:
»
.

——-

i &

™o o ot 0

A |

4..~

v e .
T

SRS

Ly ias
. o
.”\’.u
My

- g

e

.

& §

., .

LS rﬂ:
N

:

A

.

-
‘:.) R .

b R e
8 D ™
. d0r ') e
’ . | - 4
«.o.:. [e T

i . JEIte
F | ...4..;.3&»
e 10 g o
ot 5 e AL U A

ey

.t .

.ﬁs,;.'(“

i

W
I
o+ |
> L
.
T e
hr
> —~
/’
4
€23
) Bt
2 o
v &>
[»
‘-.
-
9
.
-

=Y

e
.

n‘

-
Fx]

o

—

‘.W‘~‘ -

Practical class 3

Static Hash

NDBIOO7

+ Hashing is an effective method for key-value association
+ |n optimal situation, we need only one memory access to retrieve the values for a given key

+ Nevertheless, mapping a larger domain of keys into much smaller storage leads to
collisions

+ |.e., data from two different keys should be stored on the same address

+ (Collision can be solved in a number of different ways:
+ Separate chaining
+ Open addressing
+ Perfect hashing, i.e., avoiding collisions completely
+ (Choosing hashing function (process) that does not create collision on a given key set

2

Perfect Hashing

+ Examples:
+ Cormack

+ [arson & Kalla

+ Both methods are also members of the static hashing family

+ |.e., not designhed to be used for rapidly growing number of data

Cormack

+ Perfect static hashing method based on Divide and Conquer
+ Divide set of all records to be hashed into smaller subsets

+ Find a perfect hashing function for each small subset of records independently on each other

+ Primary hash function h(k, s) hashes given key k into directory of size s
« E.g., h(k,s) =k mod s

+ Secondary hashing function hi(k, r) address collisions of the primary hashing function
+ [- index of used hashing function

+ 1 - number of referenced records in the hash table

¢ Eg. bk, r) = (k> > i) mod r

Cormack (Continued)

+ For each directory, we have to remember its parameters:

+ § - size of the directory, i.e., how many records can be stored there

« 1 - index of locally perfect hashing function to be used position 1 1 p key _value

+ 1 - nhumber of collisions in the primary file 1

+ p - pointer to start of the primary file e

+ The directory has a fixed size and its change is generally not possible ... 5 5 . fol?:;e

+ Unless all the stored records are reinserted

+ |n general, when a new item (key, value) is inserted, its class storage

is moved to the end of file, expanded, new Ak,) is found and all h(k,s) — position

the values in the storage are reinserted

+ Once the class storage is ready, the record in directory is updated hi(k’ r) order

Example 3.1: Cormack

| | | position 1 r p
+ |nsert records 14, 17, and 10 into directory of size s = 7/ o 0 1 e
+ Primary hashing function is given as h(k,s) =k mods T “
« Secondary hashing function is h(k,r) = (k > > 1) mod r S
3
=
¢ Insertingrecord14 5
« h(14,7) =14 mod 7=0 6
+ Position 0 in the directory is empty
+ Thereforeweseti=0,r=1,p =0 a position 1 r p
Lo 010
1
+ Inserting record 17 oy
e h(17.7) = 17 mod 7 = 3 3 011
+ Position 3 in the directory is empty .
+ We append a new class storage at the end of primary file 6 -------------- 2 ---

+ We remember parametersi =0, r=1,p =1 e

Example 3.1: Cormack (Continued)

+ Inserting record 10
+ h(10,7) =10 mod 7 = 3

+ Position 3 already contains a record (i.e., 17) for existing class storage

+ As the class storage is located at the end of the primary file, we can
easily expand it a

+ @Given class storage has now two elements, i.e., r = 2, and starts on

position p = 1 a

+ Finally, we need to find i, i.e., hi,(k, r) for which there will be no
collision

« hp(10,2) = (10> >0) mod 2 =10 mod 2 =0
« hy(17,2) =(17>>0) mod2 =17 mod 2 =1

+ The records in class storage are stored in order given by secondary
hashing function

Example 3.2: Cormack Expanding

+ Expand directory by adding record 21

« h(21,7) =21 mod 7 =0

+ Respective class storage is not located at the end of the file “

+ We have to move it, i.e., we set positionp =3 andr =2 a
+ Again, we need to find suitable 1

« hy(14,2) =14 >>0) mod2 =14 mod 2 =0

« hp(21,2) =21 >>0) mod 2 =21 mod 2 =1

+ Position 0 is marked as unused space and will be never used again as
the class storage always moves on the end of the primary file Q

+ Optimization for space reusability could be employed*

* That is out of scope of this practical class 8

Exercise 3.3

+ Expand directory from example 3.2
+ |nsert record 49

+ Primary hashing function

position i r p key value

ik, s) =k mod s I S
+ Secondary hashing function L 0

hi(k,l’):(k>>i) modr S

+ Compute all the parameters and illustrate the directory
and primary file

Exercise 3.4

+ Expand the directory from exercise 3.3 (see figure)
+ |nsert record 63

+ Primary hashing function

position i r p key value

Ak, s) =k mod s L0033

1

+ Secondary hashing function o,
| 3 021 3 21
h(k,r) = (k>>1) modr o4 4 49
______________ S N . S
+ Compute all the parameters and illustrate the directory and primary ¢ 6

file 7

+ Tip: If you get a collision for every 1, increment parameter r by 1 and
try computation again

10

Larson & Kalja

+ The disadvantage of Cormack is the necessity of storing the directory

+ Larson & Kalja hashing uses only a few bites instead of a directory Page number
record

+ Splits data into pages, where each page has a separator Separator

+ Record fits into certain page only when is less than the separator
+ |.e., the separator is greater than all the keys in respective page

+ Pages have limited capacity, therefore overflow may occur

+ If the overflow occurs, the page separator is updated
+ |.e., its value Is lowered

+ All the records which do not fit into the page any more due to the
updated separator are re-inserted

11

Example 3.5: Larson & Kalja

+ Insert records 10, 20, 30, 32, 37, 42, 51, 61
+ Use hash function h;(k) = (k+i) mod 5

= To get the number of page in which the data should be inserted (i.e., we have 5 pages)
+ Employ function s;(k) = (k > > i) mod 7 to get the signatures

+ [stands for the number of previously unsuccessful inserts

+ |nitial separator values are set to 111, as the maximum inserted record is s;(k) = 110, = 6

hy(10) =10 mod 5=0 s4(10)=10>>0 mod 7=10 mod 7=3 ~ 011,
hy(20) =20 mod 5=0 55(20) =20>>0 mod 7=20 mod 7=6 ~ 110,

hy(30) =30 mod 5=0 54(30) =30>>0 mod 7 =30 mod 7 =2~ 010,
hy(32) =32 mod 5=2 5432)=32>>0 mod7=32 mod7=4~ 100,
hy(37) =37 mod 5=2 54(37)=37>>0 mod7 =37 mod7=2~ 010,
hy(42) =42 mod 5 =2 5442)=42>>0 mod 7=42 mod 7 =0 ~ 000,
hy(51) =51 mod 5 = 5o(31) =51>>0 mod 7=51 mod7=2~ 010,
hy(61) =61 mod 5 = 5(61) =61 >>0 mod 7=61 mod 7=5 ~ 101,

Example 3.6: Larson & Kalja - Split Page

+ Insert record 40 and split a page
+ hp(40) =40 mod 5=0 5,(40)=40>>0 mod 7=40 mod 7=35 ~ 101,
+ Page 0 is already full
+ We sort all the records (including newly added record) according to the signature
+ \We select the item having the biggest signature
+ In our particular case, the biggest signature belongs to 20
+ We update page separator to 110 (signature of 20) a
+ Record 20 gets out of the page
+ We insert record 40 into page O 9

+ As the next step, we have to reinsert record 20
+ hp(20) =20 mod 5 =0 55(20)=20>>0 mod 7=20 mod 7 =6~ 110,

+ Again, we should put record 20 into page 0, but we cannot as the page separator is smaller or
equal to the signature

+ We increase i and we try to reinsert record 20 once again

¢ m(20)=(0+1) mod5=1 5(20)=(20>>1) mod7=3~011,)

Exercise 3.7

+ Apply Larson & Kalja method to insert record 41 into the
structure from example 3.6

+ Note all the computations and illustrate the result

+ Tip: In some cases, we can split multiple pages on a single
insert

Exercise 3.8

+ Apply Larson & Kalja method to insert record 67 into the
structure from exercise 3.7 (see figure)

+ Note all the computations and illustrate the result

+ Tip: If one page contains more records with the same
signhature and we need to split this page, then we may
reinsert more then just a single record

summary

+ Larson & Kalja method does not have to store the item's signature as its computation
IS often straightforward

+ The whole directory consists of M e d bits, where M is a number of pages and d is a
separator size (in bits)

+ Thanks to the smaller size, the directory should fit into primary memory (RAM)

+ |n contrast to Cormack, we have to sequentially scan a page (class storage) to get
the value for a given key

+ Both methods require appropriate selection of the primary and secondary hashing
functions

16

