:
»
.

——-

i &

™o o ot 0

A |

4..~

v e .
T

SRS

Ly ias
. o
.”\’.u
My

- g

e

.

& §

., .

LS rﬂ:
N

:

A

.

-
‘:.) R .

b R e
8 D ™
. d0r ') e
’ . | - 4
«.o.:. [ e T

i . JEIte
F | ...4..;.3&»
e 10 g o
ot 5 e AL U A

ey

.t .

.ﬁs,;.'( “

i

W
I
o+ |
> L
.
T e
hr
> —~
/’
4
€23
.
A
) Bt
2 o
v &>
[ »
‘-.
-
9
.
-

=Y

e
.

n‘

-
Fx]

o

—

‘.W‘~‘ -

Jynamic Hash

Practical class 4

NDBIOO7




Dynamic Hashing

+ Static forms of hashing lose its good performance as the table utilization comes to its
maximum

+ (Conversely, dynamic hashing algorithms allow to increase the size of the table with
increasing number of stored records

+ Fagin
+ Litwin
+ LHPE-RL



+ Directory

+ List of entries in the main memory that points to the pages in the
primary file

« Global depth d - number of least significant bits of the hash (k)
needed to address an entry in the directory

+ Primary file

+ Distributed collection of pages stored in the secondary memory, i.e.,
continuous space is not required

+ Each page has a constant size n

+ Each page remembers local depth d; - number of least significant bits
of the hash /(k) common to all records

+ 2%~ tg|ls how many directory entries points to the particular page in
the primary file



+ Qverflowing causes a change in the structure of the directory and
primary file

« d; < d - the particular page can be split, i.e., the page is split and

d; incremented

« d; = d; - the directory must be expanded, i.e., the directory is
doubled and d; incremented

+ |nserting or searching for a record with key k

+ Compute k' = h(k)

« Convert k' into directory entry k" by leaving the d - least significant
G

bits

+ The pointer in the corresponding entry points to the page where
the record should be inserted / searched




Example 4.1

+ Insert records with keys 20, 11, and 8

+ Using the least significant bit of key 20, that is O, the
corresponding record Is inserted into the page using entry O

+ h(11,0) = 00001011,

+ Record with key 11 is stored to the same page using entry 1

+ Record with key 8 is inserted into the same page using entry O



Example 4.2: Splitting a Page

+ Insert record with key 27 (into the structure from example 4.1)

+ Page is overflown

+ The local value d; of the page is less than the global value d; of the

directory

« Therefore we can split the page into two new pages and increment d;
values of both the pages

+ Finally, we reinsert the records previously allocated into the page being M

split
+ After the reinsert, the even keys are stored in the page referenced n
from the zero-th directory entry while the off records are referenced

from the first entry



Example 4.3: Expanding the Directory

+ |nsert records with keys 19 and 5 into the structure from example 4.2

» h(19,,) = 00010011,

+ After inserting record with key 19, a page is filled

+ The insert of the record having key 5 causes:

+ Expanding the directory, i.e., d; = d

« Splitting of the second page, i.e., d; = 2

+ Reinserting of records with keys 5, 11, 19, and 27

« h(19,5) = 00010011,




Exercise 4.4

+ Insert records with keys 28 and 44 into the following
structure

+ Note all the computations and illustrate the solution




+ Directory-less schema that avoids exponentially increasing size of the directory, but we need a continuous space
In the secondary memory

+ Addition of a single page after pre-defined condition

+ The primary file is linearly expanded with time (stages), i.e., adding one page after another

+ Stage d starts with s = 4 pages and ends when the number reaches s = R+l (i.e., stage d + 1 begins)

+ During the stage, a split pointer p € {0,...,2¢ — 1} identifies the next page to be split

+ At the beginning of stage d, the pointer points to page 0

+ After every split operation, the pointer is incremented by 1, or moved to the start when we enter a new page

+ Records from page p (and overflow records) will be distributed between split pages p and p + s using

Mg (k)

+ |f a page overflows before its time to split, overflow page will be utilized

Stage
delimiter

+ At each stage, we have two types of hash functions

« h (k) for pages not yet split, i.e., the least significant d bits of the hashed value h(k) are used
« hy, (k) for the already split pages



Example 4.9

+ Insert records with keys 20, 11, and 8 into an empty primary file

+ |.e., start the stage d = 0 with one page (capacity 3 records), h(k) = p,p =0
+ Pre-defined condition: Splitting occurs after 2 inserts
+ The records with key 20 and 11 are inserted into the Oth page disregarding the value of the key

+ d = 0 bits of the keys are used at this points

+ We have inserted 2 keys, therefore splitting occurs (a new page is created)

+ The records from Oth page are redistributed using the least significant bit of the hashed key *
+ h(20,9) = 00010100,

+ Because p = 2'is reached, the stage changestod =1, p = 0

+ Now, we use d = 1 bit for not yet split pages and d + 1 bits for split pages

+ The record with key 8 is inserted into the page 0 using the least significant bit

+ h(8,0) = 00001000,

10



Example 4.6

+ Insert records with keys 3, 28, and 32 into the structure from example 4.5

+ A record with key 3 will now be inserted into page 1

+ We have already inserted 2 records in the stage d = 1, therefore page p = 0 is split into pages p, = 00,

+ Next, we will insert a pair of records with keys 28 and 32
<& h(2810) — 000111002

+ Because /;(00011100,) = 0and 0 < p, it is necessary to address the keys using 2 least
significant bits, i.e., 1,(00011100,) = 00, and the key belongs in the page 00 00 01 10 11

+ h(32,,) = 00100000,

+ The key 32 belongs to the same page, but that is already filled and thus overflows

+ Finally, the page 1 is split

+ Since the number of pages reaches s = 21+l — 4 the second stage is initiated, i.e.,d =2, p =0 32

11



Exercise 4.7

+ Insert records with keys 31, 51, 74, and 13 into the following
structure

» |.e., start the stage d = 2 with s = 4 pages (capacity 3
records), (k) =k, p =0

+ Pre-defined condition: Splitting occurs after 2 inserts

+ Note all the computations and illustrate the solution

12



LHPE-RL

+ Simplified version of LHPE

« At the stage d, the primary file consists of p, pages

+ Each page has capacity b

+ Pages are grouped into s, = p, + g groups pointer groups

+ Each group has g pages

+ When a predefined condition is met (e.qg., after L insertions), a new page is
inserted at the end of the primary file and records in pages in the group
pointed to the split pointer are redistributed between these pages and the
new page (being the new member of the group)

+ When the last group is redistributed, the file is (virtually) reorganized (stage
d + 1) so that all the pages are again sorted into 5, | = p;.1 ~ & pages

¢ Pari =[50 (@+ 58]0 g

13



Example 4.8

+ Insert records with keys 17, 9, 43, 21, 49, 35, 70, 52, 40, 13, 5, 80 into the following empty
structure

+ Staged =0

+ The initial number of groups s, = 2

+ Page capacity b = 3

+ Hash function
+ ho(k) =k mod 4
+ Determines into which of 4 initial pages a record is inserted at the beginning
« hi(k) =k mod 3
+ Determines where the records are inserted when a group splits for the first time
« hy(k) = |k+3] mod 3

+ Determines where the records are inserted when a group splits for the second time

» We are going to split regularly after two inserts, i.e., L = 2

+ Having py = s, * g = 4 pages, the first split occurs after insertion of p, ¢ L = 8 records

14



Example 4.8 (Continued)

+ Inserts of the first 8 keys, i.e., 17, 9, 43, 21, 49, 35, 70, and 52 are not interesting
since these are inserted where the A, function says

hy(17) =17 mod 4 =1
hy(9) =9 mod 4 =1
hy(43) =43 mod 4 =3
hy(21) =21 mod 4 =1
hy(49) =49 mod 4 =1
hy(35) =35 mod 4 =3
hy(70) =70 mod 4 =2

hy(52) =52 mod 4 =0 Overflown
area

+ The only problem is with key 49 which is assigned to an (already full) page 1

15



Example 4.8 (Continued)

+ Having inserted 8 keys, we have to split the group pointed by the split

pointer, i.e., the group A having pages 0 and 2

+ Page 4 is added into group A

« Function h,(k) is applied in order to redistribute keys in the group A

« h,(k) returns the index of a page in a group A, i.e., h;(k) = 0 for
the page 0, i;(k) = 1 for the page 2, and /,(k) = 2 for the page 4

« h;(52) =52 mod 3 = 1, therefore key 52 goes into the page 2 ,

« 1y (70) =70 mod 3 = 1, hence the key 70 goes into the page 2

+ Split pointer is incremented

+ The key In the overflow area, I.e., 49, does not belong neither to page O
nor to page 2, thus stays where it is

16



Example 4.8 (Continued)

+ Next, we insert record with key 40

+ hp(40) =40 mod 4 =0

+ Based on the function A, the record with key 40 should be assigned to the

page 0 but this page has already been spilit

+ Thus we need to use hl which sends it into the second page in the group A

+ hy(40) =40 mod 3 = l(ie., page 2)

B T

+ Next, we insert record with key 13

« hp(13) =13 mod 4 =1

+ Based on the function /), the record with key belongs to the page 1, which
has not been split yet

+ No need to use /1,

+ The page 1 is already full, therefore the overflow area is used

17



Example 4.8 (Continued)

+ Once again, we have to split the group (we have already inserted L = 2
records)

+ Split pointer points to the group B, i.e., pages 1 and 3 will be split

+ Page 5 is added

+ Function (k) will be applied in order to redistribute keys in the group B

« hy(17) =17 mod 3 = 2, therefore goes to the page 5

« 1 (9) =9 mod 3 = 0, therefore goes to the page 1 ,

« h(21) =21 mod 3 = 0, therefore goes to the page 1

« h(43) =43 mod 3 = 1, therefore goes to the page 3
+ hy(35) =35 mod 3 = 2, therefore goes to the page 5
« h;(49) =49 mod 3 = 1, therefore goes to the page 3
« hy(13) = 13 mod 3 = 1, therefore goes to the page 3

18



Example 4.8 (Continued)

+ Having all the group processed (i.e., split), the end of the |
stage d = 0 occurs

+ Hence, the file is reorganized into 3 groups, each
having 2 pages

+ The reorganization is only virtual

+ The page numbers are kept, we just think of the pages
differently

19



Example 4.8 (Continued)

+ Now, we insert record with key 5

3 h0(5) =5 mod4=1

+ Based on the function ho, this record belongs to the page 1, which has been
split once

« Therefore we have to use /,

« h;(5) =35 mod 3 = 2 (note that redistribution is only virtual)

+ The record comes into page 5

+ Next, we insert record with key 80

> 7y(80) = 80 mod 4 = 0

+ Based on the function A, this record belongs to the page 0, which has been
split once

« Therefore we have to use /,

« h;(80) = 80 mod 3 = 2 (once again, redistribution is only virtual)

20



Example 4.8 (Continued)

» Having inserted additional L = 2 records, we must split once again A

+ The split pointer points to the group A, i.e., pages 0 and 3

+ Page 6 is added into the group A

« Function /,(k) is applied in order to redistribute keys in the group A

« N,(k) returns the index of a page in a group A, i.e., h,(k) = O for
the page 0, hz(k) — 1 for the page 3, hz(k) = 2 for the page 6 ,

+ hy(43) = |43 + 3] mod 3 =2 (i.e., page 6)
+ hy,(49) = |49 +3] mod 3 =1 (i.e., page 3)
+ hy(13) =13 +3] mod 3 =1 (i.e., page 3)

+ Finally, the split pointer is incremented

21



Exercise 4.9

+ |nsert record with key 73 into the structure from example 4.8
(see the picture)

+ Staged = 1

+ Page capacity b = 3

+ Predefined condition L = 2

+ Hash functions:
+ hy(k) =k mod 4
« hi(k) =k mod 3
+ hy(k) = |[k+3] mod 3

+ Note all the computations and illustrate the solution

22



