
The Frontier of
Autoencoder-Based
Recommender Systems

Martin Spišák, Vojtěch Vančura
11 December 2024

Outline

1. How autoencoders work in collaborative filtering tasks

2. How to scale them to huge datasets

3. How to incorporate item information

4. How we teach autoencoders to generalize to new items

1. How autoencoders work in collaborative filtering tasks

Interaction Autoencoders

• Autoencoder = self-supervised representation learning technique
• In RecSys context: Train a ML model to reconstruct rows of

(sparse) interaction matrix X
• Denoising AutoEncoders (DAE), Variational AutoEncoder (VAE) etc.

EASE

• EASE is a linear autoencoder model with closed-form solution
– linear regression but with huge model capacity
– Encoder and decoder fused together

• EASE trains item-to-item weight matrix
• Diagonal of weights constrained to zero to prevent trivial solutions

Steck, Harald. "Embarrassingly shallow autoencoders for sparse data." In The World Wide Web Conference, pp. 3251-3257. 2019.

EASE - results

• Closed-form solution => very fast training
• (more-or-less) SotA recommendation quality

EASE - the catch

• EASE requires O(n_items2) memory => unfeasible for large
use-cases with millions of items

2. How to scale them to huge datasets

ELSA

• Assume that weight matrix B is a cosine similarity matrix
• B can be factorized B=AAT (encoder = decoder)
• A is latent representation for items
• On the diagonal of B are ones
• Rows of A are L2-normalized
• Can be trained using numerical optimisation with backprop

ELSA

• Weight matrix is factorized into low-rank structure
• Neither for optimizing the model nor predicting the

recommendations, it will be necessary to store a dense matrix with
dimensions superior to i✕d

ELSA - results

• Same performance as EASE
• Linear complexity with respect to the number of items

ELSA

https://github.com/recombee/ELSA

pip install elsarec

https://github.com/recombee/ELSA

SANSA
ELSA: memory requirements n_items x latent_dim (still large)

Dense weight matrix of EASE can be accurately approximated by a
product of 2 sparse matrices

• tool: factorized sparse approximate inversion
– sophisticated numerical algorithm
– can extract global information from the item–item network
– factorization is the key to compression

• user chooses final model density

SANSA
Architecture and training procedure

encoder decoder

SANSA - results
Dense dataset Sparse dataset

Scaling hypothesis: larger dataset => greater compression
At O(1M) items we get 100 000x compression vs. full EASE

SANSA

https://github.com/glami/sansa

pip install sansa

https://github.com/glami/sansa

3. How to incorporate item information

ELSA with item information

ELSA assumes weight matrix B is a cosine similarity matrix
Given images/descriptions/metadata, we can compute embeddings for
items (SVD, deep learning…)
Idea:
• Instead of B=AAT (encoder = decoder), let’s represent B=ED
• Use the embedding matrix as either E or D
• Learn the other one using gradient descent

ELSA with item information

Implications:
Without retraining, we can expand E or D by generating embeddings for
items not seen during training (cold start), and
• [expanded encoder] use new interactions with unseen items to

recommend seen items

• [expanded decoder] use interactions with seen items to recommend
unseen items

4. How we teach autoencoders to generalize to new items

beeFormer

Assume, that A is not initialized randomly, but computed from attributes
(descriptions, images) with neural network (NN). Then, we can
propagate gradients from ELSA to NN that generated A and update
weights of that NN. However we face the following challenge:

In every training step, we need to encode
all items in the catalogue (possibly
millions of items) with NN. This is
unfeasible for both time and GPU
memory reason.
To make training feasible we employ three
following tricks.

beeFormer - trick #1 - leveraging sparsity
Interaction data are typically (very) sparse. Therefore, we can omit
columns with only zeros (or limit them with negative sampling):

beeFormer - trick #2 - gradient checkpointing

Storing the whole graph for backpropagation would be costly,
therefore we split training into three steps:
1. Compute A without tracking gradients for NN
2. Perform ELSA step and track gradients for A (gradient checkpoint)
3. Compute A while tracking gradients to optimize NN.

1 3

2

beeFormer - trick #3 - gradient accumulation

We don’t need to compute
gradients for all items at once
during optimisation of NN.

We can do it in batches and
accumulate gradients during the
loop.

Finally we can update NN once
with accumulated gradients.

beeFormer - results

Cold start scenario - beeFormer
trained models generalize towards
unobserved items

Zero shot scenario -
beeFormer trained models
transfer knowledge from
one dataset to another

beeFormer - results

Comparison with supervised CF
models. Note that model trained on
movies beats supervised CF models
on books data.

beeFormer can accumulate
knowledge from multiple
datasets (domains)

beeFormer

https://github.com/recombee/beeformer

https://huggingface.co/beeformer

https://github.com/recombee/beeformer
https://huggingface.co/beeformer

Q & A

Thank You For Your Attention

