
Static Indexes and Bitmaps
NDBI007: Practical class 2

❖ - page size in bytes

❖ - object (e.g., a record) size in bytes

❖ - number of objects

❖ - blocking factor, i.e., the number of objects that fit into a
single page

❖
Can be computed as

❖ - height of a tree, that is stored using the blocking factor

❖ Can be computed as

B

R

n

b

b = ⌊ B
R ⌋

h b

h = ⌈logb n⌉

2

Important Terms

❖ Consists of at least two files

❖ Primary file contains all the data, that are sorted according to a

primary key

❖ Index file contains the index of the primary file, built over the

primary key

❖ Static index is a hierarchical structure of index pages that contains

record of type [value of the primary key; pointer to a page]

❖ There exists the following types of static indexes

❖ Primary key, non-primary (secondary) key

❖ Direct index

❖ Indirect index

3

Index Sequential File

❖ In sequential file, the primary key is sorted based on the primary key*

❖ It is exploited in the primary index structure as it enables omit one

level of the index

❖ The primary key index record consists of two values

❖ Value of the primary key (e.g., 5 B)

❖ Pointer to a page 4 B

❖ Total size of a record is 9 B

❖ The size is fixed for all records

❖ Only one the last level of the index the pointers point not to

another index page, but to a page of the primary file
4

Primary Key Index

* In the case of non-sequential file, it is the same as direct index

❖ Build primary key index for a sequential file that contains 12,000,000 student records (of size 256 B)

❖ Determine index height and compute the size of every index level

❖ You will have to compute blocking factor for the primary file in order to determine number of blocks

❖ Remember that the index (bottom) level points directly into the primary file

❖ You will have to compute blocking factor for the primary index

❖ Suppose page size equal to 4 kB and record size 9 B

❖ The number of pages on the next level can be computed as

b
N

nPAGES,L=i = ⌈ nPAGES,L=i−1

b ⌉
5

Exercise 2.1: Primary Key Index

❖ If the index is stored in external memory, it requires hard drive accesses to get a
record based on a primary key

❖ The first two index levels are small so we keep them in the main memory to save external
memory accesses

❖ Therefore, we need only hard drive accesses to retrieve a record

❖ In real applications, the whole primary index is commonly kept in the primary memory (RAM)

❖ The primary key is typically small (4-8 B)

❖ The retrieval of a record based on the primary key requires only 1 access to the external

memory

❖ The presence of primary index in main memory is also utilized by the indirect indexes

h + 1

h − 1

6

Primary Key Index: Access to Hard Drive

❖ Primary file cannot be sorted by keys of multiple indexes

❖ The sample depicts the primary key index for the database
for ID*

❖ To see how this structure works we can query for Tomas

❖ The query is ID = 3

❖ We start at page 5 (index root)

❖ Then we go to page 3 (we follow the highest lowest ID

value)

❖ From page 3 to the page 1 (the same principle as

before)

❖ We find Tomas on the page 1

7

Primary Key Direct Index
ID firstName secondName
0 Pavel Straka
1 Karel Zeman
2 Jitka Nováková
3 Tomáš Zelený
4 Karel Svoboda
5 Zuzana Novotná

PAGE: 5
ID PAGE
0 3
4 4

PAGE: 3
ID PAGE
0 0
2 1

PAGE: 0
ID FIRSTNAME
0 PAVEL
1 KAREL

PAGE: 2
ID FIRSTNAME
4 KAREL
5 ZUZANA

PAGE: 1
ID FIRSTNAME
2 JITKA
3 TOMÁŠ

PAGE: 4
ID PAGE
4 2

2nd level index 1st level index primary file

* Note, that we use different page size in pictures just to save space and make picture simpler

❖ We try to apply the same process to build a direct index
for a non-primary key attribute, i.e., firstName

❖ However, this approaches does not work, i.e., the index is
broken

❖ It can be easily demonstrated by a simple query for Karel

❖ We start at page number 5 (root of the index)

❖ Here, we take the largest smaller key, i.e., Pavel, and we

go to page 3

❖ In page 3, we repeat the same process, this time Jitka is

the largest smaller key. Jitka stands for page number 1

❖ But in this way we fail to retrieve Karel on page 0

8

Non-Primary Key Direct Index
ID firstName secondName
0 Pavel Straka
1 Karel Zeman
2 Jitka Nováková
3 Tomáš Zelený
4 Karel Svoboda
5 Zuzana Novotná

PAGE: 5
FIRSTNAME PG
PAVEL 3
KAREL 4

PAGE: 3
FIRSTNAME PG
PAVEL 0
JITKA 1

PAGE: 0
ID FIRSTNAME
0 PAVEL
1 KAREL

PAGE: 2
ID FIRSTNAME
4 KAREL
5 ZUZANA

PAGE: 1
ID FIRSTNAME
2 JITKA
3 TOMÁŠ

PAGE: 4
FIRSTNAME PG
KAREL 2

2nd level index 1st level index primary file

❖ Solution: Additional level between the index and the primary file

❖ I.e., zero level index

❖ Query for Karel once again:

❖ We start on page 8 (index root)

❖ We continue on page 6 (Jitka) and then on page 3

❖ Here, we see the first record for Karel, then we scan the

following index page until we reach a higher key

❖ Hence, we get Karel on page 0 as well as Karel on page 2

❖ The 0th level is a copy of given key with pointer to the respective
page

❖ This level is sorted by the key and it is basically a very this

replication of a primary file

❖ Note: The "zero level index" is used in the case of non-sequential

file with index

❖ The primary file is not sorted by any property

9

Non-Primary Key Direct Index (Correct)
ID firstName secondName
0 Pavel Straka
1 Karel Zeman
2 Jitka Nováková
3 Tomáš Zelený
4 Karel Svoboda
5 Zuzana Novotná

PAGE: 8
FIRSTNAME PG
JITKA 6
TOMÁŠ 7

PAGE: 6
FIRSTNAME PG
JITKA 3
KAREL 4

PAGE: 0
ID FIRSTNAME
0 PAVEL
1 KAREL

PAGE: 2
ID FIRSTNAME
4 KAREL
5 ZUZANA

PAGE: 1
ID FIRSTNAME
2 JITKA
3 TOMÁŠ

PAGE: 7
FIRSTNAME PG
TOMÁŠ 5

2nd level index 1st level index primary file
PAGE: 3

FIRSTNAME PG
JITKA 1
KAREL 0

PAGE: 4
FIRSTNAME PG
KAREL 2
PAVEL O

PAGE: 5
FIRSTNAME PG
TOMÁŠ 1
ZUZANA 2

0th level index

❖ Build direct index on firstName for a sequential file that contains 12,000,000 student
records

❖ Suppose that index record is 25 B + 4 B (size of key + size of the pointer) and page

size is 4 kB

❖ Determine index height and compute the size of every index level

❖ Compare the structure with primary key index structure

❖ I.e., number of levels, sizes of levels, total size of index (in MB)

10

Exercise 2.2: Direct Index

1B5B 25B 32B 4B 40B 140B9B

id (PK)

firstName

secondName

age

birthday

address

phoneNumber

note

❖ Direct indexing and primary index share one disadvantage

❖ In the case of any modification (records shuffling) in the primary file, the first (zero) level must be

updated

❖ The solution is indirect indexing that does not point to the primary file pages

❖ It points to the primary keys, i.e., indirect index can be described as a map from some property to a

primary key

❖ In addition, indirect index does not point to the file directly, therefore it is not affected by modifications

of the primary file

❖ As the primary index is commonly stored in primary memory (RAM), we just need to read pages from

the indirect index and retrieve pages from the primary file

❖ Although the first level is slightly larger than that of a direct index, the main advantage is that an indirect
index does not need to be updated in case od primary file movements

11

Indirect Index

❖ Build indirect index on secondName for a sequential file that contains 12,000,000
student records

❖ Note that first level records and other level records differ in its size

❖ First level: 32 B + 5 B (secondName key size + primary key size)

❖ Other level: 32 B + 4 B (secondName key size + pointer to another page)

❖ Determine index height and compute the size of every index level

12

Exercise 2.3: Indirect Index

1B5B 25B 32B 4B 40B 140B9B

id (PK)

firstName

secondName

age

birthday

address

phoneNumber

note

❖ Two properties can be concatenated (e.g., firstName and secondName)

❖ Enables us to search for both of the attributes at once

❖ Attribute ordering in the index is fixed

❖ E.g., firstName followed by secondName does not allow us to search for
secondName followed by firstName

13

Searching in Index From Multiple Attributes

❖ Note: Having 50 percent men and 50 percent women in our database, usage of
previous indices is not effective at all

❖ We prefer bitmaps with database sequential scan over hierarchical index

❖ Bitmap consists of multiple columns

❖ Each column is stored in separate page

❖ Pages are stored sequentially, allowing effective reading

❖ A value of a given column is represented by a single bit

❖ E.g., having page size 4 kB, we can store values in every
page

❖ Useful for attributes having small domain, e.g., traditional concept of gender
(male, female)

❖ Bitmaps allow effective evaluation of logical operations over columns (T = 1, F = 0)

❖ Based on the value distribution, we may also consider some compression (e.g., RLE

compression*)

4,096 ∙ 8 = 32,768

14

Bitmaps

* https://en.wikipedia.org/wiki/Run-length_encoding

ID isMale isFemale

0 1 0
1 1 0
2 0 1
3 1 0
4 1 0
5 0 1

https://en.wikipedia.org/wiki/Run-length_encoding

❖ Birthday (day, month) can be represented in different ways using
bitmaps

One column for each day in year

❖ Positives:

❖ One column is read to get all people having birthday in a certain
day

❖ We can easily add information about other important day for a
price of just another single column

❖ Negatives:

❖ Bitmap takes a lot of space, i.e.,

❖ Compression may decrease the size but read time increases as

we need to decompress bitmap

366 ∙ 367 ∙ 4 ∙ 210 ≈ 524.7 MB

15

Example 2.4: Bitmaps for Birthdays

* We consider database having 12,000,000 records, hence pages are required to store single column⌈12,000,000 ÷ 32,768⌉ = 367

ID 01/01 ... 07/03 ... 31/12

0 1 ... 0 ... 0
1 1 ... 0 ... 0
2 0 ... 1 ... 0
3 0 ... 1 ... 0
4 1 ... 0 ... 0
5 0 ... 0 ... 1

Two sets of bitmaps
❖ One for day (31) and other for months (12)

❖ We need a single AND operation to read this

❖ Positives:

❖ Smaller size, i.e.,

❖ Negatives:

❖ We have to read two columns to get information about
birthdays in a given day

43 ∙ 367 ∙ 4 ∙ 210 ≈ 61.6 MB

16

Example 2.4: Bitmaps for Birthdays (Continued)
ID 1 ... 7 ... 31
0 1 ... 0 ... 0
1 1 ... 0 ... 0
2 0 ... 1 ... 0
3 0 ... 1 ... 0
4 1 ... 0 ... 0
5 0 ... 0 ... 1

ID 1 ... 3 ... 12
0 1 ... 0 ... 0
1 1 ... 0 ... 0
2 0 ... 1 ... 0
3 0 ... 1 ... 0
4 1 ... 0 ... 0
5 0 ... 0 ... 1

day

month

* We consider database having 12,000,000 records, hence pages are required to store single column⌈12,000,000 ÷ 32,768⌉ = 367

Binary representation of a day in a year

❖ Number 366 can be saved into 9 bits

❖ E.g., 01/01 = 000 000 001, 02/01 = 000 000 010,
01/02 = 000 100 000

❖ Positives:

❖ Much smaller size, i.e.,

❖ Negatives:

❖ We have to read all columns to find all birthdays in a
certain day

9 ∙ 367 ∙ 4 ∙ 210 ≈ 12.9 MB

17

Example 2.4: Bitmaps for Birthdays (Continued)

ID 9 ... 3 2 1
0 1 ... 0 1 0
1 1 ... 0 1 1
2 0 ... 1 0 0
3 0 ... 1 0 1
4 1 ... 1 1 0
5 0 ... 1 1 1

* We consider database having 12,000,000 records, hence pages are required to store single column⌈12,000,000 ÷ 32,768⌉ = 367

