Project/Assignment
• Part B: Add post-processing

• Diversity / Novelty / Exploration / Business Value / Calibration…

• Simpler Part A -> more challenging Part B

• Novelty and Diversity
https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf
https://dl.acm.org/doi/abs/10.1145/2492189.2492205
https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf
https://link.springer.com/chapter/10.1007/978-1-4899-7637-6_26

• Business Value
Adjustment towards artificially created business value of individual items

• Exploration -> diversity w.r.t. existing user profile

• Calibration
https://dl.acm.org/doi/10.1145/3240323.3240372

• Suggest…

OLD Content

https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf
https://dl.acm.org/doi/abs/10.1145/2492189.2492205
https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf
https://link.springer.com/chapter/10.1007/978-1-4899-7637-6_26
https://dl.acm.org/doi/10.1145/3240323.3240372

Project/Assignment
• Part C: Evaluation

• Define metrics suitable to answer your research questions

• Overall evaluation (Jupyter notebook using data collected during study)

• Per-user evaluation (Display individual results to the user once the study is completed)OLD Content

