Linking Content Information with Bayesian Personalized Ranking via Multiple Content Alignments

Ladislav Peška

Department of Software Engineering, Charles University in Prague, Czech Republic

Challenge

- Provide ranked list of top-k best objects matching to the user's preference
 - Extend collaborative-filtering with content-based alignments
- Combine content-based and collaborative approaches
 - Reduce the effect of the cold-start problem
 - Extend collaborative filtering (matrix factorization) by content-based component
 - Reduce the problem of **non-informative content**
 - Find and integrate additional CB data sources
 - Incorporate relevance estimation for the data sources
 - Reduce the overspecialization and obvious recommendations problems
 - Incorporate content-based method into the collaborative framework

Algorithm

• Stochastic Gradient Descend

¹Rendle et al.: BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI 2009

BPR-MCA, Content Alignments

- **Content alignments:** *Highly similar (CB) objects/users should also have similar latent factors*
 - There are many possible knowledge bases/sources for content-based similarity
 - => Multiple similarity matrices => Multiple Content Alignments
 - Usually, similarity matrices are not equally relevant => learn relevance

To pro vás není v tuto chvíli zásadní – důležitá je věta nahoře

BPR-MCA, Content Alignments

- **Content alignments:** *Highly similar (CB) objects/users should also have similar latent factors*
 - There are many possible knowledge bases/sources for content-based similarity
 => Multiple similarity matrices => Multiple Content Alignments
 - Usually, similarity matrices are not equally relevant
- For each train set triple
 - Select top-k (10 in evaluation) most similar users/objects w.r.t. each sim. matrix
 - Add penalty for the difference in latent factors of source and similar users/objects
 - Add parameter ω estimating relevance for each similarity matrix
 - Learned via Stochastic Gradient Descend

$$maximize \sum_{\forall (u,g,b)} \ln \sigma(\hat{r}_{u,g} - \hat{r}_{u,b}) - \lambda \left(||\mathbf{U}||^2 + ||\mathbf{0}||^2 + \sum_{\forall \overline{u} \in S(u)_p} \omega_p s_{p,u,\overline{u}}^U ||\mathbf{u}_u - \mathbf{u}_{\overline{u}}||^2 \right)$$

$$Regularization \quad For all similar users/objects,$$
HT 2017, Prague
$$Ladislav Peska: Linking Content Information with BPR via Multiple Content Alignments \quad 5$$

Experimental Dataset

- MovieLens 1M dataset
 - 6000 users, 4000 movies, 1M ratings
 - Binarized rating(3*, 4*, 5* => positive preference)
 - Users: Gender, Age group, Occupation, ZIP code
 - Movies: Title, Genres
- Extensions (cosine sim., TF-IDF weighting)
 - ZIP code statistics (UnitedStatesZipCodes.org)
 - Population density, singles ration, vacant houses, racial groups,...
 - IMDB API
 - Directors, actors, average rating, year, language,...
 - DBTropes
 - "Intrinsic plot features"

Dál jsou konkrétní experimenty a výsledky – můžete přeskočit, nechávám jen pro zajímavost

Experimental Dataset

• DBTropes – The Matrix

type	Talking Is a Free Action
comment	Talking Is a Free Action: When Morpheus does a Barrier-Busting Blow and jumps onto Agent Smith in the bathroom, the latter lies still for a couple if seconds during which Morpheus orders Trinity to get Neo out of danger.
type	The Chooser of The One
comment	The Chooser of The One: The Oracle can tell who is or isn't The One.
type	Beard of Evil
comment	Beard of Evil / Bald of Evil: Cypher and his pencil- thin goatee.
Dramus	Ladialau Daalau Liaking Contract Information

Schema of MovieLens1M Dataset Extensions

Evaluation

• Simulate *cold-start problem* on extended MovieLens1M

- Monte-Carlo CV,
 - Hide 75%, 90%, 95% and 98% of interactions (p75, p90, p95, p98)
 - Repeat 10 times, the same train/test cuts for each method
 - MovieLens1M is extremly dense dataset, even 98% hidden interactions is realistical
- Graph-based (CB recommendation)
- WRMF (rating oriented MF for implicit feedback)¹
- BPR²
- BPR-MCA2 (based on original MovieLens1M dataset)
- BPR-MCA5 (based on the whole extended dataset)
- BPR-MCA5uniform (without learning relevance of similarity matrices)

¹Hu et al.: Collaborative Filtering for Implicit Feedback Datasets. *IEEE ICDM 2008* ²Rendle et al.: BPR: Bayesian Personalized Ranking from Implicit Feedback, *UAI 2009*

Results - Methods

Mathad	nDCG				
Wiethou	p75	p90	p95	p98	
Graph-based	*0.4863	*0.4930	*0.4913	*0.4853	
WRMF	*0.6634	*0.5854	*0.5421	*0.5124	
BPR	*0.6848	*0.6351	*0.5739	*0.5490	
BPR-MCA2	0.6872	*0.6361	*0.5732	*0.5510	
BPR-MCA5	*0.6836	0.6425	0.6016	0.5645	
BPR-MCA5uniform	*0.6846	*0.6336	*0.5757	*0.5516	

- BPR-MCA5 dominates in all but p75 scenarios
 - Cold-start in p75 not difficult enough to justify content-based extensions
 - Content-based component increased on signifficance with more complex cold-start scenarios
- Both extended datasets and learning relevance of the similarity matrices are relevant
- Graph-based and rating-based MF are inferior to BPR

Results – Train Set Size

- BPR-MCA5 improves mainly results for users with only a few known interactions (0-2)
- However, in thougher cold-start scenarios (p95, p98) signifficant improvements are generated for all users
 - => Improvement cannot be contributed solely to the improved prediction for users without any interactions

Conclusions, Future Work

Key outcomes

- Proposed BPR-MCA algorithm improved performance in ranking task on MovieLens1M under cold-start conditions
- Extension of the MovieLens1M dataset
 - Find & evaluate potentially relevant data sources seems as a key task

Future work, Open Problems

- Incorporate Mutlimodal Implicit Feedback (beyond binary feedback)
- Incorporate Diversity / Novelty / Temporal dependence...
- Further evaluation scenarios, datasets
 - Positive-only similarity weights?
 - Tradeoff between the ammount of feedback vs. content-based similarity?
 - Further "intrinsic" datasets such as DBTropes, e.g., visual descriptors
- On-line deployment and evaluation

Thank you!

Questions, comments?

Supplementary materials: <u>http://www.ksi.mff.cuni.cz/~peska/BPR_MCA</u> Slides: <u>https://www.slideshare.net/LadislavPeska/linking-content-information-with-bayesian-personalized-ranking-via-multiple-content-alignments</u>

HT 2017, Prague

Ladislav Peska: Linking Content Information with BPR via Multiple Content Alignments

Results – Weights of Similarity Matrices

- Similarity based on "external" movie features seems to have rather negative correlation with intrinsic user-based similarity
- Both user-based similarity matrices seems relevant
- Despite the low coverage, DBTropes-based similarity receives highest weights in average

Results – Size of k Parameter

- Parameter *k* sets the size of keeped nearest neighbors for each similarity matrix.
- Optimal value for MovieLens1M dataset seems to be between 5 and10.

$$\begin{split} \mathbf{\mu}_{i} &= \mathbf{\mu}_{i} + \eta \left(x \cdot \left(\mathbf{v}_{j} - \mathbf{v}_{k} \right) - \lambda_{R} \left(\mathbf{\mu}_{i} + \sum_{p=1}^{n_{s}} \sum_{\bar{\imath}=1}^{n} \omega_{p} \mathbf{S}_{p,i,\bar{\imath}}^{U}(\mathbf{\mu}_{i} - \mathbf{\mu}_{\bar{\imath}}) \right) \right) \\ \mathbf{v}_{j} &= \mathbf{v}_{j} + \eta \left(x \cdot \mathbf{\mu}_{i} - \lambda_{R} \left(\mathbf{v}_{j} + \sum_{q=1}^{m_{s}} \sum_{\bar{\jmath}=1}^{m} \omega_{q} \mathbf{S}_{q,j,\bar{\jmath}}^{O}(\mathbf{v}_{j} - \mathbf{v}_{\bar{\jmath}}) \right) \right) \\ \mathbf{v}_{k} &= \mathbf{v}_{k} + \eta \left(x \cdot (-\mathbf{\mu}_{i}) - \lambda_{R} \left(\mathbf{v}_{j} + \sum_{q=1}^{m_{s}} \sum_{\bar{k}=1}^{m} \omega_{q} \mathbf{S}_{q,k,\bar{k}}^{O}(\mathbf{v}_{k} - \mathbf{v}_{\bar{k}}) \right) \right) \\ \omega_{p} &= \omega_{p} - \eta \left(\sum_{\bar{\imath}=1}^{n} \mathbf{S}_{p,i,\bar{\imath}}^{U} \| \mathbf{\mu}_{i} - \mathbf{\mu}_{\bar{\imath}} \|^{2} + \lambda_{w} \left(\omega_{p} - \omega_{0} \right) \right) \\ \omega_{q} &= \omega_{q} - \eta \left(\sum_{\bar{\jmath}=1}^{m} \left(\mathbf{S}_{q,j,\bar{\jmath}}^{O} \| \mathbf{v}_{j} - \mathbf{v}_{\bar{\jmath}} \|^{2} + \mathbf{S}_{q,k,\bar{\jmath}}^{O} \| \mathbf{v}_{k} - \mathbf{v}_{\bar{\jmath}} \|^{2} \right) + 2\lambda_{w} \left(\omega_{p} - \omega_{0} \right) \right) \end{split}$$

Ladislav Peska: Linking Content Information with BPR via Multiple Content Alignments