
Static Hashing
NDBI007: Practical class 3



❖ Hashing is an effective method for key-value association

❖ In optimal situation, we need only one memory access to retrieve the values for a given key

❖ Nevertheless, mapping a larger domain of keys into much smaller storage leads to 

collisions

❖ I.e., data from two different keys should be stored on the same address


❖ Collision can be solved in a number of different ways:

❖ Separate chaining

❖ Open addressing

❖ Perfect hashing, i.e., avoiding collisions completely


❖ Choosing hashing function (process) that does not create collision on a given key set

2

Hashing



❖ Examples:

❖ Cormack

❖ Larson & Kalja


❖ Both methods are also members of the static hashing family

❖ I.e., not designed to be used for rapidly growing number of data

3

Perfect Hashing



❖ Perfect static hashing method based on Divide and Conquer

❖ Divide set of all records to be hashed into smaller subsets

❖ Find a perfect hashing function for each small subset of records independently on each other


❖ Primary hash function  hashes given key  into directory of size 


❖ E.g., 


❖ Secondary hashing function  address collisions of the primary hashing function


❖  - index of used hashing function


❖  - number of referenced records in the hash table


❖ E.g., 

h(k, s) k s

h(k, s) = k mod s

hi(k, r)

i

r

hi(k, r) = (k > > i) mod r

4

Cormack



❖ For each directory, we have to remember its parameters:


❖  - size of the directory, i.e., how many records can be stored there


❖  - index of locally perfect hashing function to be used


❖  - number of collisions in the primary file


❖  - pointer to start of the primary file


❖ The directory has a fixed size and its change is generally not possible

❖ Unless all the stored records are reinserted


❖ In general, when a new item (key, value) is inserted, its class storage 
is moved to the end of file, expanded, new  is found and all 
the values in the storage are reinserted


❖ Once the class storage is ready, the record in directory is updated

s

i

r

p

hi(k, r)

5

Cormack (Continued)

key value
0 14
1 10
2 17
3 14
4 21
5
6
7

position i r p
0 0 2 3
1
2
3 0 2 1
4
5
6

h(k, s) ⟶ position

hi(k, r) ⟶ order

Directory

Primary file

Class 
storage



❖ Insert records 14, 17, and 10 into directory of size 


❖ Primary hashing function is given as 


❖ Secondary hashing function is 


❖ Inserting record 14


❖ 

❖ Position 0 in the directory is empty


❖ Therefore we set , , 


❖ Inserting record 17


❖ 

❖ Position 3 in the directory is empty


❖ We append a new class storage at the end of primary file


❖ We remember parameters , , 

s = 7
h(k, s) = k mod s

hi(k, r) = (k > > i) mod r

h(14,7) = 14 mod 7 = 0

i = 0 r = 1 p = 0

h(17,7) = 17 mod 7 = 3

i = 0 r = 1 p = 1
6

Example 3.1: Cormack
position i r p

0 0 1 0
1
2
3
4
5
6

key value
0 14
1
2
3
4
5
6
7

key value
0 14
1 17
2
3
4
5
6
7

position i r p
0 0 1 0
1
2
3 0 1 1
4
5
6

1

2

3

1

2

3



❖ Inserting record 10


❖ 

❖ Position 3 already contains a record (i.e., 17) for existing class storage

❖ As the class storage is located at the end of the primary file, we can 

easily expand it


❖ Given class storage has now two elements, i.e., , and starts on 
position 


❖ Finally, we need to find , i.e.,  for which there will be no 
collision


❖ 


❖ 

❖ The records in class storage are stored in order given by secondary 

hashing function

h(10,7) = 10 mod 7 = 3

r = 2
p = 1

i hi(k, r)

h0(10,2) = (10 > > 0) mod 2 = 10 mod 2 = 0

h0(17,2) = (17 > > 0) mod 2 = 17 mod 2 = 1

7

Example 3.1: Cormack (Continued)

key value
0 14
1 10
2 17
3
4
5
6
7

position i r p
0 0 1 0
1
2
3 0 2 1
4
5
6

key value
0 14
1 17
2
3
4
5
6
7

position i r p
0 0 1 0
1
2
3 0 1 1
4
5
6

1

2

3

1

2

3



❖ Expand directory by adding record 21


❖ 

❖ Respective class storage is not located at the end of the file


❖ We have to move it, i.e., we set position  and 


❖ Again, we need to find suitable 


❖ 


❖ 


❖ Position 0 is marked as unused space and will be never used again as 
the class storage always moves on the end of the primary file


❖ Optimization for space reusability could be employed*

h(21,7) = 21 mod 7 = 0

p = 3 r = 2
i

h0(14,2) = (14 > > 0) mod 2 = 14 mod 2 = 0

h0(21,2) = (21 > > 0) mod 2 = 21 mod 2 = 1

8

Example 3.2: Cormack Expanding

*    That is out of scope of this practical class

key value
0 14
1 10
2 17
3 14
4 21
5
6
7

position i r p
0 0 2 3
1
2
3 0 2 1
4
5
6

key value
0 14
1 10
2 17
3
4
5
6
7

position i r p
0 0 1 0
1
2
3 0 2 1
4
5
6

1

2

3
2

3

1

4

4



❖ Expand directory from example 3.2

❖ Insert record 49

❖ Primary hashing function





❖ Secondary hashing function





❖ Compute all the parameters and illustrate the directory 
and primary file

h(k, s) = k mod s

hi(k, r) = (k > > i) mod r

9

Exercise 3.3

key value
0 14
1 10
2 17
3 14
4 21
5
6
7

position i r p
0 0 2 3
1
2
3 0 2 1
4
5
6



❖ Expand the directory from exercise 3.3 (see figure)

❖ Insert record 63

❖ Primary hashing function





❖ Secondary hashing function





❖ Compute all the parameters and illustrate the directory and primary 
file


❖ Tip: If you get a collision for every , increment parameter  by 1 and 
try computation again

h(k, s) = k mod s

hi(k, r) = (k > > i) mod r

i r

10

Exercise 3.4

key value
0 14
1 10
2 17
3 21
4 49
5 14
6
7

position i r p
0 0 3 3
1
2
3 0 2 1
4
5
6



❖ The disadvantage of Cormack is the necessity of storing the directory

❖ Larson & Kalja hashing uses only a few bites instead of a directory 

record


❖ Splits data into pages, where each page has a separator

❖ Record fits into certain page only when is less than the separator


❖ I.e., the separator is greater than all the keys in respective page

❖ Pages have limited capacity, therefore overflow may occur


❖ If the overflow occurs, the page separator is updated

❖ I.e., its value is lowered


❖ All the records which do not fit into the page any more due to the 
updated separator are re-inserted

11

Larson & Kalja

0 10 20 30
111 011 110 010
1 51 61
111 010 101
2 32 37 42
111 100 010 000
3
111
4
111

Separator

Page number



❖ Insert records 10, 20, 30, 32, 37, 42, 51, 61


❖ Use hash function 

❖ To get the number of page in which the data should be inserted (i.e., we have 5 pages)


❖ Employ function  to get the signatures


❖  stands for the number of previously unsuccessful inserts


❖ Initial separator values are set to  as the maximum inserted record is 


    


    


    


    


    


    


    


    

hi(k) = (k + i) mod 5

si(k) = (k > > i) mod 7

i

1112 si(k) = 1102 = 6

h0(10) = 10 mod 5 = 0 s0(10) = 10 > > 0 mod 7 = 10 mod 7 = 3 ∼ 0112

h0(20) = 20 mod 5 = 0 s0(20) = 20 > > 0 mod 7 = 20 mod 7 = 6 ∼ 1102

h0(30) = 30 mod 5 = 0 s0(30) = 30 > > 0 mod 7 = 30 mod 7 = 2 ∼ 0102

h0(32) = 32 mod 5 = 2 s0(32) = 32 > > 0 mod 7 = 32 mod 7 = 4 ∼ 1002

h0(37) = 37 mod 5 = 2 s0(37) = 37 > > 0 mod 7 = 37 mod 7 = 2 ∼ 0102

h0(42) = 42 mod 5 = 2 s0(42) = 42 > > 0 mod 7 = 42 mod 7 = 0 ∼ 0002

h0(51) = 51 mod 5 = 1 s0(51) = 51 > > 0 mod 7 = 51 mod 7 = 2 ∼ 0102

h0(61) = 61 mod 5 = 1 s0(61) = 61 > > 0 mod 7 = 61 mod 7 = 5 ∼ 1012

12

Example 3.5: Larson & Kalja

0 10 20 30
111 011 110 010
1 51 61
111 010 101
2 32 37 42
111 100 010 000
3
111
4
111



❖ Insert record 40 and split a page


❖     

❖ Page 0 is already full

❖ We sort all the records (including newly added record) according to the signature

❖ We select the item having the biggest signature


❖ In our particular case, the biggest signature belongs to 20

❖ We update page separator to 110 (signature of 20)

❖ Record 20 gets out of the page

❖ We insert record 40 into page 0


❖ As the next step, we have to reinsert record 20


❖     

❖ Again, we should put record 20 into page 0, but we cannot as the page separator is smaller or 

equal to the signature


❖ We increase  and we try to reinsert record  once again


❖     

h0(40) = 40 mod 5 = 0 s0(40) = 40 > > 0 mod 7 = 40 mod 7 = 5 ∼ 1012

h0(20) = 20 mod 5 = 0 s0(20) = 20 > > 0 mod 7 = 20 mod 7 = 6 ∼ 1102

i 20
h1(20) = (20 + 1) mod 5 = 1 s1(20) = (20 > > 1) mod 7 = 3 ∼ 0112

13

Example 3.6: Larson & Kalja - Split Page

0 10 40 30
110 011 101 010
1 51 61 20
111 010 101 011
2 32 37 42
111 100 010 000
3
111
4
111

1

2

3

1

2

3



❖ Apply Larson & Kalja method to insert record 41 into the 
structure from example 3.6

❖ Note all the computations and illustrate the result


❖ Tip: In some cases, we can split multiple pages on a single 
insert

14

Exercise 3.7

0 10 40 30
110 011 101 010
1 51 61 20
111 010 101 011
2 32 37 42
111 100 010 000
3
111
4
111



❖ Apply Larson & Kalja method to insert record 67 into the 
structure from exercise 3.7 (see figure)

❖ Note all the computations and illustrate the result


❖ Tip: If one page contains more records with the same 
signature and we need to split this page, then we may 
reinsert more then just a single record

15

Exercise 3.8

0 10 40 30
110 011 101 010
1 51 61 20
110 010 101 011
2 32 37 42
110 100 010 000
3 41
111 011
4
111



❖ Larson & Kalja method does not have to store the item's signature as its computation 
is often straightforward


❖ The whole directory consists of  bits, where  is a number of pages and  is a 
separator size (in bits)


❖ Thanks to the smaller size, the directory should fit into primary memory (RAM)

❖ In contrast to Cormack, we have to sequentially scan a page (class storage) to get 

the value for a given key


❖ Both methods require appropriate selection of the primary and secondary hashing 
functions

M ∙ d M d

16

Summary


