NDBI021 User preferences

substantially modified this year

One third Peter Vojtáš, KSI MFF UK
11/14 Introduction

remaining thirds Lád’a Peška, KSI MFF UK

Outline of this part of lectures

- Substantially modified this year - this course follows on the NSWI166 (previous NDBX021, NDBIO37 can be consulted)
- Motivation remains
- User requirements (implicit/explicit) - possibly conflicting, multicriterial
- (partly) linear models to enable lab paper solutions
- What is new
- building a larger portfolio of aggregation models for testing which fits better to user modelling (pure heuristic)
- More emphasis to visual part ...
- We begin with fast repetition of LMPM - Linear Monotone Preference Model + upgrade to 4D ...
- Data cube, Preference cube, contour lines, top-k, ...
- First lab on paper solutions

Multicriterial conflicting requirements -

Professional Laptops $\boldsymbol{f} \square \square$

Display size	from 14 "to $17.3^{\prime \prime} \times$			
:---	:---	No such product	Size of operational RAM	from $\mathbf{8} \mathbf{~ G B}$ to $\mathbf{3 2} \mathbf{~ G B ~} \times$
:---	:---		Storage capacity	from $\mathbf{1 , 5 0 0} \mathbf{~ G B}$ to $\mathbf{2 , 0 0 0 , 0 0 0 ~ G B ~} \times$
:---	:---	Do any of these come close?		

Professional Laptops we will dispa		Modify Results	
Specify category	$*$	Radius	
		100 Miles	\checkmark

Sorry, we couldn't find your dream car

We can alert you as soun as one is available. Just save this search and set up alerts with My Autotrader.

Sove Search

Do any of these come close?

Close! How to measure it?

2016 Jeep Patriot \$13,994

Preference - human, intuitive, ...scaled

- IT - more and more about the people and for the people
- Quality - in the language (good, better, best, bad, worse worst), we sense the visual stimuli in the environment e.g., depth and motion - step-wise, psychology Likert's scale, we will represent ordering by numbers (ratings)

Example Likert Scale

1. Wikipedia has a user friendly interface.

2. Wikipedia has a pleasing color scheme.

NDBIO21 User Preferences
Vojtáš 11/14

Introduction

User ratings for
"Scream Queens" (2015) Mree atimobpro.

4884 IMDD users have given a weighted average vote of $7.2 / 10$ Demographic breakdowns are shown below.

Decathlon data - scale-points, multicriterial

Decathlon points-commeasurable

P Athlete	Points	P	100m	P	Long	P	Shot	P	High	P	400m	P	110 mh P		Disc us		Pole	P	Javelin	P	1500m
1 Šebrle CZE	9026	1	942	1	1089	4	847	1	915	2	964	1	985	4	840	2	1004	1	892	5	799
2 Nool EST	8604	4	938	2	1010	3	841	5	915	8	924	3	976	1	827	4	972	6	861	1	798
$\begin{aligned} & \text { Dvorak } \\ & 3 \text { CZE } \\ & \hline \end{aligned}$	8527	2	922	3	982	9	831	7	859	1	919	4	946	3	803	11	941	2	843	12	770
Lobodin 4 RUS	8465	17	915	8	932	1	810	12	831	9	909	7	936	5	803	10	910	3	839	10	760
$\begin{aligned} & \text { Zsivoczky } \\ & 5 \text { HUN } \end{aligned}$	8173	3	897	6	908	8	800	4	803	14	877	10	936	7	800	12	910	14	797	11	734
Ambrosch 6 AUT	8122	10	890	11	898	16	796	13	803	3	873	9	929	9	796	9	880	15	763	3	721
$\begin{aligned} & \text { Kürtösi } \\ & 7 \text { HUN } \end{aligned}$	8099	14	885	4	891	10	780	2	776	17	873	2	916	11	748	1	849	5	746	4	706
Warners 8 NED	8085	8	883	5	859	7	776	3	776	10	872	8	913	2	732	6	849	16	737	6	703
Hämäläine $9 n$ FIN	8028	6	876	12	854	6	772	14	776	5	870	6	903	8	698	8	849	7	735	2	686
Jensen 10 NOR	8004	9	863	7	853	17	769	15	776	4	866	12	897	12	696	3	819	10	715	16	679
$\begin{aligned} & \text { Schönbeck } \\ & 11 \\ & \text { GER } \end{aligned}$	7891	13	863	9	840	5	765	6	749	7	858	14	886	15	691	7	819	17	711	8	665
Niklaus 12GER	7891	5	858	13	840	2	751	8	749	13	849	15	870	14	688	15	790	11	709	9	664
$13 \text { Tebbich }$	7632	16	854	10	799	11	739	16	749	6	846	17	853	10	672	5	760	8	672	13	640
$\begin{aligned} & \text { Llanos } \\ & 14 \text { PUR } \\ & \hline \end{aligned}$	7613	7	843	15	797	13	715	9	723	16	819	11	842	13	668	13	760	4	656	15	636
Schnallinge 15 rAUT	7576	12	841	14	788	14	708	11	696	12	808	13	841	6	655	17	731	13	653	17	628
Walser 16 AUT	7546	11	793	17	774	12	667	10	670	15	803	16	817	16	653	16	673	12	617	7	621
Walser 17 AUT	7506	15	\| 784	16	769	15	666	17)	\| 644	11	791	5	798	17	608	14	645	9	593	14	563

Sum of points makes Decathlon linear

- Data cube (upper right) - point function transforms achievements to preference cube (lower left)
- - dominates long

Decathlon like preference model = analogy for information ordering in web e-shops

Linear Monotone Preference Model-LMPM

- Decathlon - "single user" IAAF rules order athletes
- Disciplines $\mathcal{A}_{1}, \ldots, \mathscr{A}_{10}$; domains D_{1}, \ldots, D_{10}; ideal (field / track)
- $\boldsymbol{A}_{\mathrm{i}}$ point function $\mathrm{f}_{\mathrm{i}}: \mathcal{D}_{\mathrm{i}} \rightarrow \mathrm{N}$ makes results commeasurable
- Winner - overall IAAF achievement is obtained via sum $\Sigma\left\{\mathrm{f}_{\mathrm{i}}\left(\right.\right.$ athleteID. $\left.\left.\mathcal{A}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, 10\right\}$
- Retail, e-shop - set of users U, LMPM ${ }^{\text {u }}$ orders items
- Attributes $\boldsymbol{A}_{1}, \ldots, \mathcal{A}_{\mathrm{m}} ;$ domains $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{\mathrm{m}} ;$ ideal points can be for each user different
- Degree of preference for $\boldsymbol{A}_{\mathrm{i}}$ and user $u \in U \mathrm{f}_{\mathrm{i}} \mathrm{u}: \boldsymbol{D}_{\mathrm{i}} \rightarrow[0,1]-$ hardly made commeasurable in response time
- Winner, top-k, overall degree of preference - aggregation

$$
\left.r^{\mathrm{f}, \mathrm{t}}(\mathrm{objectID})=\mathrm{t}^{\mathrm{u}}\left\{\mathrm{f}_{\mathrm{i}}^{\mathrm{u}} \text { (objectID. } \mathcal{A}_{\mathrm{i}}\right): \mathrm{i}=1, \ldots, \mathrm{~m}\right\}
$$

Here $t^{\mathrm{u}}:[0,1]^{\mathrm{m}} \rightarrow[0,1], \mathrm{t}^{\mathrm{u}}(0, \ldots, 0)=0, \mathrm{t}^{\mathrm{u}}(1, \ldots, 1)=1$, tu monotone(linear) - preserves Pareto ordering,

Who, what, when, where, why

- Design thinking - is a term used to represent a set of cognitive, strategic and practical processes by which design concepts - is also associated with prescriptions for the innovation of products and services within business and social contexts
- Lean start up - is a methodology for developing businesses and products that aims to shorten product development cycles and rapidly discover if a proposed business model is viable; this is achieved by adopting a combination of business-hypothesis-driven experimentation, iterative (β)product releases, and validated learning
- Lean Startup Meets Design Thinking
- Three-legged stool: Design Thinking, Lean Startup, Agile
- B2B/B2C, our story, use-case, dream, running example
- (partly) linear models to enable lab paper solutions

Competitive Advantage by Learning and Experiment .everaging Design Thinking, Lean Startup and Agile

Visual dimensionality reduction

Our eyes process global visual information more easily

- Keeps similar objects close, dimensionality reduction
- Sammon mapping, Kohonen self-organizing map, latent factors, ... 2D/3D axes do not have real meaning Peska-Lokoc. Rating-aware self-organizing maps, MMM, oriented to VBS competition (prominent display areas, so the most relevant results should be mapped there).

Do users prefer visual information by triangle-rule (F-rule, Z-rule, ...), there is a room for eye-tracking user experiments?

Augmented/virtual reality

True attributes represented by 2D/3D position, color, size, shape (cube, ball), transparency, glittering

- human can percept more than 7-8 dimensions
- You need to wear AR/VR glasses

Combining queries, requirements, services,

Object: पj3b33a4._im, mask.0.im1 Dist: $s=1.343, T o t a l=1.343$

Combining = aggregating ratings (numbers in $[0,1]$)

User's requirements are also called criteria. Our typical problem is multicriterial (differs from multicriterial optimization).

Query Completed... 20 hits returned, database size: 379 objects

Edit Options
freehand drawn sketch
Query Results List

Storage capacity from 1,500 GB to 2,000,000 G8 \times

NDBI021 User Preferences
Vojtáš 11/14

File Ed scene $=$ red round + green background

User Holding Area

Data model: attributes $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$; domains $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$; Ideal points can be for each user different, we consider users u and u. Both have same aggregation average AVG

As before we have $\mathrm{f}_{\mathrm{i}}{ }^{\mathrm{u}}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]$ (for an user $u \in U$), so we have $f_{i}{ }^{u}$ and $f_{i}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $A_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$ has two images in preference cube B^{4} and B^{u}.

Let us depict $1 / 2$ contour line in DC

Data model: attributes $\mathcal{A}_{1}, \mathcal{A}_{2}$; domains D_{1}, \mathcal{D}_{2}; Ideal points can be for each user different, we consider users u and u. Both have same aggregation average AVG

As before we have $\mathrm{f}_{\mathrm{i}} \mathrm{u}: \mathcal{D}_{\mathrm{i}} \rightarrow[0,1]$ (for an user $u \in U$), so we have $f_{i}{ }^{u}$ and $f_{i}{ }^{u}$.

Object with objectID = B has attribute values B. $\mathscr{A}_{1}=b_{1}$ and B. $A_{2}=b_{2}$, sometimes we write $B=\left(b_{1}, b_{2}\right)$ has two images in preference cube B^{u} and B^{u}.

Let us depict $3 / 4$ contour line in DC

Trapezoidal degree of preference of \mathscr{A}_{j}, a value from D_{j} (local preference) is given by an ideal interval $\left[i_{j}{ }^{1}, i_{j}{ }^{r}\right]$ and analogically defined functions f_{j} (trapezoid is based on interval $\left[a_{j}, d_{j}\right]$

Consider different combination of "hill" "valley" shaped attribute preferences

Arbitrary point/line from DC/PC can be mapped to point/line in PC/DC

The Alew dork eimes

- Zagat gives a food rating to the
- We follow paper [FLN] Fagin, Lotem, Naor, Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66 (2003) 614-656 JCSS2003
- Access mode - sorted, direct (random), stateless, ...
- From multimedia middleware (IBM Almaden Garlic project) top-k optimal querying to our multiuser LMPM

Ci Siamo
Read Review
Read Revievi
Reserve a Table

Ci Siamo is Italian all the way, from the name you see on the door to the dessert you'll almost certainly want just before you leave. The chef, Hillary
Sterling, has a lively, inviting style that she has broadened and intensified wit Sterling, has a lively, inviting style that she has broadened and intensified with
a new tool - an open, wood-burning hearth that looks wide enough to roast a a new tool-a
midsize lion.

FLN threshold algorithm TA

1. Do sorted access in parallel to each of the

As an object R is seen under sorted access in some list, do random access to the other lists to find the grade x_{j}^{R} of object R in every list L_{j}. Then compute the grade $t(R)=t\left(x_{1}{ }^{R}, \ldots, x_{m}{ }^{R}\right)$ of object R.

If this grade is one of the k highest, we have seen, then remember object R and its grade $t(R)$.
2. For each list L_{i}, let \underline{x}_{i} be the grade of the last object seen under sorted access. Define the threshold value τ to be

$$
\tau=\mathrm{t}\left(\underline{\mathrm{x}}_{1}, \ldots, \underline{\mathrm{x}}_{\mathrm{m}}\right)
$$

As soon as at least k objects have been seen whose grade is at least equal to τ; then halt. Else go to 1 .
3. Let Y be a set containing the k objects that have been seen with the highest grades. The output is then the graded set $\{(R, t(R)) \mid R \in Y\}$ (ordered by $t(R)$).

FLN-TA graphically (2D)

Big picture

In this case we need 4 steps to decide the winner

Certified order of items so far is B, A, G, D (for F, C, E we have to wait)

It seems that number of steps needed to decide the winner is at most $\mathrm{n} / 2+1$ where n is the \# of items $(\lfloor n / 2\rfloor+1)$
?can we find data distribution such that TA ends (decides winner / decides all) in arbitrary number of steps
$s \leq(\lfloor n / 2\rfloor+1)$?

FLN-TA graphically (4D)
In this $[0,1] \times[0,1]$ rectangle we see lists from FLN data model.

Horizontally are weights $\mathrm{w}_{1}=0.4, \mathrm{w}_{2}=0.3 \ldots$ (summed up to 1) and vertically preference degrees of objects (items) A, B, ..., G in respective lists.

Above this there are 8 lines (for 7 points and threshold) where sum of attribute preferences are depicted.

Diagonal line helps to calculate attribute preference.

Parallelograms help to depict addition of respective quantity.

Here we depict the threshold after the first step of FLN-TA, here $\mathrm{T}^{1}=\tau^{1}, \ldots$

Colors depict where the value is taken from

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

4dim framework

$$
\begin{aligned}
& 2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3} \\
& \text { a }
\end{aligned}
$$

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z \quad \text { Starting with } 4 \mathrm{dim}
$$

- 4 dim deduction - easy part
- We know the whole model
- DC \rightarrow PC it is easy to graphical calculate an item overall preference
- 4 dim from PC \rightarrow DC
- Calculate contour lines graphically is the same as ask query:
- "which items are preferred more than ..."
- It is a little bit more involved as 4 dim contour lines are 3dim hyper cubes
- Induction will be challenging
- Because FLN-LMPM model needs to know each attribute preference separately, and
- And our graphics (on paper) is 2 dimensional ...

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

$0.6-4 \mathrm{~d} \mathrm{cl}$ to a system of pairs of 2 d cl's, step 1

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

$0.6-4 \mathrm{~d} \mathrm{cl}$ to a system of pairs of 2 d cl's, step 2

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

$0.6-4 \mathrm{~d} \mathrm{cl}$ to a system of pairs of 2 d cl's, step 3

$$
\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z
$$

$0.6-4 \mathrm{~d} \mathrm{cl}$ to a system of pairs of 2 d cl's, step 4

$\frac{2 * \frac{x_{1}+x_{2}}{2}+3 * \frac{2 * x_{3}+x_{4}}{3}}{5}=\frac{2 * y_{1,2}+3 * y_{3,4}}{5}=z$
4d points easy to depict\&compute

4
$+R$
+
$+R^{R}$

This is a template for you future solutions

4D points have coordinates multiples of 0.1 and 4D contour lines are also multiples of 0.1.

To compare with
$0.2 / 0.8$ contour line in $4 D$ is a $3 D$ hypercube, here only intersections with 4D-cube faces are depicted

Each visualization has some advantages and disadvantages, please comment

Another view of 4 d cube construct all as in previous slide

1111

What is preserved? What not?
Parallelism, ratio of distances? ...

No coding, simulation using drawing tools

Main Railway station, southern wing

Our solutions will look like ...

Questions?

Comments?

We will use framework for 4dim, ...

Partially linear rapproximations of preferences

Preference cube in 3D with contour surface wrt different aggregaations

3D-DC-PC

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time

Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time
2.

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2.

Dynamical model - three sessions - moving ideal points (aggregations remain same)

Simulation of development in time Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $u^{0}{ }_{f, t}=u^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2.

Dynamical model - three sessions - moving ideal points and moving aggregation

Simulation of development in time Starting vector of attribute preferences f^{0} and aggregation t^{0} define an user $\mathrm{u}^{0}{ }_{\mathrm{f}, \mathrm{t}}=\mathrm{u}^{0}$ in time 0 . Depict contour line in DC-data cube.

Assume user clicks on third item. In time 1, $\mathrm{t}^{0}=$ t^{1}, ideal is clicked item (triangular max-min shape remains).

In time 1 user clicks on second item - this becomes ideal in time 2.

Describe order in time 2.

