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Abstract—In the research of video retrieval systems, com-
parative assessments during dedicated retrieval competitions
provide priceless insights into the performance of individual
systems. The scope and depth of such evaluations is unfortu-
nately hard to improve, due to the limitations by the set-up
costs, logistics and organization complexity of large events. We
show that this easily impairs the statistical significance of the
collected results, and the reproducibility of the competition
outcomes. In this paper, we present a methodology for re-
mote comparative evaluations of content-based video retrieval
systems and demonstrate that such evaluations scale-up to
sizes that reliably produce statistically robust results, and
propose additional measures that increase the replicability of
the experiment. The proposed remote evaluation methodology
forms a major contribution towards open science in interactive
retrieval benchmarks. At the same time, the detailed evaluation
reports form an interesting source of new observations about
many subtle, previously inaccessible aspects of video retrieval.

I. Introduction
With the ever-growing amount of information avail-

able digitally, we increasingly depend on effective search
methods and systems that enable users to find items
of interest. The problem of finding specific items in
large datasets is addressed by research in information
retrieval (IR). While IR systems already handle volumes
of textual information that literally span the entire web,
the content-based search in other types of media, such
as images or video, poses a more challenging problem.
Current research on video retrieval methods suggests that
the best results are achieved interactively, with a human
operator of the retrieval system working in a feedback
loop, examining intermediate results and formulating and
refining queries iteratively [1], resulting in a hybrid human-
machine approach.

The reproducibility of the results obtained in exper-
iments with modern IR systems is often difficult to
guarantee, or outright impossible, when depending on
the input of a human operator. Ferro [2] summarized
the main challenges as follows: First, even with open
source software, there are countless opaque parameters
and configurations that heavily influence the performance
of an IR system. Second, the data collections used in
experiments are often inaccessible or incomplete, such as in

case of a text corpus relying on Tweets. Moreover, the IR
researchers usually meta-evaluate their systems to improve
their own methodology, often using publicly unavailable
data, thus making their key observations and motivation
for a specific configuration of the system irreproducible.
Finally, with interactive IR we must also consider the hu-
man operators themselves, whose performance is derived
from experience, domain knowledge, or simply from the
momentary well-being. Data collection methodology needs
to be adjusted to account for this variability, for example,
by collecting additional data on the search progress instead
of just the final result.

The Video Browser Showdown (VBS) [3], which cele-
brates its 10th anniversary in 2021, is an annual competi-
tive evaluation event for interactive video retrieval systems
aimed at advancing the state of the art in this field. The
VBS is held as a special session during the International
Conference on Multimedia Modeling, to provide the same
conditions for all on-site participants. Since there are no
restrictions on how the retrieval tasks are to be solved,
participants are free to bring whatever hardware best
suits their respective approaches, introducing another
opaque parameter into the process. During the VBS, the
participating teams solve various kinds of search tasks,
usually with two operators per team, and are scored by
a central evaluation server for successfully finishing the
tasks within the time limit. Currently, three types of tasks
are used: Visual Known-Item search (VKIS), in which
participants are shown a unique 20-second sequence of
a video that needs to be found, Textual Known-Item
Search (TKIS) in which participants are given only a
textual description of the unique sequence, and Ad-hoc
Video Search (AVS), in which the participants need to
find as many sequences as possible that match a more
general, textual description. The correctness of submitted
AVS sequences is not predetermined, but judged on the
fly by human referees.

All participants are provided with the competition
dataset in advance, in order to be able to perform the data
pre-processing necessary for their retrieval approaches; but
are only introduced to the actual task descriptions during
the event. Currently, VBS uses the open V3C1 [4] dataset,
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which combines around 1000 total hours of video that
accurately represents the arbitrary videos found on the
Web.

While the VBS undoubtedly provides a valuable oppor-
tunity to evaluate state-of-the-art video search systems
and draw conclusions about their performance, the scope
of the performed evaluation is limited for many reasons:
First, VBS results are only a single-day snapshot of the
performance of a very limited number of operators, and
momentary variations in individual performance may in-
fluence the outcome disproportionally, especially given the
very small margins by which a team is deemed to be the
‘winner’. Second, due to the competition structure, there
is only a limited number of tasks that may be solved on a
given day, which may be detrimental to the significance of
the results. Finally, and despite recent advances in logging,
there are many aspects to the competition result that
cannot be reproduced, such as the crowd-sourced verdicts
by human judges during the AVS tasks.

Technically, the competitions measure performance of a
hybrid human-machine search approach, as the evaluation
reflects both the performance of the human operator and
the capability of the retrieval system. In this paper, we
present the insights gained from an extensive dedicated
VBS-style evaluation conducted in a distributed setting,
that focused on a comprehensive comparison of teams
operating SOMHunter [5] and vitrivr [6]. The systems
have both won the VBS in one of the last two years. For
the evaluation, we utilized a new specialized Distributed
Retrieval Evaluation Server (DRES) [7], see dres.dev.
DRES is orchestrating the evaluation by presenting the
tasks and hints to all participants, collecting the retrieved
results, evaluating their correctness, and assigning the
scores. All systems involved, as well as the server itself,
were made available as open source. Similarly to VBS, the
evaluation used the V3C1 dataset, with tasks prepared
solely for the purpose of this evaluation. However, as
opposed to VBS, only visual and textual KIS tasks were
performed.

The contribution of this paper is twofold: First, we
report new insights on statistical significance of the col-
lected results. In particular, we provide a base estimate
of the evaluation size required for producing reliable
results that can distinguish even teams that perform
so similarly as SOMHunter and vitrivr, and we give
an overview of interesting observations derived from the
collected data. Both of these will serve as a reference point
for designing future evaluations. Second, we highlight
the requirements and methodologies needed to achieve
better evaluation reproducibility. Most importantly, we
provide access to all data collected during the evalua-
tions that are required to reproduce the outcome (see
github.com/lucaro/siretVSvitrivr2020). We further point
out a set of systematic procedures, such as the advanced
logging capabilities of the new evaluation server, which
increase the evaluation transparency and provide a robust
data source for post-evaluation analysis. We showcase the
results obtainable from competition logs on an observation

of a rather surprising difference between retrieval and
browsing capabilities of both systems.

II. Participating Video Search Systems
In this evaluation, we compare SOMHunter [5], the

winner of VBS 2020 developed within the SIRET research
group of the Charles University in Prague, with vitrivr [6],
which has its primary home at the University of Basel in
Switzerland and won VBS in 2019. vitrivr is an advanced,
universal multimedia retrieval stack that comprises many
multimedia retrieval models and media types. SOMHunter
is, in contrast, a light-weight tool with a minimalist set of
components for interactive video retrieval. Both systems
are available as open source software. In the following, we
will briefly introduce the two systems in detail.

A. SOMHunter
Designed from scratch by the team that previously

developed the VIRET tool [8], SOMHunter was first
presented at VBS 2020 [5]. The main design objective
was to create a minimalist, fast and simple interactive
search tool on top of a state-of-the-art (but replaceable)
video-text matching model. Currently, a variant of the
W2VV++ model (Word2VisualVec) is used [9], including
the visual features, as recommended by Mettes et al. [10].
For both text descriptions and selected representative
video frames extracted in advance, the trained model
provides mappings to a single feature space, which allows
the system to freely mix the evaluation of textual queries
and visual feedback from the user.

The current open source version of the tool [11]
(available from github.com/siret/somhunter) supports the
following main features:

• Search with temporal text queries. Given an option
to specify several consecutive frames or shots, users
can try to target searched items with a specially
constructed text query, and browse a ranked re-
sult list that shows the matching frame thumbnails.
Specifically, all temporal text query elements are
mapped to the feature space; for each query element
vector, database frames are scored by making use of
their feature space vector representations. Temporal
queries then use a score aggregation function that
accounts for several neighboring frames in the video
sequence, as described by Lokoč et al. [8].

• Score refinement based on relevance feedback. For
query reformulation, the users can select positive
example images from the observed result set (as
opposed to rewriting the text query), and ask the
system to re-score the database accordingly. This type
of refinement allows for more precise targeting of
searches that do not have an immediately obvious
textual description.

• SOM-based coarse browsing. To avoid browsing
through near duplicate results, potentially provided
by the previous two types of searches, the engine
supports dynamic training of a self-organizing map

https://dres.dev
https://github.com/lucaro/siretVSvitrivr2020
https://github.com/siret/somhunter
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(currently 8× 8 nodes), which displays a comprehen-
sive and convenient topologically organized selection
of the current, best-scoring results.

• Easily accessible exploitation views. Once the user
finds a promising frame, either the k-nearest neigh-
bors from the feature space or frames from the
same video can be quickly displayed and sequentially
browsed.

B. vitrivr
The open-source content-based multimedia retrieval

stack vitrivr [6] is focused on multi-modal search in large
multimedia collections. In particular, users can choose
from a plethora of query formulation modalities to express
their search and freely combine various modalities, includ-
ing Query-by-Sketch, Query-by-Semantic-Sketch, Query-
by-Example, various textual query modes, and many
more. Textual queries can be used to query for text on
screen, audio transcripts, scene captions, and detected
concepts.

An example combination of these query modes could be
find all images or video sequences of mountains with green
in the bottom quarter, where mountain would be a text-
based query executed first and green would be represented
by a sketch. Alternatively, users may employ combinations
of the modalities based on deep-learning, such as OCR,
ASR and concept detection, aggregating individual scores,
e.g., all planes (a concept) with EasyJet (OCR) on them,
shown while someone talks about a flight to London. For
videos, users may also arrange the queries in a temporal
sequence, e.g., a scene depicting a lion, followed by scene
with a giraffe, followed by an elephant. The front-end
then aggregates results so that videos that contain these
element in the specified temporal order are ranked higher
than videos that contain only some of these elements [12].
In a competitive setup such as VBS, the visual (e.g.,
Query-by-Semantic-Sketch) and especially textual query
modes have been proven to be very useful.

vitrivr’s result presentation is separated in multiple
views, each with its own ranking model. There is no one-
size-fits-all view in vitrivr and in practice, a user may
switch between the views depending on a concrete need
and their personal preference. This is easily possible, since
the same result-set can be accessed through different views
without issuing a new query.

• In VBS style competitions, the mini gallery view that
ranks the video segments by their similarity score in
a tile layout is used most often. The top left segment
has the highest score, and the bottom right one the
lowest.

• The list view groups segments from the same object
together (in the case of VBS, from the same video),
and ranks them by max-pooling their scores. This
view is beneficial for loading and inspecting the
neighboring segment thumbnails.

• The temporal scoring view is used to consider the
temporal context in a sequence, usually for browsing

the results obtained from a temporal query. For
example, given the task description ‘A deer is looking
directly into the camera. The next shot shows a
tractor driving across a field.’, a temporal query
for deer first and then tractor could be used. The
temporal scoring view then showcases sequences that
match both query terms, allowing user to evaluate
the match of both concepts at once.

All views incorporate late filtering and late fusion, to
further refine the displayed segments. These functions
allow a user to quickly filter and constrain the displayed
segments using concepts and metadata occurring in the
query results, enabling fast, local and result dependent
query refinement.

Efficient browsing of large result sets is enabled through
dynamic data loading. Result sets are only displayed
partially and more data is loaded as the user scrolls
down. This enables users to quickly browse through a
large number of results. This feature is available in all
parts of vitrivr. To allow large numbers of segments to be
displayed at once, a segment’s video is only loaded upon
interaction. Hovering over a tile plays the video at the
segment’s temporal location or, if the preview tile is too
small, a video player shows the segment in detail.

Submissions to the competition are possible from the
video player as well as from the result presentation views.
This enables users to submit segments which might not
have been in the result set, but where a different segment
from the same video was returned. This feature further
strengthens vitrivr’s browsing capabilities.

III. Distributed Comparison Setup
We performed the evaluation in July 2020 with 7

participants operating SOMHunter (two of whom had to
leave before the end of the competition, missing a few
tasks) and 8 working with vitrivr. In contrast to VBS,
where all members of a team collectively contribute to
a shared score, we scored each participant separately,
resulting in a total of 15 ‘teams’. For both systems, some of
the participants were experts who are highly familiar with
both the system and the VBS-style competitions, while
others lacked this experience completely. All participants
were from computer science, as is usual at VBS. Due to
the COVID-19 pandemic that made international travel
difficult, we performed the evaluation in a distributed set-
ting, using the newly developed evaluation server ‘DRES’.
An impression of the server interface used during the
evaluation can be seen in Figure 1.

Both groups of participants gathered in one location
each, (in Prague and Basel, respectively) in a room with
a large display for providing a comparable presentation
of the tasks. The setup is shown in Figure 2. DRES was
managed from an independent third location (in Zurich),
to prevent any group from gaining preliminary access
to any task-related information. While this distributed
setting introduces a communication delay, it does not
affect the used evaluation metrics, as the network time
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Fig. 1: Screenshot of the evaluation system during a textual known-item search task.

Fig. 2: Top: the participants and setup of vitrivr, participating from Basel, Switzerland. Bottom: the participants and
setup of SIRET research group (using SOMHunter), participating from Prague, Czech Republic.

overhead is orders of magnitude smaller than the actual
time needed for participants to solve a task. To remove the
need for external judges, we only evaluated Known-Item
Search (KIS) tasks using both the visual and textual query
description. Three evaluation metrics were considered: A
binary evaluation of whether the participant solved the
task within the given time limit, an inverse linear scoring
which rewards quicker solutions to tasks, and the VBS

score [1], which provides a finer-grained metric of solution
quality, accounting for the time to a correct submission as
well as the number of incorrect submissions prior to the
correct one. The latter metric has been used successfully
during the VBS for several years now. It is a good fit, since
it rewards correct responses that were found quickly while
effectively discouraging the submission of many incorrect
results, hence capturing precision, recall and time.
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In total, we evaluated 42 unique tasks, 21 of which
were visual and another 21 were textual. Each task was
presented only once and no query targets were shared
between the two task types. Considering only these two
task types, this resulted in roughly twice as many tasks
as would have been possible during a typical VBS. To the
best of our knowledge, the event was the largest VBS-like
comparative known-item video search evaluation recorded
so far.

IV. Results
In the aggregate results, participants operating vitrivr

were successful in 170 out of 336 tasks in total, and
participants operating SOMHunter were successful in 190
out of 282 tasks. The overall success rates were thus
0.51 and 0.67, respectively. The difference between both
teams was slightly higher on the visual KIS tasks (0.53
vs. 0.72) than on the textual KIS tasks (0.48 vs. 0.62).
Within the successful searches, the mean VBS scores
obtained per task were 75.2 vs. 77.7 for visual tasks
and 69.1 vs. 75.9 for textual tasks, but the differences
were not statistically significant. Considering the overall
distribution of the scores, differences between SOMHunter
and vitrivr participants existed on both ends of the score
spectrum, i.e., a much lower volume of scores equal to zero
and a higher volume of scores close to 100 for SOMHunter.
The first corresponds to the binary evaluation, while the
latter indicates that a considerable portion of tasks were
solved very quickly with SOMHunter. Other than that,
the distribution of scores was similar.

A. Significance analysis
First, we assess the statistical significance of the overall

results and their subsets. We specifically consider the
question of how large the evaluation should be to reliably
select the best-performing team. There are two variables
that contribute to the size of the evaluation: The number
of evaluated tasks, and the number of participants per
team. For the sake of simplicity, we focused only on the
binary ‘solved tasks’ indicators. Statistically, SOMHunter
significantly outperformed vitrivr (p < 10−4 in Fisher
exact test), which also held separately for the textual
and visual task subsets (with p = 0.016 and p < 10−3,
respectively). The evaluation can therefore be assumed to
be of sufficient size to reliably detect the difference between
the SOMHunter and vitrivr competition participants.

To determine the necessary size of the future experi-
ments, we have used the standard statistical bootstrapping
techniques. Specifically, we performed a 2D bootstrap by
first randomly selecting 1 ≤ k ≤ 42 tasks (with possible
repetition) and 1 ≤ l ≤ 7 users of each retrieval system
(again with repetition). For each k, the random selection
was repeated 100 times, while for each list of selected
tasks and each l, we repeated the selection of users 20
times. Overall, this gave 2000 bootstrap runs per (k, l)
pair. Figure 3 shows the results obtained in bootstrapping
for all (k, l) configurations as heatmaps.

In particular, Figure 3 (top) shows the percentage of
bootstrap runs that ended with the same experimental
result as the full experiment, i.e., the probability that
any given subset of tasks and teams would show a higher
overall performance for SOMHunter than for vitrivr. We
observe that in order to deduce valid results reasonably
often, larger experiment than the ones conducted at VBS
are indeed necessary. For instance, if we want to receive
a correct result in at least 95% of cases, the competition
must evaluate at least 4−6 participants each solving 20−
25 tasks, or two participants solving 40 tasks each. The
obtained data may be further used to choose a sufficient
minimal size of the task set for any number of available
users.

In some cases, we may require a stronger evidence
of differences between individual user groups, such as
a statistically significant measurement of the difference.
Figure 3 (bottom) summarizes the percentage of bootstrap
runs required for obtaining frequentist-style significance
(p-value < 0.05 for the Fisher exact test). Again, we
observe that VBS-scale experiments would only rarely
conclude with statistically significant results. Notably,
the fraction of significant results obtained in the largest
considered scenarios was still below 90%.

We would like to emphasize that the main motivation for
this experiment is to point out the statistical limitations of
in-place comparative evaluations, with a limited number
of performed tasks and users. Assuming the collected
outcomes from our remote comparative evaluation are
representative enough and the assumptions for the sta-
tistical testing are sufficiently fulfilled, the bootstrap runs
reveal that even 20 tasks performed by two users might
not be enough to test for differences between systems like
SOMHunter and vitrivr.

B. Score aggregation
In contrast to VBS evaluations, we did not collect the

submissions to the retrieval tasks in groups of two or more
participating system operators, but rather for each user
individually. This enabled us to study the effects of the
aggregation of operators in a team of two, which is used
commonly at VBS but the effects of which have not been
extensively studied so far. Figure 4 shows the sum of the
scores over all tasks for all individual participants (on the
diagonal) compared to the scores that would be obtained
by all possible teams of two, independently of the system
used. The combined scores are computed using the scoring
function applied to the aggregated submissions of both
team members.

The figure compares three different scoring functions: a
binary function which simply awards a point for a solved
task, a linear function which awards up to 100 points
depending on the time remaining to solve a task, and
a function which rewards early correct submissions and
penalizes incorrect ones, as used at VBS [1]. While the
first counting function for solved tasks already shows some
differences between systems and participants, it provides
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Fig. 3: 2D bootstrap results - top: percentage of the bootstrap runs that ended with the same results as the full test
(i.e., SOMHunter outperformed vitrivr). bottom: percentage of the bootstrap runs with statistically significant results
(p-value < 0.05) considering the Fisher exact test.

very little insight into how the results were achieved.
The second scoring function refines the distinction by
highlighting the differences in task submission speed, but
fails to clearly distinguish between tasks that were solved
very late, and tasks not solved within the limit. Notably,
the first two functions only consider recall, resulting in a
trivial way to achieve high scores by submitting as many
(plausible) results as quickly as possible, thus increasing
the probability of a correct submission. The third scoring
function, also used at VBS, penalizes such exploitation
by only partially discounting the score over time, and
explicitly penalizing incorrect submissions in order to
encourage retrieval precision as well as recall.

The comparison of scores of the hypothetical combined
2-participant teams has shown that the combined scores
often vastly exceed the score of both individual partici-
pants. Interestingly, despite the overall higher individual
scores of the participants with SOMHunter, the highest
combined score (using the VBS scoring function) was
generated by the combination of ‘SOMHunter IV’ and
‘vitrivr VI’. This indicates that the two systems (or teams)
likely possess complementary capabilities that can be
leveraged in combination; presumably by reducing the
probability of failing on a task that is, for some reason,
hard to solve with a certain system. We believe that this
provides an interesting case that supports collection of the
results of all individual participants, where the detailed
data might provide more useful insights into the qualities
of the systems.

C. Retrieval versus Browsing

Both evaluated systems included preliminary support of
detailed logging of user actions and retrieval sub-results,
which we aimed to utilize for exploring the interactive
search process. We have managed to collect a significant
portion of the logging information that was sufficient for
providing an illustrative view of some details (unfortu-
nately, some logs from vitrivr instances were lost due to
technical issues, and logs of two SOMHunter instances
were incomplete).

The results are summarized in Figure 5, which shows
the distributions of the time required until a correct
submission in each system, and the relative distributions
of the best ranks of the target video sequence (or any of
its representative frames, in case of SOMHunter) in the
internal retrieval model of the system. The data for the
latter was recorded specifically in the logs for each user
and task. Results are considered independently of whether
they were actually noticed by the system operator, and
the ranks do not necessarily correspond to the position
of the retrieved frame on the display, due to possible
rearrangements by the display logic. For completeness,
we also included the distributions of the best whole-video
ranks, i.e., the best ranks of any frame from the same
video as the target sequence.

The plots reveal interesting insights into the effective-
ness and potential of the search strategies and the un-
derlying retrieval engines accompanied with rich browsing
options. The result logs show that during the interactive
search process, the best achieved ranks of target frames
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Fig. 4: Overview of the total scores that would be achieved
by all possible team combinations with two participants,
for 3 different scoring functions. Diagonals show the
original scores of single-participant teams.

and videos were (on average) better in SOMHunter (when
compared to vitrivr). This may be caused by the more ef-
fective ranking models and the different search strategy, as
the SOMHunter-using participants chose to re-formulate
the queries more often in order to increase the chances
of a correct result appearing between top-ranked results.
vitrivr users, on the other hand, generally spent more

time by carefully examining a much larger portion of the
result set, utilizing the browsing capabilities of vitrivr. We
hypothesize that this behavior has often prevented vitrivr
users from ‘missing’ the target with a sufficient rank in a
result set, at the cost of longer browsing times and reduced
number of inspected result sets. In contrast, SOMHunter
users were often able to successfully solve tasks even if
they failed to notice the displayed relevant target frames
during the inspection of some promising candidate result
sets. Testing and verifying such hypotheses will be possible
in future evaluations that will use a more controllable log
collection setting.

V. Discussion
Our results mainly show that for obtaining rigorous

comparison results in video retrieval, large remote eval-
uations provide an interesting option. Here, we briefly
summarize the main benefits.

First of all, with the number of newly emerging retrieval
and interactive search options, it is essential to support
efficient comparative evaluations, accessible for a large
number of teams and users without the necessity of co-
location. We demonstrated that 15 users from two teams
may easily compete in a large number of known-item
search tasks. As the evaluation ran without hitting any
obvious long-term scalability limits and already generated
new insights in the effectiveness of both systems’ retrieval,
we expect that similar events will become a major source
of statistically significant performance measurements. The
achievable significance of results, summarized in Figure 3,
may serve as a starting point for future competitions.
As an interesting benefit, the remote evaluations may
be scaled to span multiple days, expanded by additional
participants or run asynchronously with little effort; and
even extended dynamically in case the collected results do
not reach the desired level of statistical certainty.

More generally, our results indicate that while VBS
serves well as a yearly benchmark for video retrieval
systems and is a great opportunity to inspire new ideas,
the number of participants and tasks is not sufficient for
a statistically significant comparison in case of systems of
similar performance. Since the organizational, provisional,
financial and technical challenges of hosting a sufficiently
large competition are prohibitive; we suggest to comple-
ment such ‘small-scale’ in-person evaluation events with
long-term, larger-scale remote evaluations that collect the
sufficiently precise statistics of systems’ performance. The
option to organize asynchronous evaluation events, the
support of which is planned for future versions of DRES,
could offer a new level of flexibility for the cooperation
of teams from different time zones and participants who
cannot attend in person. Despite the benefits of re-
mote evaluations, the small-scale co-located competitions
should not be dropped, as they provide the much required
space for academic networking, and give the verifiable in-
person ‘credibility’ to any produced competition results.

Systematic collection of precise interaction logs pro-
duces a large quantity of data useful for subsequent
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analyses. In our case, the preliminary logging support
has produced sufficient data to illustrate the difference
between the utilized text search models and/or search
strategies (see Figure 5). We expect that this approach
will generate new results relevant in human-computer
interaction research, such as uncovering the root causes of
performance differences between the users, and allow us to
accurately focus on effective querying components of the
retrieval systems. In order to make logging controllable,
statistically relevant and reproducible in the future, the
competition servers (such as DRES) should readily provide
options to properly test the client logging implementations
for conformance and reliability. Additionally, because the
log post-processing is a time demanding task, we hope to
standardize a sufficiently extensible log format that will
allow the analysts to simplify or even automate the log
processing.

Replicability and reproducibility are important goals in
systems research, particularly for the comparative evalua-
tions. Although the required presence of human operators
in the ‘framework’ vastly complicates the possibility to
repeat an experiment exactly, we should still guarantee
the reproducibility at the process level. Accordingly, we
believe that the future evaluations should adhere to the
following principles:

• Not only the systems, but also the exact configura-
tions used for the evaluation should be released as
a properly documented open source software. This
would guarantee that the participating systems can
be reconstructed for re-evaluation, and that their out-
puts and logged information can be easily interpreted.

• The detailed log analysis conducted for this paper was
only possible because both systems took great care
to adhere to the specification and test the compliance
with the logging standard. For evaluations with more
teams, we suggest multiple qualification stages, in
which the teams are required to participate in ‘dry
runs’ during which the logged data is subjected to
validity and consistency checks.

• Any data artifacts (such as the image features ex-
tracted by neural networks) should be made available,
as it is often unfeasible to re-run the entire feature
extraction on large collections. Most importantly, it
is necessary that the artifacts are deposited to be
accessible long after the evaluation event reports are
published.

In the future, we aim to integrate these principles into the
peer review process for evaluation campaigns like VBS and
the Lifelog Search Challenge (LSC). These principles are
however not limited to interactive retrieval evaluations and
adherence to them would also provide a benefit in other
campaigns, such as TRECVID and MediaEval.

VI. Conclusion
In this paper, we have reported the experience gained

from organizing a large remote evaluation of two content-
based video retrieval systems (SOMHunter and vitrivr)
in a VBS-style comparative setting, controlled by the
recently released distributed retrieval evaluation server
DRES.

We showed that it is easier, both organizationally
and financially, to run evaluations in the remote setting,
allowing to collect more data from a larger number of
participants and tasks, especially when compared to on-
site, in-person evaluations that often suffer from space and
time constraints. Most importantly, with all participating
systems (including the evaluation server) being available
as open source, and with detailed information about the
use of the systems available via logging, the concepts of
open science, in particular the reproducibility of the entire
evaluation process, are significantly strengthened.

While the evaluation has demonstrated the feasibility
of conducting the experiments in a distributed setting,
there is still room for improvement. We expect that
improvements of the data collection methodology, such
as a framework to precisely evaluate and compare the
internal state of the search engines, may generate better
insight into the tested retrieval approaches, and provide
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more detailed feedback to drive their further development.
Ultimately, these improvements have to reflect the human-
machine hybrid approach and provide data about the
human interaction with the systems.

We have additionally summarized several practical rec-
ommendations that may help to design future evaluations.
Mainly, our data suggest a baseline of sample sizes
(participant and task counts) required for a practical
competition to deliver a decisive result. We additionally
recommended a set of guidelines that improve the process-
level replicability of the evaluation process.
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