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Hybrid Recommendations by Content-Aligned Bayesian Personalized 

Ranking 

In many application domains of recommender systems, content-based (CB) 

information are available for users, objects or both. CB information plays an 

important role in the process of recommendation, especially in cold-start scenarios, 

where the volume of feedback data is low. However, CB information may come 

from several, possibly external, sources varying in reliability, coverage or 

relevance to the recommending task. Therefore, each content source or attribute 

possess a different level of informativeness, which should be taken into 

consideration during the process of recommendation. 

In this paper, we propose a Content-Aligned Bayesian Personalized Ranking 

Matrix Factorization method (CABPR), extending Bayesian Personalized Ranking 

Matrix Factorization (BPR) by incorporating multiple sources of content 

information into the BPR’s optimization procedure. The working principle of 

CABPR is to calculate user-to-user and object-to-object similarity matrices based 

on the content information and penalize differences in latent factors of closely 

related users’ or objects’. CABPR further estimates relevance of similarity 

matrices as a part of the optimization procedure. CABPR method is a significant 

extension of a previously published BPR_MCA method, featuring additional 

variants of optimization criterion and improved optimization procedure.  

Four variants of CABPR were evaluated on two publicly available datasets: 

MovieLens 1M dataset, extended by data from IMDB, DBTropes and ZIP code 

statistics and LOD-RecSys dataset extended by the information available from 

DBPedia. Experiments shown that CABPR significantly improves over standard 

BPR as well as BPR_MCA method w.r.t. several cold-start scenarios.  

Keywords: Hybrid recommender systems; Bayesian personalized 

recommendation; Content alignment; Cold-start problem 

1 Introduction 

Recommender systems (RS) belongs to the class of automated content-processing tools, 

aiming to provide users with unknown, surprising, yet relevant objects without the 

necessity of explicitly query for them. As such, RS are complementary to both keyword 



and attribute-based search engines, because recommendations can be provided implicitly, 

without user’s conscious cooperation or detailed knowledge of his/her intentions.  

The core of recommender systems are machine learning algorithms applied on the 

matrix of user to object past preferences. So far, the majority of research effort was spent 

on the collaborative filtering (CF) algorithms, i.e., recommendations based on other 

users’ preference, while the preference matrix was derived from explicit feedback, e.g., 

user rating. This research direction was supported by some meta-analysis too, e.g., (de 

Campos, Fernández-Luna, Huete, & Rueda-Morales, 2010; Pilászy & Tikk, 2009) 

claimed that collaborative recommender systems are more accurate than content-based 

(CB) algorithms, i.e., recommendations based on CB similarity of objects or users, if a 

sufficient amount of user feedback is available.  

State-of-the-art methods of collaborative filtering are mostly based on matrix 

factorization (MF) or their multi-layered deep learning extensions. Various (MF) 

approaches were proposed so far, e.g., SVD++ (Koren, Bell, & Volinsky, 2009), PMF 

(Salakhutdinov & Mnih, 2007), BPR (Rendle, Freudenthaler, Gantner, & Schmidt-

Thieme, 2009), Logistic MF (Johnson, 2014) etc. The core idea of applying matrix 

factorization techniques in recommender systems is to map both users and objects into a 

shared low-dimensional latent feature space and use this representation to calculate the 

predicted relevance of any user-object pair. Matrix factorization techniques differ from 

one another especially in the optimization criteria, optimization procedure and the exact 

calculation of user-object score.  

Explicit user ratings are rich and reliable source of user preferences, however they 

are often not numerous enough or even completely unavailable on some application 

domains (Hu, Koren, & Volinsky, 2008; L. Peska & Vojtas, 2017). Therefore, 



recommender systems in praxis mostly rely on the usage of implicit feedback1, i.e., 

processing user’s actions committed during normal browsing as a source of user’s 

preferences. Although there is some recent research on diversification of implicit 

feedback (e.g, Lerche & Jannach, 2014; Peska & Vojtas, 2017; Yi, Hong, Zhong, Liu, & 

Rajan, 2014), positive-only unary feedback is often the only available information. 

Several MF techniques were designed to handle positive-only implicit feedback 

(also referred as one-class matrix factorization). One of the first such approaches were 

WRMF (Hu et al., 2008), Maximum Margin MF (Weimer, Karatzoglou, & Smola, 2008) 

or Bayesian Personalized Ranking MF (BPR, Rendle et al., 2009).  

BPR was designed to optimize AUC-like ranking criterion with positive-only 

feedback information. Unlike other MF approaches, e.g., SVD++ or WRMF, BPR uses 

pairwise preference relations between known positive and unknown objects and therefore 

optimizes correct ranking of objects directly, instead of minimizing some rating 

prediction error as in SVD++ or WRMF. 

So far, all mentioned MF methods were purely collaborative, i.e., using only 

preference matrix to calculate recommendations. However, the performance of purely 

collaborative methods drops significantly together with the decrease of available user 

feedback. This often happens during the early RS deployment phase and is usually 

referred as the cold start problem (Kluver & Konstan, 2014). In order to overcome the 

cold-start problem, recommender systems may rely on content-based attributes of users 

or objects and provide recommendations based on the similarity of CB information (Lops, 

de Gemmis, & Semeraro, 2011). Also, hybrid techniques combining CB and CF 

                                                 

1 Domonkos Tikk: Lessons Learnt at Building Recommendation Services in Industry Scale, 

Industrial Keynote, ECIR 2016, slideshare.net/domonkostikk/lessons-learnt-at-building-

recommendation-services-at-industry-scale 



approaches are plausible. Several hybrid techniques using CB information in MF models 

were proposed recently. In Content-boosted MF, objects are defined through the latent 

factors of its binarized CB attributes (Forbes & Zhu, 2011). Several proposals extend 

SVD++ by imposing similarity of latent factors based on the CB similarity of objects or 

users (Nguyen & Zhu, 2013; Zhen, Li, & Yeung, 2009).  

Another related approach, MSCMF (Zheng, Ding, Mamitsuka, & Zhu, 2013), is 

an extension of WRMF method and was originally proposed for drug-target interaction 

prediction problem, however, it can be applied on the recommender systems domain as 

well.  

In our previous work (Ladislav Peska, 2017), we focused on a content-based 

extension of BPR and proposed BPR_MCA method. BPR_MCA extends BPR’s 

optimization criterion by requiring similarity of closely related users’ (objects’) latent 

factors w.r.t. arbitrary many similarity matrices, while the relevance of similarity matrices 

is estimated by the optimization procedure as well. This paper is an extension of our 

previous work on BPR_MCA, however the proposed Content-Aligned Bayesian 

Personalized Ranking Matrix Factorization method (CABPR) differs significantly from 

BPR_MCA in two aspects. First, CABPR features several additional variants of 

incorporating CB similarity into the BPR’s optimization criterion (see Section 3.2). 

Second, an improved optimization procedure was proposed and implemented. 

Furthermore, we compare the results of CABPR and BPR_MCA on one additional 

dataset; CABPR algorithm outperformed BPR_MCA in each of the evaluated scenarios 

(see Table 6). 

 Our approach also extends the work of Nguyen & Zhu, 2013 and Zhen et al., 

2009 by using multiple similarity matrices and learning its weights. CABPR method also 



significantly differs from MSCMF method, e.g., in the means of content-based similarity 

incorporation and the learning procedure.  

In short, main contributions of this paper are threefold: 

 Proposed CABPR method extending original BPR as well as previously published 

BPR_MCA method. 

 Evaluation of CABPR on two publicly available datasets: extended MovieLens 

1M2 and extended LOD-RecSys3, w.r.t. several cold-start scenarios. CABPR 

method outperformed BPR_MCA as well as BPR. 

 Published extensions to both ML1M and LOD-RecSys datasets available for 

future work. 

1.1 Summary of Notations and Problem Formalization 

Before we continue, let us briefly formalize the problem domain and define key notations. 

For the convenience, notations used outside of their respective defining sections, are also 

listed in Table 1 in alphabetical order. We denote the set of users as 𝑈 = {𝑢1, … , 𝑢𝑛 } and 

the set of objects as 𝑂 = {𝑜1, … , 𝑜𝑚}, where 𝑛 and 𝑚 are the number of users and objects 

respectively. The 𝑛 × 𝑚 matrix 𝐑 represents known user-object interactions (implicit 

feedback). In the current scenario, 𝐑 is a binary matrix with 𝑟𝑖,𝑗 = 1 denoting that a user 

𝑢𝑖 positively preferred an object 𝑜𝑗 and 𝑟𝑖,𝑗 = 0  otherwise. Function 𝑓𝑆 define some, 

                                                 

2 The original dataset is available from: grouplens.org/datasets/movielens/1m/ 

3 The original dataset is available from: challenges.2014.eswc-conferences.org/index.php/RecSys 



possibly latent, CB similarity metric on the pair of users or objects. Matrix induced by 

such similarity metric is denoted as S. We usually distinguish similarity matrices to user-

based and object-based as follows: matrices 𝐒𝑝
𝑈 ∈ ℝ(𝑛×𝑛), 𝑝 ∈ {1, … , 𝑛𝑠} represent user 

similarities. Each element 𝑠𝑝,𝑖,𝑘 
𝑈  contains the similarity of users 𝑢𝑖 and 𝑢𝑘. Analogically, 

matrices 𝐒𝑞
𝑂 ∈ ℝ(𝑚×𝑚), 𝑞 ∈ {1, … , 𝑚𝑠}    represent objects similarities. Variables 𝜔𝑝 and 

 𝜔𝑞 are weights of similarity matrices 𝐒𝑝
𝑈 and 𝐒𝑞

𝑂 respectively. 

We further define sets of objects 𝑂𝑖
𝑁, novel for user 𝑢𝑖: 𝑂𝑖

𝑁 = {𝑜𝑗 ∈ 𝑂; 𝑟𝑖,𝑗 = 0}. 

Matrix factorization methods aim to map both users and objects into a shared latent space, 

where 𝑓 denotes its dimension (number of latent factors), 𝛍𝑖 ∈ ℝ𝑓denotes latent factors 

of user 𝑢𝑖  and 𝛎𝑗 ∈ ℝ𝑓 denotes latent factors of object 𝑜𝑗. 𝐔 ∈ ℝ(𝑛×𝑓) is the matrix of all 

users’ latent factors and 𝐕 ∈ ℝ(𝑚×𝑓) is the matrix of all objects’ latent factors. The 

predicted probability of positive preference �̂�𝑖,𝑗 for user 𝑢𝑖 and object 𝑜𝑗 is typically a dot 

Table 1: Used notations and descriptions. 

Notation Description 

𝑓  volume of latent factors 

𝑓𝑟;  𝑓�̅�  latent factor similarity regularization and matrix similarity regularization functions 

𝑓𝑠̅  cropped objects’ or users’ similarity function 

𝑚; 𝑚𝑠  volume of objects; volume of object-based similarity matrices 

𝑛; 𝑛𝑠  volume of users; volume of user-based similarity matrices 

𝑜𝑗;  𝑂; 𝑂𝑖
𝑁  j-th object; vector of all objects; unknown objects for user 𝑢𝑖 

𝑟𝑖,𝑗 ∈ 𝐑  known preference of user 𝑢𝑖 to object 𝑜𝑗 

�̂�𝑖,𝑗 ∈ �̂�  predicted preference of user 𝑢𝑖 to object 𝑜𝑗 

𝐒𝑝
𝑈;  𝑠𝑝,𝑖,𝑘 

𝑈   p-th user-based similarity matrix; similarity of 𝑢𝑖 and 𝑢𝑘 w.r.t. 𝐒𝑝
𝑈 

𝐒𝑞
𝑂;  𝑠𝑞,𝑗,𝑘 

𝑂   q-th object-based similarity matrix; similarity of 𝑜𝑗 and 𝑜𝑘 w.r.t. 𝐒𝑞
𝑂 

𝑇𝑠  List of train set examples 

𝑢𝑖;  𝑈  i-th user; vector of all users 

𝜂  learning rate 

Θ;  Θi   model parameters; parameters of i-th object or user 

𝜆𝑐̅; 𝜆𝑅; 𝜆𝑤  content, global and similarity weight regularization hyperparameters 

𝛎𝑗; 𝐕  latent factors of 𝑜𝑗; matrix of all objects’ latent factors 

𝛍𝑖;  𝐔  latent factors of 𝑢𝑖; matrix of all users’ latent factors 

𝜎(𝑥)  sigmoid function 𝜎(𝑥) ≔ 1/(1 + 𝑒−𝑥) 

𝜔𝑝; 𝜔𝑞; 𝜔𝑆; 𝜔0  weight of similarity matrices 𝐒𝑝
𝑈; 𝐒𝑞

𝑂 and 𝐒 resp.; uniform similarity weight 

  

 

 



product of its latent factors �̂�𝑖,𝑗 ≔ 𝛍𝑖 × 𝛎𝑗
𝑇. Last, we define the train set of the BPR-based 

methods as the set of triples 𝑇𝑠 ⊂ 𝑈 × 𝑂 × 𝑂;  𝑇𝑠 ≔ {(𝑢𝑖, 𝑜𝑗 , 𝑜𝑘): 𝑟𝑖,𝑗 = 1 ∧ 𝑟𝑖,𝑘 = 0}, 

i.e., each train set entry contains user, one of his/her preferred objects and one object, for 

which we do not have a preference information. 

With respect to the introduced notations, the recommending task can be 

formulated as follows: for a given active user 𝑢𝑖, past preference matrix 𝐑 and additional 

information 𝐒𝑝
𝑈, 𝐒𝑞

𝑂 predict preferences �̂�𝑖,𝑗 of objects 𝑜𝑗 unknown to the current user (𝑜𝑗 ∈

𝑂𝑖
𝑁). Top-k objects with the highest �̂�𝑖,𝑗 values are recommended to the user4.  

2 Materials and Related Work 

In order to make this paper self-contained, we would like to first describe three key related 

concepts fundamental for the proposed method. These are the original BPR method, 

enhanced gradient-based optimization techniques and existing content-alignment 

methods incorporating CB information into the matrix factorization. 

2.1 Bayesian Personalized Ranking Matrix Factorization 

BPR method (Rendle et al., 2009) aims to optimize per-user ranking of objects by 

reformulating the ranking correctness to the problem of the pairwise ordering correctness 

for interacting and non-interacting objects. BPR’s optimization criterion aims to 

maximize distances between the predicted ratings �̂�𝑖,𝑗 − �̂�𝑖,𝑘 of known preferred object 𝑜𝑗 

and unknown object 𝑜𝑘 for an active user 𝑢𝑖.  

                                                 

4 Recommending task may be further refined by applying additional optimization criteria, such 

as novelty or diversity (Castells, Hurley, & Vargas, 2015). However, such refinements are 

typically orthogonal to the recommendation based on estimated relevance of objects and can 

be combined via post-processing. Therefore, we do not consider such extensions further in 

this paper. 



BPR optimization criterion is formally derived as follows: the Bayesian 

formulation of finding correct per-user ranking of all objects 𝑜 ∈ 𝑂 is to maximize 

posterior probability:  

𝑝(Θ | >𝑖) ∝ 𝑝(>𝑖|Θ) 𝑝(Θ) 

where Θ represents parameters of the underlined model and >𝑖 is desired, but latent 

ordering, specific for the user 𝑢𝑖. BPR method further assumes independency of users on 

each other, independency of ordering pairs of objects on any other pairs, totality and 

antisymmetry of the ordering. Hence, the user-specific likelihood function 𝑝(>𝑖 |Θ) can 

be combined for all users as follows: 

∏ 𝑝(>𝑖|Θ)

𝑢𝑖∈𝑈

=  ∏ 𝑝(𝑜𝑗 >𝑖

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

𝑜𝑘|Θ) 

The individual probability that user 𝑢 prefers object 𝑜𝑗 over 𝑜𝑘 is defined as: 

𝑝(𝑜𝑗 >𝑖 𝑜𝑘|Θ) ≔  𝜎(�̂�𝑖,𝑗,𝑘(Θ)) 

where 𝜎 is the logistic sigmoid function 𝜎(𝑥) ≔ 1/(1 + 𝑒−𝑥) and �̂�𝑖,𝑗,𝑘(Θ) is an 

evaluation function of the underlying model. For matrix factorization, the natural 

definition of �̂�𝑖,𝑗,𝑘 is to substract predicted ratings of known and unknown objects: �̂�𝑖,𝑗,𝑘 ≔

�̂�𝑖,𝑗 − �̂�𝑖,𝑘. Parameters Θ of matrix factorization are latent factors of users and objects: Θ =

(𝐔, 𝐕). BPR method further assumes prior densities of model parameters to be of normal 

distribution with zero mean 𝑝(Θ)~𝑁(0, 𝜆𝜃𝐼), where 𝜆𝜃 is a model specific regularization 

parameter. Therefore, the optimization criterion BPR-OPT can be derived as follows 

(Rendle et al., 2009): 



BPR-OPT ≔ ln 𝑝(Θ | >𝑖)                                                                   

 = ln 𝑝(>𝑖|Θ) 𝑝(Θ)                                                          

 

= ln ∏ 𝑝(𝑜𝑗 >𝑖

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

𝑜𝑘|Θ)𝑝(Θ)                               

= ∑ ln  𝜎 (�̂�𝑖,𝑗,𝑘(Θ)) + ln  𝑝(Θ)                       

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

= ∑ ln  𝜎 (�̂�𝑖,𝑗,𝑘(Θ)) − 𝜆𝜃‖Θ‖2    

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

                   

= ∑ ln  𝜎(�̂�𝑖,𝑗 − �̂�𝑖,𝑘) − 𝜆𝑅(‖𝐔‖2 + ‖𝐕‖2)    

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

 (1) 

The BPR-OPT is optimized via Stochastic Gradient Descend (SGD)5 over the 

instances of train set 𝑇𝑠. Train set is usually constructed via bootstrapping unknown 

objects for the pairs of users and preferred objects. Algorithm 1 shows the pseudocode of 

the train set construction. 

Function construct train set 𝑇𝑠 for BPR method 

Input: rating matrix 𝐑, list of unknown objects for each user [𝑂𝑖
𝑁]𝑖=1

𝑛  

Output: BPR’s train set 𝑇𝑠 

1: TS = [] 

2: indices = list_nonzero_indices(𝐑) 
#suppose, indices are a list of tuples [(𝑢𝑖, 𝑜𝑗)] 

3: foreach (𝑢𝑖, 𝑜𝑗) in indices: 

4:     𝑜𝑘 = draw_with_uniform_probability(𝑂𝑖
𝑁) 

5:     TS.append((𝑢𝑖, 𝑜𝑗 , 𝑜𝑘)) 
6: return TS 
     

Algorithm 1: construction of the BPR's ternary train set 

2.2 Gradient-based Iterative Optimization Procedures 

Authors of the BPR method proposed to optimize BPR_OPT via Stochastic 

Gradient Descend (SGD), which is one of the prominent gradient-based optimization 

                                                 

5 Original BPR-OPT is defined as a maximization criterion, therefore Stochastic Gradient Ascend 

is used to optimize it. However as both methods are equivalent up to a -1, we continue using 

better-known SGD term. 



methods. However, due to the recent improvements in the area of gradient-based 

optimization, we aimed to reconsider this choice and therefore this section briefly discuss 

SGD as well as some other gradient-based optimization methods. First, the (Total) 

Gradient Descend (GD) method aims to minimize an objective function 𝑓(Θ) by updating 

parameters Θ in the opposite direction of the gradient of the objective function w.r.t. the 

learning rate 𝜂: 

Θ = Θ − 𝜂∇𝑓(Θ) 

 However, as calculating the total gradient ∇𝑓(Θ) is often time consuming and 

leads to a slow convergence, SGD instead performs parameter updates based on the 

gradients of each single training example. More formally, for each function 

𝑓𝑖(Θi): ∑ 𝑓𝑖(Θi)∀𝑖 = 𝑓(Θ) and corresponding subset of parameters Θi ⊂ Θ, the update 

step is as follows:  

Θi = Θi − 𝜂∇𝑓𝑖(Θi) 

In such way, SGD usually exhibits much faster convergence than GD. Despite its 

widespread, SGD suffers from some well-known nuisances, such as high variance in the 

update’s gradients, difficult choice of the learning rate, problematical behavior in saddle 

points and ravines etc. (Ruder, 2017).  

A natural way to decrease high variances in updates is to calculate gradients w.r.t. 

mini-batches of several dozens of training examples instead of a single one. The resulting 

mini-batch gradient descend method is a reasonable compromise of GD and SGD, 

offering decreased updates’ variance at a reasonable computational cost. Further SGD‘s 

improvements were published to deal with the proper learning rate settings and the 

stability of convergence.  

Momentum method (Qian, 1999) combines current and past gradients according 

to a 𝛾 hyperparameter in the update step. In such way, the prevailing gradient direction 



starts to dominate the resulting updates and therefore, the proposed method exhibit 

improved convergence, e.g., in ravines: 

𝛿𝑓𝑖

[𝑡+1]
= 𝛾𝛿𝑓𝑖

[𝑡]
+ (1 − 𝛾)∇𝑓𝑖(Θi)

Θ𝑖
[𝑡+1]

= Θ𝑖
[𝑡]

− 𝜂𝛿𝑓𝑖

[𝑡+1]
 

AdaGrad (Duchi, Hazan, & Singer, 2011) and AdaDelta (Zeiler, 2012) methods 

aim to estimate proper learning rates for each of the Θ parameters with the underlined 

assumption that (recently) infrequent parameters should be updated with larger learning 

rates than the frequent ones. For a small positive 𝜖, the update rule is as follows: 

Θ𝑖
[𝑡+1]

= Θ𝑖
[𝑡]

−
𝜂

√𝑔𝑖
[𝑡+1]

+ 𝜖

 ∇𝑓𝑖(Θi) 

Both approaches differ in the means of 𝑔𝑖 calculation. AdaGrad sums squares of 

all past gradients w.r.t. parameter Θi to obtain 𝑔𝑖. Therefore the effective learning rate is 

non-increasing for all parameters. To mitigate this rather strict behaviour, AdaDelta 

performs a floating weighted average of squared gradients:  

𝑔𝑖
[𝑡+1]

=  𝛾𝑔𝑖
[𝑡]

+ (1 − 𝛾)∇𝑓𝑖(Θi)
2 

ADAM method (Kingma & Ba, 2015) combines AdaDelta for setting parameter-

wise learning rate, Momentum to calculate adjusted gradients and per-iteration bias 

corrections. The final update rule is following (Kingma & Ba, 2015):  

 

𝛿𝑓,𝑖
[𝑡+1]

=
𝛾1𝛿𝑓,𝑖

[𝑡]
+ (1 − 𝛾1)∇𝑓𝑖(Θi)

1 − 𝛾1
𝑡

𝑔𝑖
[𝑡+1]

=  
𝛾2𝑔𝑖

[𝑡]
+ (1 − 𝛾2)∇𝑓𝑖(Θi)

2

1 − 𝛾2
𝑡

Θ𝑖
[𝑡+1]

= Θ𝑖
[𝑡]

−
𝜂

√𝑔𝑖
[𝑡+1]

+ 𝜖

 𝛿𝑓,𝑖
[𝑡+1]

 (2) 

 



Although ADAM as well as other improved gradient-based methods gained a lot 

of attention in the deep learning domain (Andrychowicz et al., 2016), these were only 

rarely, if at all, discussed w.r.t. matrix factorization methods for recommender systems. 

2.3 Content-based Extensions of Matrix Factorization Models 

The idea of incorporating content-based knowledge into the collaborative filtering 

is not new; see, e.g., Balabanović & Shoham, 1997 for an early approach. Also, several 

papers proposed to incorporate content-based similarity of users or objects in some matrix 

factorization technique (e.g., da Silva, Langseth, & Ramampiaro, 2017; Forbes & Zhu, 

2011; Krasnoshchok & Lamo, 2014; Lin, Kuo, & Lin, 2014; Nguyen & Zhu, 2013; Zhen 

et al., 2009). In the related approaches, we can observe two main concepts of content 

incorporation: content-driven and content-aligned. Examples of content-driven methods 

are  Forbes & Zhu, 2011 and Lin et al., 2014. In these methods, object’s latent factors are 

defined as the sum of its attributes’ latent factors:  

∀𝑗 ∈ {1, … , 𝑚}: 𝛎𝑗 = ∑ 𝑏𝑗,𝑙
∀𝑙

× 𝛂𝑙 

where 𝛂𝑙 are latent factors of an attribute 𝑎𝑙 and 𝑏𝑗,𝑙 is a binary information whether object 

𝑜𝑗 contains attribute 𝑎𝑙. This model optimistically expects that all relevant information, 

the users process during the evaluation of objects, is expressed in the form of content-

based attributes. Such simplification may be quite reasonable on some domains, e.g., 

recipes recommendation domain, which was evaluated in both papers. In many other 

domains, however, a lot of information defining desirability of objects may not be easily 

expressed via CB attributes. For such domains, the content-aligned methods may 

represent a better strategy. The core of content-aligned methods is a similarity metric 𝑓𝑠, 

assessing the similarity of two users (objects), based on some known CB information. 

Such similarity functions are both domain-dependent and method-specific. For example, 



TagiCoFi (Zhen et al., 2009) used cosine similarity of user-defined tags, variants of 

CBMF (Nguyen & Zhu, 2013) utilized either the threshold on the dot product of shared 

attributes, or its sigmoid generalization. The similarity of users (objects) is subsequently 

applied in some form of additional regularization of similar users’ (objects’) latent 

factors, e.g., L2 regularization on the difference of users’ latent factors as proposed in 

TagiCoFi.  

𝐶𝐴𝑇𝑎𝑔𝑖𝐶𝑜𝐹𝑖 = ∑ ∑ 𝑓𝑠(𝑖, 𝑖)̅

𝑛

𝑖̅=1

𝑛

𝑖=1

‖𝛍𝑖 − 𝛍𝑖̅‖
2 (3) 

Such setting prevents similar users (objects) to have too different latent factors. 

A slightly different regularization was suggested by Nguyen & Zhu:  

𝐶𝐴𝐶𝐵𝑀𝐹 = ∑ ∑ 𝑓𝑠(𝑖, 𝑖)̅

𝑛

𝑖̅=1

𝑛

𝑖=1

𝛍𝑖
𝑇𝛍𝑖̅ 

However, authors also shown that 𝐶𝐴𝑇𝑎𝑔𝑖𝐶𝑜𝐹𝑖 regularization corresponds with 𝐶𝐴𝐶𝐵𝑀𝐹 

regularization up to the multiplication of ‖𝜇𝑖‖
2 by a (1 + 2 ∑ 𝑓𝑠(𝑖, 𝑘)∀𝑘 ) constant. Our 

preliminary experiments suggested that 𝐶𝐴𝑇𝑎𝑔𝑖𝐶𝑜𝐹𝑖 regularization provides slightly better 

results than 𝐶𝐴𝐶𝐵𝑀𝐹 on ML1M dataset. 

3 Methods 

In this section, we describe the proposed method, Content-Aligned Bayesian Personalized 

Ranking (CABPR) and its variants. Let us first describe, how to utilize simple content 

alignments in BPR, then extend the model to handle multiple content-based similarities 

as well as estimating their relevance. After describing the general model, we propose four 

variants of CABPR, differing in the exact formulas of applied regularizations. Finally, we 

provide some insight on how to optimize the proposed methods. 



3.1 Content-alignments in BPR 

We base the content alignments in BPR on the TagiCoFi method (3). An underlined 

assumption of CABPR (as well as TagiCoFi) is that the independence of users and objects 

is relaxed by some precomputed similarity function(s) 𝑓𝑠, such that the high similarity of 

users or objects implies similarity of its respective latent factors. Therefore, differences 

in latent factors of highly similar users or objects (𝝁𝑖, 𝝁𝑖̅, resp. 𝝂𝑗 , 𝝂�̅�) are penalized via 

some regularization function 𝑓𝑟(𝝁𝑖, 𝝁𝑖̅), resp. 𝑓𝑟(𝝂𝑗, 𝝂�̅�).   

Nonetheless, we would like to stress that such regularization should be imposed 

only on highly similar users or objects. In real-world applications, there are large volumes 

of users and objects with only a negligible similarity to each other, approximately 

following the power law distribution. Regularization w.r.t. these lowly similar pairs could 

introduce unnecessary noise into the optimization as well as increases algorithm’s 

complexity.  

Therefore, we introduce cropped similarities 𝑓�̅� as follows: 

𝑓�̅�(𝑢𝑖 , 𝑢𝑖̅) ∶= {
𝑓𝑠(𝑢𝑖 , 𝑢𝑖̅) if 𝑓𝑠(𝑢𝑖, 𝑢𝑖̅) ≥ 𝑓𝑠,𝑘,𝑢𝑖

 

0 otherwise
 

where 𝑓𝑠,𝑘,𝑢𝑖
 is the k-th maximal value of 𝑓𝑠(𝑢𝑖 , _). In order to keep the model simple, we 

empirically define 𝑘 = 10 in the evaluation. These cropped similarities is one of the key 

differences between CABPR and MSCMF methods, where the combination of 

optimization criterion and learning procedure prevents from handling cropped similarities 

easily. 

 Now, suppose to have a BPR’s train set entry (𝑢𝑖, 𝑜𝑗 , 𝑜𝑘) ∈ 𝑇𝑠, a content 

regularization hyperparameter 𝜆𝑐 and two similarity metrics 𝑓�̅�
𝑈, 𝑓�̅�

𝑂 defined on users 𝑈 

and objects 𝑂 respectively, inducing similarity matrices 𝐒𝑈 and 𝐒𝑂. A simple content-

alignment extension of BPR-OPT criterion can be defined as follows: 

 



CA𝐵𝑃𝑅𝑠𝑖𝑚𝑝𝑙𝑒
=

∑ ∑ 𝜆𝑐 𝑠𝑖,𝑖̅
𝑈  

∀𝑖̅: 𝑠𝑖,�̅�
𝑈 >0

𝑛

𝑖=1

𝑓𝑟(𝛍𝑖, 𝛍𝑖̅) +

∑ ∑ 𝜆𝑐 𝑠𝑗,�̅�
𝑂

∀�̅�: 𝑠𝑗,�̅�
𝑂 >0

𝑚

𝑗=1

 𝑓𝑟(𝛎𝑗 , 𝛎�̅�) +

∑ ∑ 𝜆𝑐 𝑠𝑘,�̅�
𝑂

∀�̅�: 𝑠
𝑘,�̅�
𝑂 >0

𝑚

𝑘=1

 𝑓𝑟(𝛎𝑘, 𝛎�̅�)

 (4) 

Note that it is sufficient to evaluate inner the sums only for elements with non-

zero similarities. This suggest to implement 𝐒𝑈 and 𝐒𝑂 as sparse matrices, where such 

selection is inexpensive.  

The next step is to extend CA𝐵𝑃𝑅_𝑠𝑖𝑚𝑝𝑙𝑒 (4) to handle arbitrarily many similarity 

matrices 𝐒𝑝
𝑈, 𝐒𝑞

𝑂 and to learn relevance of each similarity matrix. In order to do so, we 

decompose the content regularization hyperparameter 𝜆𝑐 into a fixed part 𝜆𝑐̅ and variable 

parts 𝜔𝑆 specific for each similarity matrix 𝐒. Naturally, to prevent overfitting, some 

regularization 𝑓�̅� should be applied also on 𝜔𝑆 values with a regularization weight 

hyperparameter 𝜆𝑤. With respect to these assumptions, the content alignments extension 

of BPR is as follows: 

 𝐶𝐴𝐵𝑃𝑅 =

∑ ∑ ∑ 𝜆𝑐̅ 𝜔𝑝 𝑠𝑖,𝑖̅
𝑈  ∀𝑖̅: 𝑠𝑖,�̅�

𝑈>0
𝑛
𝑖=1 𝑓𝑟(𝛍𝑖, 𝛍𝑖̅)

𝑛𝑠
𝑝=1 +

∑ ∑ ∑ 𝜆𝑐̅ 𝜔𝑞 𝑠𝑗,�̅�
𝑂

∀�̅�: 𝑠𝑗,�̅�
𝑂 >0

𝑚
𝑗=1  𝑓𝑟(𝛎𝑗 , 𝛎�̅�)

𝑚𝑠
𝑞=1 +

∑ ∑ ∑ 𝜆𝑐̅ 𝜔𝑞 𝑠𝑘,�̅�
𝑂

∀�̅�: 𝑠
𝑘,�̅�
𝑂 >0

𝑚
𝑘=1  𝑓𝑟(𝛎𝑘, 𝛎�̅�) +

𝑚𝑠
𝑞=1

𝜆𝑤 ∑ 𝑓�̅�𝑆∈{𝐒𝑝
𝑈,𝐒𝑞

𝑂} (𝜔𝑠)

 (5) 

The final CABPR-OPT maximization criterion is derived by summing the content 

alignments (5) together with other regularizations of BPR-OPT (1): 

CABPR_OPT = ∑ ln  𝜎(�̂�𝑖,𝑗 − �̂�𝑖,𝑘)  − 𝜆𝑅(‖𝐔‖2 + ‖𝐕‖2 + CA𝐵𝑃𝑅)

(𝑢𝑖,𝑜𝑗,𝑜𝑘)∈𝑇𝑠

 
(6) 

 



3.2 Variants of CABPR 

Note that in the description of CABPR, we did not yet define the regularization functions 

𝑓𝑟 and 𝑓�̅�. In this paper, we propose two variants for both 𝑓𝑟 and 𝑓�̅�. As the choices are 

orthogonal, there are in total four variants of CABPR method. Please note that in the 

following definitions, we show only the user-based formulas of 𝑓𝑟 regularizations. The 

object-based definitions are analogical. 

As a first variant of 𝑓𝑟, we utilized the TagiCoFi approach, i.e., L2 regularization 

on the differences of latent factors: 

𝐿2(𝛍𝑖 , 𝛍𝑖̅) ≔ ‖𝛍𝑖 − 𝛍𝑖̅‖
2 (7) 

The choice of 𝐿2 regularization corresponds with the intended prior probability 

𝑝(𝛍𝑖) to be of a multivariate normal distribution with the means being a list of 𝛍𝑖̅ for all 

𝑖 ̅and zero (corresponding with the original BPR’s regularization).  

With the second choice of 𝑓𝑟, we aimed on relaxing the required latent factor’s 

similarity. The intuition behind is that although we want similar users (objects) to have 

similar latent factors, they do not necessarily have to be too close as CB similarity is 

merely a supporting evidence to the collaborative knowledge. Therefore, we may specify 

an allowed margin 𝜀 and penalize only differences beyond this margin:  

𝐿𝑊𝑀
2 (𝛍𝑖, 𝛍𝑖̅) ≔ max (0, ‖𝛍𝑖 − 𝛍𝑖̅‖

2 − 𝜀) (8) 

The definition of 𝐿𝑊𝑀
2  is based on the 𝐿𝐷 term in contrastive loss function 

(Hadsell, Chopra, & LeCun, 2006)6. 

The variants of 𝑓�̅� are derived as follows. First, for the sake of consistency, we 

wish to maintain the overall weight of the content-alignments in CA𝐵𝑃𝑅 to be proportional 

                                                 

6 To be more specific, we use the opposite of the second maximization term in 𝐿𝐷 ≔

1

2
 max (0, 𝜀 − ‖𝛍𝑖 − 𝛍𝑖̅‖

2)2 



to 𝜆𝑐, i.e., 𝜆𝑐̅ ∑ |𝜔𝑆|∀𝑆 ≈ 𝜆𝑐. Furthermore, to prevent overfitting, we prefer simpler 

weighting models not too different from the uniform distribution of weights. By 

combining those two principles, we aim to penalize the difference of 𝜔𝑆 and 𝜔0 ≔

 
1

𝑛𝑠+𝑚𝑠
𝜆𝑐.  

In the early stages of our work, we experimented with a plain squared 

regularization 𝐿2(𝜔𝑆) ≔ (𝜔𝑆 − 𝜔0)2, corresponding with the normal prior distributions 

of  𝜔𝑆 values around the mean at 𝜔0. 

However, 𝐿2 regularization allows 𝜔𝑆 to reach negative values, implying possibly 

positive 𝐶𝐴𝐵𝑃𝑅 (5) regularization term in the maximization procedure. Eventually, the 

𝐶𝐴𝐵𝑃𝑅 term may dominate the whole CABPR-OPT criterion (6) and diverge the 

optimization. Therefore, different variants of 𝑓�̅� were proposed and evaluated to cope with 

this problem.  

First, the fixed total content weight (𝐿2 + 𝐹𝐶𝑊) regularization preserve the 

squared regularization as is and defines an additional strict requirement that the sum of 

absolute content weights equals to 𝜆𝑐: 

∑ 𝜆𝑐̅|𝜔𝑆|

∀𝑆∈{𝐒𝑝
𝑈,𝐒𝑞

𝑂}

= 𝜆𝑐 
(9) 

The equality is checked after each optimization step and content weights are 

linearly scaled to adhere with the condition. This adjustment does not prevent the model 

from divergence, however, by bounding the minimal weights of 𝜔𝑆, it reduces its 

probability. On the other hand, the possibility to learn negative content weights is 

retained, allowing the model to detect unexpected content-based dissimilarities.  

In the second variant of 𝑓�̅�, we bound 𝜔𝑆 values to be from (0, 1) interval by 

gradually increased penalty by the factor of  
1

𝜔𝑆
 and 

1

1−𝜔𝑆
 respectively.  



𝐿𝑁𝑁
1 (𝜔𝑆) ≔  |𝜔𝑆 − 𝜔0| (

1

𝜔𝑆
+

1

1 − 𝜔𝑆
) (10) 

In the evaluation, the variants of CABPR are distinguished according to the 

selected 𝑓𝑟 and 𝑓�̅� variants, e.g., CABPR-L2-NN denotes the CABPR method, where 𝑓𝑟 =

 𝐿2 and 𝑓�̅� = 𝐿𝑁𝑁
1 . 

3.3 Optimization Procedure 

Based on the literature review, we decided to change the optimization procedure to 

ADAM optimization method with mini-batch processing. In the evaluation, we kept the 

default ADAM parameters, i.e., 𝛾1 = 0.9, 𝛾2 = 0.999 and 𝜖 = 10−8 and use the mini-

batches of the size 128. Algorithm 2 provides a pseudo-code for the final CABPR training 

procedure. 

Function train CABPR method 

Input: 𝑓, 𝜂, 𝜆𝑅, 𝜆�̅�, 𝜆𝑤, 𝜔0, max_iterations, batch_size, CABPR-OPT 

Output: users’ and objects’ latent factors 𝐔 and 𝐕 

1: Initialize 𝐔 and 𝐕 at random 

2: Initialize 𝜔𝑆 = 𝜔0 

3: Instantiate CABPR-OPT with 𝑓, 𝜆𝑅,𝜆�̅�,𝜆𝑤,𝑓𝑟 and 𝑓�̅� params 

4: Repeat until max_iterations is reached: 

5:   𝑇𝑆 = construct_train_set() #Algorithm 1 

6:   Repeat until b = next_batch(𝑇𝑆, batch_size) exists: 

7:     Update 𝐔, 𝐕, 𝜔𝑆 via ADAM(CABPR-OPT, b, 𝜂) #Equation (2) 

8:     If 𝑓�̅� == (𝐿2 + 𝐹𝐶𝑊): scale 𝜔𝑆 so that (9) holds. 

9: return 𝐔 and 𝐕 
     

Algorithm 2: training CABPR method. Note that ADAM() procedure on line 7 

corrersponds with a call of TensorFlow AdamOptimizer.maximize() method. 

Next_batch() procedure on line 6 returns the next batch_size items from the train set 𝑇𝑆 

or False if there are no more available items. 

4 Datasets 

We evaluated CABPR on two publicly available datasets: MovieLens 1M dataset, which 

was already used in the previous work and LOD-RecSys dataset. Both datasets were 



extended to contain relevant content-based information. 

4.1 Extended MovieLens 1M Dataset 

 The first dataset is based on a well-known MovieLens 1M (ML1M) dataset (Harper & 

Konstan, 2015). The original dataset contains over one million ratings on 1 to 5 scale 

from 6041 users and in total 3883 movies. Furthermore, the dataset contains some basic 

user statistics, such as gender, occupation, age group and a ZIP code. Title, year of 

publication and genres are available for the movies. As the input of BPR method is a 

binary user rating, the original graded feedback was binarized as follows: all known 

interactions with user rating ≥ 3 were considered as positive, i.e., 𝑟𝑢,𝑜 = 1, all other 

interactions (unrated and those with rating <  3) were considered as unknown, i.e., 𝑟𝑢,𝑜 =

0. ML1M dataset was extended by content-based information from three sources:  

 User profiles were extended via ZIP code statistics. 

 Item profiles were extended via IMDB movie features. 

 Item profiles were extended via DBTropes features. 

 Figure 1 depicts the general schema of the dataset extensions. Based on the 

provided US ZIP codes, we collected data from UnitedStatesZipCodes.org website, to 

describe the neighborhood of the user. Collected features aims to distinguish between 

urban and countryside areas (total population, density), social picture (median age, 

singles ratio), economic situation (vacant houses ratio) and ethnicity of the inhabitants. 

In total, we were able to collect ZIP code statistics about 5875 out of 6041 users. Note 

that although ZIP codes are not commonly provided by the users, similar information can 

be obtained based on their IP addresses. 



In order to define finer grained similarity on movies, we queried IMDB API7 with 

the query based on the movie title and the year of production. In total, we were able to 

match 3085 movies of the original ML1M dataset. Collected features foremost link 

movies through the contributing persons (actors, director, writer) and provide further 

general description (language, country of origin, average rating).  

Although the IMDB metadata already provide relevant features of the movies, 

these features are mostly “external” (i.e., providing contributing persons and 

circumstances rather than describing relevant plot features). In order to bridge this 

semantic gap, we also collected plot characteristics available from DBTropes (Kiesel & 

Grimnes, 2010), a linked open data extension of TvTropes8. TvTropes community focus 

on identifying and describing behavior archetypes, typical story lines and common 

character types that occurs across the movies. As such, TvTropes represents ideal source 

of information for an “intrinsic” movie similarity metric. DBTropes were linked to 

ML1M dataset via shared DBPedia identifier. The coverage of this dataset was, however, 

rather low; we were able to match 589 movies of the original ML1M dataset.  

                                                 

7 http://www.omdbapi.com 

8 http://tvtropes.org/ 

 

 Figure 1: Schema of the extensions made on the MovieLens 1M dataset.  

 

  

 

 



For each of the content-based sources, we define a separate similarity metric as 

the cosine similarity of binarized attributes’ TF-IDF score. The resulted extended ML1M 

dataset contains five similarity matrices, two user-based and three object-based. More 

details on extended ML1M dataset can be found in (Ladislav Peska, 2017). 

4.2 Extended LOD-RecSys Dataset 

The second dataset is based on the ESWC 2014 Linked Open Data enabled Recommender 

Systems Challenge (LOD-RecSys; Di Noia, Cantador, & Ostuni, 2014). The challenge 

focused on the book domain with the data collected from the LibraryThing9 website. We 

utilized the train dataset of the Task 1, containing 75559 ratings on the 0-5 scale, 6181 

users and 6166 items. For each object, the dataset provides its DBPedia URI, but no other 

content-based information are available. Similarly as in extended ML1M dataset, user 

ratings were binarized such that all known interactions with rating ≥ 3 were considered 

as positive, i.e., 𝑟𝑢,𝑜 = 1, otherwise 𝑟𝑢,𝑜 = 0. As we do not have any information about 

users, all extensions were based on the objects’ DBPedia URI. The dataset was extended 

by five types of content-based information collected via DBPedia10.  

 Explicit books similarity. 

 Books of the same author. 

 Similarity of books based on shared direct categories. 

 Similarity of books based on shared extended categories. 

 Similarity of books based on merged authors’ and books’ properties. 

                                                 

9 https://www.librarything.com/ 

10 http://dbpedia.org 



Figure 2 depicts the schema of extensions made on the LOD-RecSys dataset. 

While considering possible extensions of the LOD-RecSys dataset, we followed several 

commonly applied notions of similarity specific for the books domain. First, we aimed to 

identify pairs of books, which were explicitly denoted as similar in DBPedia. Those are, 

e.g., the books from the same book series. The notion of similarity is spread across several 

properties in DBPedia, therefore we consider a book 𝑜𝑗 to be explicitly similar with book 

𝑜𝑖 if there is an RDF triple (𝑜𝑖 , 𝑝, 𝑜𝑗), where 𝑝 is a property, which explicitly defines 

similarity, e.g., dbo:basedOn, dbo:previousWork, dbo:subsequentWork, dbp:before, 

dbp:after etc.  

Another commonly used notion of similarity is whether the books were written 

by the same author. Although an author may divide his/her creative work into several 

domains, which may also change over time, the uniqueness of ideas, writing style or 

narrative still provides a strong distinctive power. Therefore, we consider books 𝑜𝑖 , 𝑜𝑗 as 

similar, if they share an author 𝑎, i.e., the following subgraph exists: (𝑜𝑖, dbo: author, 𝑎), 

(𝑜𝑗 , dbo: author, 𝑎). In both explicit similarity and books of the same author, the resulting 

 

 Figure 2: Schema of the extensions made on the LOD-RecSys dataset. 

 

  

 

 



similarity matrices 𝐒𝑘
𝑂 are of binary values, i.e., 𝑠𝑘,𝑖,𝑗

𝑂 = 1 if the books 𝑜𝑖 and 𝑜𝑗 possess 

the considered feature and 0 otherwise. 

Both of the previously mentioned extensions provide rather straightforward 

notions of similarity, which are well backed in real-life usage, but are rather too narrow 

and unsurprising on the other hand. Therefore, we also focused on a bit more speculative 

notions of similarity, which can, however, provide more surprising, yet relevant results.    

First, we aimed to utilize the effort of Wikipedia contributors on categorization of 

information. The vast majority of Wikipedia articles are classified into several highly 

specific hierarchical categories, e.g., “Novels about death”, “Discworld books”, “1987 

British novels” and “1980s fantasy novels” for the Mort novel by Terry Pratchet. In 

DBPedia, these categories are available through dct:subject property, while the more 

general categories can be accessed through skos:broader property of each category. We 

defined two similarity matrices based on the categories: direct and extended. The 

similarity based on directly shared categories utilized the dct:subject property, i.e., for 

each book 𝑜𝑖, we collect the list of categories 𝐶𝑖 such that ∀𝑐 ∈ 𝐶𝑖: (𝑜𝑖, dct: subject, 𝑐) 

triple exists. The similarity of books 𝑜𝑖 , 𝑜𝑗  is defined as a Jaccard similarity of their 

categories 𝐶𝑖 , 𝐶𝑗. The similarity on extended categories starts with the set of direct 

categories 𝐶 and extends it by super-categories 𝑐𝑠, such that ∃𝑐𝑖 ∈

𝐶: (𝑐𝑖, skos: broader, 𝑐𝑠). We considered two levels of super-categories and the resulting 

similarity is a Jaccard similarity of extended category sets. 

Finally, the last similarity matrix aims to maximize the coverage among books. 

As DBPedia often contains much richer information about authors than some of their 

books, we chose to incorporate also relevant authors’ properties to the similarity 

calculation. Therefore, we are able to link similar books through the similarity of authors 

even in cases, where the lack of information about books prevents direct reasoning. The 



similarity is defined as a Jaccard similarity of merged relevant books’ and authors’ 

features, e.g., dbo:literaryGenre, dbp:genre, foaf:primaryTopic, dbo:influences, 

dbo:influencedBy. 

5 Evaluation and Results 

In this section, we would like to provide details of the evaluation procedure. It was shown 

that collaborative techniques need the support of content-based or non-personalized 

recommendations especially in cold-start scenarios (Kluver & Konstan, 2014; Pilászy & 

Tikk, 2009), which are however quite common in the real-world applications 

(Kaminskas, Bridge, Foping, & Roche, 2017; L. Peska & Vojtas, 2014, 2017). Therefore, 

the evaluation focused on the performance of proposed method w.r.t. several, increasingly 

difficult cold-start scenarios. Table 2 provides overview of the evaluated methods.  

Hyperparameters of evaluated methods were learned via grid-search and internal 

bootstrap sampling as follows. The number of latent factors was fixed 𝑓 = 20, initial 

learning rate was fixed 𝜂 = 0.1, regularization 𝜆𝑅 was selected from {0.01, 0.05} and the 

number of iterations was selected from {5, 10, 15, … , 30}. Furthermore, for CABPR, the 

content regularization 𝜆�̅� was selected from {0.001, 0.01, 0.05} and similarity weight 

regularization 𝜆𝑤 from {0.01, 0.05, 0.2}. The 𝜀 hyperparameter of 𝐿𝑊𝑀
2  was kept constant 

at 0.1. 

Table 2: Overview of evaluated methods. 

Method 𝒇𝒓 𝒇�̅� Optimization 

BPR (Rendle et al., 2009) -     - SGD 

BPR_MCA (Ladislav Peska, 2017) 𝐿2 (7) 𝐿2 + 𝐹𝐶𝑊 (9) SGD  

CABPR-L2-FCW 𝐿2 (7) 𝐿2 + 𝐹𝐶𝑊 (9) Adam + mini-batches 

CABPR-L2-NN 𝐿2 (7) 𝐿𝑁𝑁
1  (10) Adam + mini-batches 

CABPR-WM-FCW 𝐿𝑊𝑀
2  (8) 𝐿2 + 𝐹𝐶𝑊 (9) Adam + mini-batches 

CABPR-WM-NN 𝐿𝑊𝑀
2  (8) 𝐿𝑁𝑁

1  (10) Adam + mini-batches 

  

 

 



Due to the need of cold-start simulation, we opted for a Monte Carlo cross-

validation with low train/test ratios. As ML1M dataset is much denser than LOD-RecSys, 

we used different thresholds, which roughly maintains the same sparsity levels.  

For ML1M, three scenarios were evaluated, with 90%, 95% and 98% of the 

interactions randomly removed from the interaction matrix 𝐑 for training. These 

scenarios are denoted as p90, p95 and p98 in the results.  Also for LOD-RecSys dataset, 

three scenarios were evaluated with 50%, 75% and 90% of the interactions removed. Each 

training scenario was repeated 5-times, while the hidden interactions were used for per-

user evaluation. We used normalized discounted cumulative gain (nDCG) and area under 

precision-recall curve (AUPR) as evaluation metrics. NDCG logarithmically penalizes 

relevant objects appeared too low in the recommended list. AUPR is considered to reflect 

algorithm’s performance well in case of highly imbalanced data (Davis & Goadrich, 

2006), so both metrics seems to be a reasonable approximation of top-k ranking 

evaluation problem. Both metrics were evaluated for each user and averaged results over 

all users and all CV runs are provided. 

5.1 Results and Discussion 

 The overall results on ML1M dataset are depicted on Table 3 and the results on LOD-

RecSys dataset are depicted on Table 4. As can be seen from the results, CABPR methods 

significantly outperform both original BPR and BPR_MCA methods w.r.t. two more 

difficult cold-start scenarios in both ML1M and LOD-RecSys datasets.  



As for the best performing variant of CABPR, there is no single optimal method 

w.r.t. Pareto front. CABPR-WM-FCW method in general provided inferior results and its 

optimization often diverged, therefore, we would not recommend this variant. As for the 

other three variants, CABPR with non-negative content weights (NN) performed better 

on LOD-RecSys dataset, while CABPR-L2-FCW achieved slightly better results on 

ML1M dataset.  

However, the differences between CABPR variants were often not significant, or 

negligible if compared to the performance of other algorithms. Therefore, as an auxiliary 

criterion, we also evaluated temporal complexity of the proposed methods. Table 5 

Table 4: Overall results of the evaluation on extended LOD-RecSys dataset. Best results are in bold, 

baseline methods are in grey, italic. Results with significantly lower performance than the best method 

(p<0.05 according to the t-test) are marked with an asterisk (*). 

 nDCG AUPR 

Method  p50 p75 p90  p50 p75 p90 

BPR  0.2953 *0.2682 *0.2562  0.0543 *0.0287 *0.0199 

BPR_MCA  *0.2932 *0.2668 *0.2572  *0.0524 *0.0278 *0.0195 

CABPR-L2-FCW  *0.2822 *0.2987 0.3069  *0.0419 *0.0382 0.0380 

CABPR-L2-NN  *0.2829 0.3005 0.3068  *0.0426 0.0402 0.0380 

CABPR-WM-FCW  *0.2853 *0.2960 0.3066  *0.0440 *0.0361 0.0377 

CABPR-WM-NN  *0.2820 0.2998 0.3073  *0.0424 0.0399 0.0383 

  

 

 

Table 3: Overall results of the evaluation on extended ML1M dataset. Best results are in bold, baseline 

methods are in grey, italic. Results with significantly lower performance than the best method (p<0.05 

according to the t-test) are marked with an asterisk (*). Note that due to the divergence of its optimization, 

we do not provide CABPR-WM-FCW results 

 nDCG AUPR 

Method  p90 p95 p98  p90 p95 p98 

BPR  *0.6351 *0.5739 *0.5490  *0.1976 *0.1147 *0.0895 

BPR_MCA  0.6425 *0.6016 *0.5646  0.2045 *0.1485 *0.1030 

CABPR-L2-FCW  *0.6310 0.6338 0.6216  *0.1794 0.1757 0.1636 

CABPR-L2-NN  *0.6228 0.6319 0.6196  *0.1732 0.1762 0.1628 

CABPR-WM-FCW  N/A N/A N/A  N/A N/A N/A 

CABPR-WM-NN  *0.6262 *0.6270 0.6202  *0.1760 *0.1734 0.1634 

  

 

 



contains the average time per iteration for CABPR variants. It can be seen, that CABPR 

with fixed content weights (FCW) is considerably more expensive to train and therefore, 

we may recommend usage of CABPR-L2-NN and CABPR-WM-NN methods. 

5.1.1 The role of batch size 

The batch size hyperparameter defines the number of train set items optimized at 

the same time. Increasing batch size leads to a decreased variance in parameter updates, 

but may also cause the decrease of method’s flexibility and higher risk of convergence to 

a local optimum. One of the surprising result of the evaluation was the decrease of 

CABPR’s performance for increasing train set sizes. The effect was more visible for 

nDCG and LOD-RecSys dataset (Table 4). This observation may be partially attributed 

to the decreased frequency of positive examples in test sets as well as decreased 

importance of content-based over collaborative information (Kluver & Konstan, 2014; 

Pilászy & Tikk, 2009). However, as the performance of BPR_MCA method increased 

between the respective scenarios, we decided to evaluate, whether a portion of observed 

behavior may be also attributed to the lack flexibility caused by too high batch size 

settings. 

Table 5: Temporal complexity of the variants of CABPR algorithm (average time per iteration 

in seconds on LOD-RecSys dataset). CABPR was implemented in Python using TensorFlow, 

evaluation was performed on Intel Core i7 PC with 16GB RAM and NVIDIA GeForce GTX 

1050 GPU. 

 Average time per iteration (sec) 

Method  p50    p75  p90  

CABPR-L2-FCW  373.03 104.01 29.11  

CABPR-L2-NN  71.45 35.14 13.78  

CABPR-WM-FCW  274.68 129.97 30.29  

CABPR-WM-NN  71.60 34.85 14.28  

  

 

 



Table 6 depicts the results of evaluation w.r.t. batch size. It can be seen that 

methods with lower batch sizes provided better results than the original settings. 

Furthermore, CABPR-L2-NN method with batch size of 32 outperformed all baseline 

methods w.r.t. both nDCG and AUPR and all cold start settings. Nonetheless, although a 

decreased performance for increased train set size was not observed for the best method 

in ML1M dataset any more, it persisted in nDCG evaluation of LOD-RecSys dataset and 

remained rather consistent for all evaluated batch sizes. We hypothesize that in this case, 

the main cause is the decreased frequency of positively preferred objects in the test set, 

which is a natural consequence of selected evaluation methodology. The absence of such 

behaviour in BPR_MCA results could be attributed to relatively better adaptation of 

CABPR to lower amount of train data due to the improved optimization procedure. 

A bit more speculative hypothesis is that CABPR-OPT criterion largely resembles 

AUC metric, which differs from evaluated nDCG and the better convergence towards 

AUC (supported with more evidence while increasing the train size) may eventually result 

in worse nDCG performance. This is illustrated by the results w.r.t. AUC (available in 

supplementary materials), which is non-decreasing also for LOD-RecSys dataset. 

Table 6: Results of CABPR methods for various settings of batch size hyperparameter. Best results 

are in bold, baseline methods are in grey, italic. Results with significantly lower performance than the 

best method (p<0.05 according to the t-test) are marked with an asterisk (*). 

ML1M dataset 
Batch 

size 

 nDCG    AUPR  

p90 p95 p98  p90 p95 p98 

Best@Table 3 - *0.6425 *0.6338 *0.6216  0.2045 *0.1762 *0.1636 

CABPR-L2-NN 128 *0.6228 *0.6319 *0.6196  *0.1732 *0.1762 *0.1628 

CABPR-L2-NN 32 0.6520 0.6493 0.6462  0.2058 0.2009 0.1933 

CABPR-L2-NN 8 *0.6383 *0.6425 *0.6357  *0.1899 *0.1910 *0.1806 

LOD-RecSys   p50 p75 p90  p50 p75 p90 

Best@Table 4 - *0.2953 *0.3005 *0.3073  *0.0543 *0.0402 *0.0383 

CABPR-L2-NN 128 *0.2829 *0.3005 *0.3068  *0.0426 *0.0402 *0.0380 

CABPR-L2-NN 32 0.3029 0.3151 0.3193  0.0560 0.0477 0.0445 

CABPR-L2-NN 8 *0.2979 *0.3106 *0.3154  *0.0526 *0.0458 *0.0427 

  

 

 



Therefore, as a part of our future work, we plan to evaluate alternative optimization 

criteria that better correspond with graded relevance metrics, such as nDCG.  

5.1.2 Weights of similarity matrices 

As the ability to learn importance of similarity matrices is one of the key 

CABPR’s features, we also evaluated, whether the learned similarity weights differ from 

one another. Figure 3 and Figure 4 depict boxplots of the final similarity matrices’ 

weights 𝜔𝑆 learned during the evaluation of ML1M and LOD-RecSys datasets 

respectively.  

It can be seen that although CABPR with fixed total content weight (FCW) allows 

weights of similarity matrices to grow negative, such weights were not learned in the final 

models (with a single exception). During the hyperparameter tuning phase, negative 

values occurred occasionally, however mostly provided inferior results. Therefore, we 

may hypothesize that the negative weights of some similarity matrices learned by 

BPR_MCA method during the previous experiments (Ladislav Peska, 2017) may be 

attributed to the problem of high variances in SGD updates rather than irrelevance of 

certain similarity matrices.  



Despite the fact that some CABPR variants seemed to learn weights close to the 

uniform distribution (e.g., CABPR_WM_NN in ML1M dataset), the overall difference in 

the learned weights was rather high and therefore we may conclude that the estimation of 

content weights is an important aspect of the learning algorithm. We can also corroborate 

the importance of intrinsic features received from DBTropes dataset, for which, high 

weights were learned in most cases. As for the LOD-RecSys dataset, high weights were 

often learned for explicitly similar books and in case of CABPR_WM_NN method also 

 

 Figure 3: Boxplots of the final content weights 𝜔𝑆 learned for ML1M dataset, aggregated for 

all cross-validation runs and cold-start settings. Red full line denotes mean and black dotted 

line median of the values. 

 

  

 

 

 

 Figure 4: Boxplots of the final content weights 𝜔𝑆 learned for LOD-RecSys dataset, aggregated for 

all cross-validation runs and cold-start settings. Red full line denotes mean and black dotted line 

median of the values. 

 

  

 

 



for books with similar categories and merged books and authors similarity. In general, 

CABPR variants with 𝐿𝑊𝑀
2  latent factor regularization learned considerably higher 

similarity weights than the ones with strict 𝐿2 regularization, corroborating the effect of 

similarity relaxation parameter 𝜀. 

6 Conclusions 

In this paper, we proposed content-alignments extension to the BPR matrix factorization, 

CABPR. CABPR incorporates content alignments based on multiple CB similarity 

matrices as additional regularizations into the BPR’s optimization criterion. Four variants 

of the CABPR method were proposed, differing in the exact regularization formula. 

An extended MovieLens 1M dataset as well as an extended LOD-RecSys dataset 

were used to evaluate the proposed methods. All CABPR variants provided significant 

improvements over standard BPR as well as previously published BPR_MCA in several 

difficult cold-start settings w.r.t nDCG and AUPR. Based on the overall performance, 

training time and stability, we recommend CABPR with non-negative content weights as 

the best choice. Additional experiments shown the importance of proper batch size 

settings, where the optimal values were slightly lower (best results were reported for the 

batch size of 32) than the ones originally evaluated. Evaluation also shown a significant 

difference in learned weights of similarity matrices, corroborating the importance of 

evaluating relevance of content sources.  

There are several directions, which may be addressed in the future work. As the 

CABPR is mostly orthogonal to various diversity or novelty enhancing approaches, these 

can be integrated while transferring CABPR to a production environment. Similarly, 

CABPR can be extended to handle graded or implicit negative feedback, if such data is 

available. 



The importance of using intrinsic features of objects was already pointed out in 

our previous work and corroborated in current experiments. In domains with important 

multimedia content (such as movies, music, fashion etc.), CABPR may utilize the 

similarity based, e.g., on the output feature vectors of recurrent or convolutional neural 

networks and therefore bridge the semantic gap of external vs. intrinsic content-based 

features. A direct future work in this direction would be to integrate CABPR to the fashion 

product exploration and recommendation tool recently published by our group (Skopal, 

Peška, Kovalcík, Grošup, & Lokoc, 2017). 

Acknowledgements: CABPR was implemented in Python using TensorFlow framework. Source 

codes can be obtained from github.com/lpeska/CABPR. Datasets and supplementary materials can 

be downloaded from www.ksi.mff.cuni.cz/~peska/CABPR/. The work on this paper was supported 

by Czech grants Q48 and GACR-17-22224S. 
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