Learning gLMPM generalized LMPM

Peter Vojtas

Content

- We have extended the portfolio of models in hope some of them will fit to user's behavior. Let's try to find methods to learn from data generated by respective models
- There was some learning of LMPM preferences in NSWI166 - specific methods under specific circumstances of data distribution, here we learn gLMPM models, still based on a method finding ideal points and methods finding aggregation or at least PC contour lines
- Our experiments involve:
- Experiment 1. LMPM learning, more general data distribution, hill/valley attribute preferences
- Experiment 2. Data generated by product disjunction on respective PC contour lines
- Experiment 3. Data generated by product conjunction on respective PC contour lines
- Experiment 4. Arbitrary Pareto compliant contour lines

User's preference learning

- We have
- User behavior
- Would like to

have an

- gLMPM user model to compute top-k for recommendation
- Can we make this recommendation visual? Human intuitive?

Learning from NSWI166, go to slides 3-40

s
\sim
d
\sim
${ }^{A}{ }^{3}$
${ }^{B}+3$
${ }^{+}{ }^{4}$ $D_{+}{ }^{5}$

平7 ${ }_{+}{ }^{7}$
$x_{+} 5$
${ }_{+}{ }_{+}{ }^{5}$

76

Experiment 1.

LMPM learning, more general data distribution, hill/valley attribute preferences

Ex. 1 can be hillvalley
We would like to generate data in such a way that learning aggr. needs a new method

There will be no data with same preference

Choose aggr. $\left(2 x_{1}+x_{2}\right) / 3$

Ex. 1 can be hillvalley, new @ methods needed

Draw all decimal valued contour lines of $\left(2 x_{1}+x_{2}\right) / 3$ And chose one point on each.

Only for copying

Ex. 1 can be hillvalley, new @ methods needed

We have decimal valued contour lines of $\left(2 x_{1}+x_{2}\right) / 3$ points on each.

Chose attr. prefs. hill/valley

$+\quad+\quad+$
Ex. 1 can be hill valley,new @ methods needed

We have decimal valued contour lines of $\left(2 x_{1}+x_{2}\right) / 3$ points on each. and attr. prefs.

Each point has four coimages in DC chose one possibility rotating choice in quadrants (this can be changed in future data set generation). ${ }^{{ }^{2}}$

Pref.score is also ID

Fix also train/ test set.
$+\quad+\quad+$
Ex. 1 method in First decide hill / valley - projection smaller / bigger.
To learn an LMPM model, first a method il for atr.prefs.

We find four candidates for peak / valley points by center of mass (min and max pairs). Chose a red one, more regularly dividing train set

Find candidates in PC

Ex.1.1 method in. al. Learning gives attr. profs and training set images in PC. Points are Pareto compliant

Let's first try to find a max NW-SE angle for all train points preserves Pareto (0.1 to 0.3)

Angle method al: Let's chose angle axis as our guess for aggregation

Ex.1.2 method i1a2. Learning gives attr. prefs and training set images in PC by i1. a2 method: construct an angle of connections point with "it's" value on the diagonal - and get the angle axis.

Expected directions NW-SE, violated by 0.7 - confidence $5 / 6$. Lines create an angle (much smaller than previous one), chose again an axis

Experiment 2.

Data generated by product disjunction on respective PC contour lines

We know that attribute preferences are triangular (hill, valley) on whole domain

Let's try to learn also weighted average model, as if did not know how data were generated

Error versus confidence

- c - confidence - proportion of compliance with model assumptions
- e - error - proportion of maximal error
- Ideal $\mathrm{c}=1, \mathrm{e}=0$ (depict $\mathrm{c}, 1$-e)
- How to aggregate c and 1-e to usability of learning results?
- Guess: c-e-aggregation is conjunctive
- Minimal confidence c=0 and
 error e=1 make results of learning not usable. So, on 0-axis we have usability 0
- Are c, 1-e independent? Product logic conjunction?
- Do c $\uparrow 1$, 1-e $\downarrow 0$ behave opposite, i.e., $\mathrm{c} \uparrow 1$, e $\uparrow 1$, rather not Lukasiewicz
- Dependent? Goedel logic? Probably yes.
- How to test these hypotheses?

Ex. 2.2 method 2aPareto minimal region.
error on test set Image of test set in PC is always same (point identifiers are pref.score) 0.3 lies in Eckhardt geometry minimal region of 0.5 (learned from training example) gives to error 0.2 0.6 lies in $0.8 \mathrm{e}=0.2$ 0.9 lies in $1, \mathrm{e}=0.1$ In total error $=0.5$

Ex. 2.2 method 2b - Pareto maximal region.
error on test set Image of test set in PC is always same Image of test set in PC is always same (point identifiers are pref.score) 0.3 lies in Eckhardt geometry maximal region of 0.4 gives to error 0.1 0.6 lies in $0.4, \mathrm{e}+0.1$ 0.9 lies in $0.5, \mathrm{e}+0.4$ Total error = 0.6

$+\quad+\quad+$

Ex.2.2 comparing

 methods 1, 2a, Lb error on test set Image of test set in PC is always same Image of test set in PC is always same (point identifiers are pref.score) ai - error graphical az - error $=0.5$ geometry minimal $a 2 b-$ error $=0.6$
$+\quad+\quad+$
Ex.2.3 method 3. Data, attr. Prefs, training set in PC as before.
Let's try to find agg. in form of many valued disjunction connecting points to known behavior on axis and corresponding intersection with diagonal. Confidence is $5 / 6$ high - there is only one violation with 0.7 contour line. For test set we must approximate corresponding contour lines 0.9

$+\quad+\quad+$
Ex.2.3 method 3.
Approximating missing contour lines

Data, attr. Prefs, training set in PC as before. We found agg. in form of many valued disjunction. Missing 0.6 and 0.7 are heuristically constructed by equidistant points on diagonal.
$1 \lll 1$

train
$D_{2} \uparrow$

$+\quad+\quad+$
Ex. 2.3 method 3. Error on test set Data, attr. Prefs, training set in PC as before. We found agg. in form of many valued disjunction. Missing 0.6 and 0.7 are added. As $\mathrm{f}_{1}, \mathrm{f}_{2}$ did not change, images in PC are same.
0.3 lies in region of 0.4 - gives error +0.11 0.6 gives to error $+.1 \overleftarrow{x}_{2}$ 0.9 lies on border of 0.9 , so error is 0 Overall error is $\mathbf{0 . 2}$

Learning geretized LMPM
$+\quad+\quad+$
Ex.2.4 method 4.
Data, attr. Prefs, training set in PC as before.
Let's try to find agg. in form of many valued conjunction connecting points to known behavior on axis and corresponding intersection with diagonal.
Confidence is very low, zero - there is no intersection of estimated contour lines with diagonal - learning failed 0.9

Example2 résumé

attr. pref. easy as we know triangles over whole domain

We do not know @ models and have to try many

Methods
a1 - e>0.6
a2a $-\mathrm{e}=0.5$
$a 2 b-e=0.6$
a3-e=0.2
a4 - failed c=0

Experiment 3.

Data generated by product conjunction on respective PC contour lines

$+\quad+\quad+$
Ex.3data generated by product logic conjunction
¡1 as before

One Pareto violation 0.3 is dominated by 0.1

Does it influence confidence?

Ex.3data generated by product logic conjunction
a1-Or-like aprox. never intersects diagonal
m3i1a1 Confidence $=0$

Learning generalîz 1
$+\quad+\quad+$
Ex.3data generated by product logic conjunction
a2-And-like aprox. intersects diagonal
0.1 causes problem, decreases confidence Also 0.9 violates contour lines 0.6 and 0.5

Let us continue with $0.2,0.3,0.5$, 0.6 which are order compliant and do not intersect smaller / larger lines

$+\quad+\quad+$

Ex.3data

a2-And-like aprox.
intersects diagonal
0.1 problem, 0.9 violates
continue with 0.2 ,
$0.3,0.5,0.6$
0.5, 0.6
$+\quad+\quad+$

Ex.3data

a2-And-like aprox.
intersects diagonal
0.1 problem, 0.9 violates
continue with 0.2 ,
$0.3,0.5,0.6$

$+\quad+\quad+$
Ex.3data generated by product logic conjunction
a2-And-like aprox. intersects diagonal
0.1 causes problem, decreases confidence Also 0.9 violates contour lines 0.6 and 0.5

Let us continue with $0.2,0.3,0.5$, 0.6 which are order compliant and do not intersect smaller / larger lines

NDBI021 User Preferences Vojtas 13/14

Example3 résumé

3data generated by product logic conjunction
i1 makes candidate data in PC with one violation of Pareto order

We do not know @ models and try conjunction and disjunction Methods
a1 - or like fails
a2 - fit well
Rather low confidence

$+\quad+\quad+$
Ex. 3 generate regular contour lines in the PC,

Fix attribute preferences, construct corresponding images in DC and chose points in layers between contour lines in the DC

Now arbitrary choice in DC layers gives a learning task

$+\quad+\quad+$
Ex. 3 generate regular contour lines in the PC,

Fix attribute preferences, construct corresponding images in DC and chose points in layers between contour lines in the DC

Now arbitrary choice of points in DC layers gives a learning task

We can try to cheat some methods
t^{1}

Learning generaliza LMPM
$+\quad+\quad+$
Ex. 3 learn and test regular contour lines in the PC,

Fix attribute preferences, construct corresponding images in DC and chose points in layers between contour lines in the DC

Now arbitrary choice of points in DC layers gives a learning task

We can try to cheat some methods

$+\quad+\quad+$
Ex. 3 design contour lines in DC that are not concentric

We can choose arbitrarily points in layers in DC

Here it seems we do not have any Pareto compliance

We must preserve only monotony

We did not try to learn convex combinations

Learning from data generated by product conjunction and disjunction showed success (partial)

Nevertheless, we have to give up exact behavior on the diagonal

This leads us to a class of connectives where point is on contour line connecting (some) point on the diagonal and respective point on the 0 or 1 axis (of course not violating order and without any intersections of contour lines) NDBI021 User Preferences

learning users so far

Experiment 4.

Arbitrary Pareto compliant contour lines

Randomly generated data

Ex4. Train and test		
Ex. 4 Yet again a new idea - let's generate randomly data in DC.		
For each data point we need 3 numbers between 1 and 9 normalized domains are divided equidistant		
(x_{1}		
8	7	7
8	9	4
6	4	6
8	3	7
9	4	4
4	7	1
7	6	1
5	2	9
8	6	2
7	1	2

Randomly generated data

4-D learning?

advantage of visual insight disappeared

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

4d points easy to depict\&compute 4
$+^{R}$
4
$+R^{R}$ This is a template for you future solutions

4D points have coordinates multiples of 0.1 and 4D contour lines are also multiples of 0.1.

Conclusions

- No libraries, paper work, one should be able to verify results given by a software
- Graphical motivation, data visualization
- Aggregation of partial results (attribute score, several recommenders, ...)
- ChRF challenge response framework as in NSWI166 applies too, we reduce reality to models

Image is only illustrative Can we make visualization compliant with preferences?

Thanks

Questions?

0.3

Ex.2.3 method 3.

Approximating missing contour lines

Data, attr. Prefs, training set in PC as before.
Let's try to find agg. in form of many valued disjunction connecting points to known behavior on axis and corresponding intersection with diagonal. Confidence is $5 / 6$ high - there is only one violation with 0.7 contour line. For test set we must approximate corresponding Preferences contơurarinás

?Ex. 2.3 method 3. error on test set (calculated to true degree in generating set - here from product disjunction). Confidence $5 / 6$ is rather high. Also order is violated, best 0.7 behind 0.9 For test set we must approximate corresponding contour lines 0.6 and 0.7 in between contour lines 0.5 and 0.8

?Ex. 2.3 method 3. error on test set (calculated to true degree in generating set - here from product disjunction). Confidence $5 / 6$ is rather high. Also order is violated, best 0.7 behind 0.9
For test set we must approximate corresponding

Randomly generated data

