Functions in Python

Defining Functions

Function definition begins with “def.” Function name and its arguments.

get final answer (filename):

““YDocumentation String”””
linel

line2 Colon.

total_counter

The indentation matters...

First line with less

indentation is considered to be The keyword ‘return’ indicates the
outside of the function definition. value to be sent back to the caller.

No header file or declaration of types of function or
arguments

Calling a Function

e The syntax for a function call is:
>>> myfun (x, y):
X * vy
>>> myfun (3, 4)
12

e Parameters in Python are Call by Assignment

* Old values for the variables that are parameter
names are hidden, and these variables are
simply made to refer to the new values

* All assignment in Python, including binding
function parameters, uses reference semantics.

Function overloading? No.

e There is no function overloading in Python

* Unlike C++, a Python function is specified by
Its name alone

The number, order, names, or types of its
arguments cannot be used to distinguish between
two functions with the same name

 Two different functions can’t have the same
name, even if they have different arguments

e But: see operator overloading In later slides

(Note: van Rossum playing with function overloading for the future)

Default Values for Arguments

e You can provide default values for a function’s
arguments

e These arguments are optional when the
function is called

>>> (b, c=3, d="hello”):
b + c

>>> myfun (5,3,”hello”)
>>> myfun (5, 3)
>>> myfun (5)

All of the above function calls return 8

Keyword Arguments

e You can call a function with some or all of its
arguments out of order as long as you specify
their names

e You can also just use keywords for a final
subset of the arguments.

>>> (a, b, c):

a—-b

>>> myfun (2, 1, 43)
1

>>> myfun (c=43, b=1l, a=2)
1

>>> myfun (2, c=43, b=1)
1

Functions are first-class objects

Functions can be used as any other datatype, eg:
« Arguments to function
* Return values of functions
« Assigned to variables
 Parts of tuples, lists, etc

>>> square (x) :
X*X

>>> applier (g, x):
q(x)

>>> applier (square, 7)
49

Lambda Notation

e Python uses a lambda notation to create

anonymous functions
>>> applier (z: z * 4, 7)

28

Importing and
Modules

\\;

Importing and Modules

e Use classes & functions defined in another file

e A Python module is a file with the same name
(plus the .py extension)

e Like Java import, C++ include
e Three formats of the command:

somefile
somefile *
somefile className

e The difference? What gets imported from the
file and what name refers to it after importing

import ...

import somefile

e Everything in somefile.py gets imported.

e To refer to something in the file, append the
text “somefile.” to the front of its name:

somefile.className.method (“abc”)
somefile.myFunction (34)

import somefile as sf

from ... import *

somefile *

e Everything in somefile.py gets imported

e To refer to anything in the module, just use
Its name. Everything in the module is now In
the current namespace.

e Take care! Using this import command can
easily overwrite the definition of an existing
function or variable!

className.method (Yabc”)

myFunction (34)

from ... import ...

from somefile 1mport className

e Only the item className in somefile.py gets
iImported.

o After importing className, you can just use
it without a module prefix. It's brought into the
current namespace.

e Take care! Overwrites the definition of this
name If already defined in the current
namespace!

className.method (Yabc”) € Imported
myFunction (34) € Not imported

Directories for module files

e Where does Python look for module files?

e The list of directories where Python will look
for the files to be imported is sys.path

e This is just a variable named ‘path’ stored
inside the ‘sys’ module
>>> import sys
>>> gys.path

['/Library/Frameworks/Python.framework/Versions/2.5/lib/python
2.5/site-packages/setuptools-0.6¢c5-py2.5.egg’, ...]

e To add a directory of your own to this list,
append it to this list

sys.path.append(‘'/my/new/path’)

Object Oriented Programming
in Python:
Defining Classes

Defining a Class

e A class Is a special data type which defines
how to build a certain kind of object.

e The class also stores some data items that
are shared by all the instances of this class

e [nstances are objects that are created which
follow the definition given inside of the class

e Python doesn’t use separate class interface
definitions as in some languages

e You just define the class and then use it

Methods in Classes

e Define a method in a class by including
function definitions within the scope of the
class block

e There must be a special first argument self

In all of method definitions which gets bound
to the calling instance

e There Is usually a special method called
init In most classes

e \We'll talk about both later...

A simple class def: student

student:
“WWWA class representing a
student ”"”

__1nit (self,n,a):
self.full name = n
self.age = a

get age(self):
self.age

Creating and Deleting
Instances

Instantiating Objects

e There is no “new” keyword as in Java.

¢ Just use the class name with () notation and
assign the result to a variable

e init serves as a constructor for the
class. Usually does some Iinitialization work

e The arguments passed to the class name are
giventoits init () method

e S0, the Init._ method for student is passed
“Bob” and 21 and the new class instance is
bound to b:

b = student (“Bob”, 21)

Self

e The first argument of every method is a
reference to the current instance of the class

e By convention, we name this argument self

eln init , self refers to the object

cuﬁgnty being created; so, in other class
methods, it refers to the instance whose
method was called

e Similar to the keyword this in Java or C++

e But Python uses self more often than Java
uses this

o A
W
W

Self

though you must specify sel f explicitly
nen defining the method, you don't include it

nen calling the method.

e Python passes it for you automatically

Defining a method.: Calling a method:

(this code inside a class definition.)

set age(self, num): >>> x.set age (23)

self.age = num student.set age (x,23)

Access to Attributes
and Methods

/-

AN

Definition of student

student:
“WWA class representing a student

77777

~ 1nit (self,n,a):
self.full name = n
self.age = a

get age(self):
self.age

Traditional Syntax for Access

>>> f = student (“"Bob Smith”, 23)

>>> f.full name # Access attribute
“Bob Smith”

>>> f.get age() # Access a method
23

Accessing unknown members

e Problem: Occasionally the name of an attribute
or method of a class is only given at run time...

e Solution:
getattr (object 1nstance, string)

e string IS a string which contains the name of
an attribute or method of a class

e getattr (object instance, string)
returns a reference to that attribute or method

getattr(object_instance, string)

>>> f = student (“"Bob Smith”, 23)
>>> getattr (£, “full name”)

“Bob Smith”

>>> getattr (f, “get age”)

<method get age of class
studentClass at 010B3C2>

>>> getattr(f, “get age”) () # call it
23

>>> getattr (£, “get birthday”)

Raises AttributeError - No method!

Attributes

&

Two Kinds of Attributes

e The non-method data stored by objects are
called attributes

e Data attributes
 Variable owned by a particular instance of a class
* Each instance has its own value for it
* These are the most common kind of attribute

e Class attributes
* Owned by the class as a whole
* All class instances share the same value for it
 Called “static” variables in some languages

« Good for (1) class-wide constants and (2)
building counter of how many instances of the
class have been made

Class Attributes

e Because all instances of a class share one copy of a
class attribute, when any instance changes it, the value
Is changed for all instances

e Class attributes are defined within a class definition
and outside of any method

e Since there is one of these attributes per class and not
one per instance, they’'re accessed via a different

notation:
» Access class attributes using self. class .name notation

-- This is just one way to do this & the safest in gen@l.
e Classname.name

sample: >>> a = sample()
x = 23 >>> a.increment ()
increment (self) : >>> a. class .x
self. class .x +=1 24

Inheritance

Subclasses

e A class can extend the definition of another
class

e To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.

Cs student (student) :
« Python has no ‘extends’ keyword like Java.
« Multiple inheritance is supported.

Redefining Methods

e To redefine a method of the parent class,
iInclude a new definition using the same name
In the subclass.

* The old code won’t get executed.

e To execute the method in the parent class Iin
addition to new code for some method,
explicitly call the parent’s version of the
method.
parentClass.methodName (self, a, b, c)

 The only time you have to explicitly pass ‘self’ as
an argument is when calling a method of an
ancestor.

Definition of a class extending student

Student:
“A class representing a student.”

~_1Init (self,n,a):
self.full name = n
self.age = a

get age (self):
self.age

Cs student (student):
“A class extending student.”

~ 1nit (self,n,a,s):

student. 1init (self,n,a) #Call 1init for student
self.section num = s

get age(): #Redefines get age method entirely

“Age: ” 4+ str(self.age)

Special Built-In
Methods and Attributes

Built-lIn Members of Classes

e Classes contain many methods and attributes
that are included by Python even if you don't
define them explicitly.

« Most of these methods define automatic functionality
triggered by special operators or usage of that class.

 The built-in attributes define information that must be
stored for all classes.

e All built-in members have double underscores
around their names: init doc

Special Methods

e You can redefine these as well:

__init _ : The constructor for the class
__cmp___ : Define how == works for class
__len : Define how len (obj) works
__copy___ : Define how to copy a class

e Other built-in methods allow you to give a
class the ability to use [| notation like an array
or () notation like a function call

Private Data and Methods

e Any attribute/method with 2 leading under-
scores in its name (but none at the end) is
private and can’t be accessed outside of
class

e Note: There is no ‘protected’ status in Python;
S0, subclasses would be unable to access
these private data either.

Zadani ukolu

Iniciativa TrueLibrary zahajila projekt na jediné a spravné setridéni knih
ve Velké knihovné. K tomu nutné potrebuji znat vzajemnou podobnost
knih.

Vytvorte tfidu TrueLib, ktera obsahuje seznam knizek (tfidy Book) a atribut
stopWords (a dale co bude potieba®)

Tfida Book obsahuje datové atributy nazev, autor, zanr (seznam/mnozina), rok a
text knihy (shrnuti déje) a metody bagOfWords() a TF-IDF(), oboji s parametrem
zda vynechavat stopwords

Tfrida TrueLib dale obsahuje metodu generateSimilarity, ktera pro kazdé dvé
knihy vypocte jejich podobnost jako (napfiklad) cosine similarity z bagOfWords,
nebo TFIDF

« Implementujte s pomoci list comprehension

Vypiste 10 paru knih s nejvySSi podobnosti (nazev1, nazev2, podobnost)

Jak se vysledky méni pfi pouziti stopwords a BoW nebo TF-IDF

V ramci iniciativy TrueLibrary vznikla frakce starobehavioristd, ktefi protestu;ji
proti pouziti obsahu knih pfi stanovovani podobnosti. Vytvorte subclass TrueLib

s predefinovanou podobnosti, ktera uvazuje pouze autora, zanr a rok vydani
knihy (Jaccard + normalized distance?) (a vypiste vysledky)

Zadani ukolu ll.

Stopwords napfiklad z

BagOfWords = seznam slov s Cetnosti vyskytu
« TF = BagOfWords

* IDF = Inverse Document Frequency, logaritmus z poméru vyskytu slova ve vSech
dokumentech, viz:

Jaccard Similarity =(a n'b)/(a U b)

> AB;
. . . . A-B i=1
Cosine Similarity = x| = 77— &

Setfidéni seznamu: funkce sorted(), pfipadné list.sort()

Zdroj dat: booksummaries.txt

Nacitani dat: kliCové slovo with, funkce open()
* Next(), read(), readline(),...
* Metody stringu split(), replace(),...

http://xpo6.com/list-of-english-stop-words/
https://cs.wikipedia.org/wiki/Tf-idf

