
SCIDB
NDBI040: PRACTICAL CLASS 8

Tutor: Pavel Čontoš; December 9th 2020

NDBI040: PRACTICAL CLASS 8

(RECOMMENDED) REQUIREMENTS

▸ Database concepts

▸ SciDB 18.1 + Ubuntu 14.04 Image (link on practical class website)

▸ VirtualBox or VMWare Fusion / Workstation Player

▸ Use port forwarding and ssh between host and guest, at your convenience

▸ macOS / Linux command line or PuTTy / WinSCP on Windows

2

NDBI040: PRACTICAL CLASS 8

SERVER ACCESS

CONNECT TO NOSQL SERVER
▸ ssh on macOS / Linux

▸ PuTTy on Windows

▸ nosql.ms.mff.cuni.cz:42222

▸ Login and password send by e-mail

▸ Change your initial password (if not yet changed) by passwd

TRANSFER FILES
▸ scp on macOS / Linux

▸ WinSCP on Windows

3

http://nosql.ms.mff.cuni.cz:42222

NDBI040: PRACTICAL CLASS 8

SCIDB
▸ Open source

▸ Array database

▸ Shared-nothing architecture

▸ High performance operations on ordered data

▸ Spatial (location-based) data,

▸ Temporal (time series) data,

▸ Matrix-based data for linear algebra operations

▸ ACID transactions with versioned arrays

▸ Array-level locking - lock acquired at the beginning of a transaction and released upon completion of the query

▸ Write transactions may create new version of the array rather than modify existing array

4

NDBI040: PRACTICAL CLASS 8

ARRAY DATA MODEL

▸ Database Array Dimension Cell Attribute

▸ Array

▸ Multidimensional array having specified
dimensions and attributes

▸ Has a unique name within the database

▸ The schema of an array contains array attributes
and dimensions

▸ Dimension

▸ Consists of a list of index values

▸ The number of index values is equal to
dimension size

▸ Divided into chunks, uniformly distributed using
a round-robin

▸ Cell

▸ May contain multiple attributes

▸ Attribute

▸ Contains data

→ → → →

5

NDBI040: PRACTICAL CLASS 8

QUERY LANGUAGE

ARRAY QUERY LANGUAGE (AQL)
▸ Declarative language similar to SQL

▸ Includes data loading, selection and projection, aggregation and joins

▸ DDL statements define arrays and load data, DML statements access and operate on array data

ARRAY FUNCTIONAL LANGUAGE (AFL)
▸ Functional language

▸ Uses operators to compose queries or statements

▸ Operators allow data processing and aggregation, data exchange and storage

6

NDBI040: PRACTICAL CLASS 8

FIRST STEPS
▸ scidb.py initall databaseName

▸ Initializes SciDB on the server

▸ scidb.py startall databaseName

▸ Starts local SciDB instance

▸ scidb.py status databaseName

▸ Reports the status of the various instances

▸ scidb.py stopall databaseName

▸ Stops all SciDB instances

▸ scidb.py startall mydb

▸ scidb.py stopall mydb

7

NDBI040: PRACTICAL CLASS 8

IQUERY
▸ Default and interactive Linux shell interface that supports AQL and AFL statements

▸ By default, opens an AQL command prompt

INTERACTIVE MODE
▸ set lang AFL | AQL; switches to AFL/AQL queries

▸ help displays commands reference

COMMAND LINE MODE
▸ iquery -q "statement" passes AQL query directly from command line

▸ iquery -aq "statement" passes AFL query directly

▸ iquery -f "filename" passes a file containing AQL statements

▸ iquery -af "filename" passes a file containing AFL statements

▸ iquery -r "filename" redirects the output to a file, otherwise prints result to stdout

8

NDBI040: PRACTICAL CLASS 8

CREATE ARRAY
▸ Array

▸ Temporary Array

▸ May improve performance but does not offer ACID transactions

▸ Not saved to disk (not persistent)

▸ Does not have versions, i.e. updates overwrite existing attribute values

▸ Must be deleted explicitly, otherwise marked as unavailable after SciDB restart

▸ DataFrame

▸ An array whose dimension do not have to be specified (managed implicitly)

▸ Unordered collection of cells

9

CREATE

TEMP

ARRAY ARRAY < >ATTRIBUTES

DIMENSIONS[]

NDBI040: PRACTICAL CLASS 8

ATTRIBUTES
▸ Contain the actual data

▸ No duplicit attribute names allowed in the same array

▸ Use list('types') to see the list of available types

▸ NULL - attribute may contain null value, default value used otherwise

▸ DEFAULT - default value replacement for null if null not allowed

10

TYPE:

,

NULL

NOT NULL

DEFAULT

ATTR

VALUE

NDBI040: PRACTICAL CLASS 8

(UNIQUELY NAMED) DIMENSIONS
▸ dim_lo - the starting coordinate of a dimension

▸ dim_hi - the ending coordinate of a dimension, * if unbounded

▸ chunk_len - number of values per chunk

▸ overlap - number of overlapping values for adjacent chunks

▸ Attribute or dimension?

▸ Dimensions form a coordinate system for an array

▸ Adding dimensions to an array improves the performance of
many types of queries by speeding up access to array data

▸ Dimensions may be non-integer, i.e. [ID(string)]

11

DIMENSION

,

:=

SEPARATOR

CHUNK_LEN OVERLAP

DIM_HIDIM_LO

,

: OVERLAP

: CHUNK_LEN

NDBI040: PRACTICAL CLASS 8

EXAMPLE: CREATE ARRAY
▸ Creates one-dimensional arrays that represents actors, theirs roles and movies

▸ CREATE ARRAY actors <actor:string, name:string, surname:string, year:int16> [i=0:*];

ARRAY-RELATED AFL OPERATORS
▸ list('arrays', false); lists all arrays in the database

▸ show(actors); displays an array schema, equal to SELECT * FROM show(actors);

▸ scan(actors); displays an array content, equal to SELECT * FROM actors;

▸ project(actors, actor, name, surname); projects the data, equal to SELECT actor, name, surname FROM actors;

▸ rename(actors, newActors); renames an array, similar to SELECT * INTO newActors FROM actors;

12

NDBI040: PRACTICAL CLASS 8

EXERCISE 1

▸ Create arrays for movies and roles and set appropriate dimensions

▸ movies

▸ identifier: string, title: string, year: int16, rating: int8, length: int16

▸ dimension j=0:3

▸ roles

▸ actor: string, role: string, movie: string, award: string

▸ dimension k=0:*

13

NDBI040: PRACTICAL CLASS 8

LOADING AND SAVING DATA
▸ Before loading data, you must have created an array to load your data into

▸ SciDB proprietary format required

▸ Missing values are either substituted by default value (0, "") or null is used when allowed

▸ LOAD array FROM 'path';

▸ AQL statement to load the data from file into the array

▸ load(array, 'path)';

▸ AFL operator to load the data

▸ SAVE array INTO 'path';

▸ AQL statement to save the data from the array into the file

▸ save(array, 'path');

▸ AFL operator to save the data

14

[("trojan", "Ivan", "Trojan", 1964),

 ("machacek", "Jiri", "Machacek", 1966),

 ("schneiderova", "Jitka", "Schneiderova", 1973),

 ("sverak", "Zdenek", "Sverak", 1936)]

[("vratnelahve", "Vratne lahve", 2006, 76, 99),

 ("samotari", "Samotari", 2000, 84, 103),

 ("medvidek", "Medvidek", 2007, 53, 100),

 ("stesti", "Stesti", 2005, 72, 100)]

[("machacek", "Robert Landa", "vratnelahve", null),

 ("sverak", "Josef Tkaloun", "vratnelahve", null),

 ("trojan", "Ondrej", "samotari", null),

 ("machacek", "Jakub", "samotari", null),

 ("schneiderova", "Hanka", "samotari", null),

 ("trojan", "Ivan", "medvidek", null),

 ("machacek", "Jirka", "medvidek", "Czech Lion")]

NDBI040: PRACTICAL CLASS 8

EXAMPLE: LOADING DATA
▸ Download actors.scidb, movies.scidb and roles.scidb data files from practical class website and load them into

appropriate arrays

▸ AQL:

▸ LOAD actors FROM '/home/scidb/actors.scidb';

▸ LOAD movies FROM '/home/scidb/movies.scidb';

▸ LOAD roles FROM '/home/scidb/roles.scidb';

▸ AFL:

▸ load(actors, '/home/scidb/actors.scidb');

▸ load(movies, '/home/scidb/movies.scidb');

▸ load(roles, '/home/scidb/roles.scidb');

15

NDBI040: PRACTICAL CLASS 8

INSERT VALUE
▸ insert(source_array, target_array);

▸ Inserts values from a source array into a target array

▸ Rewrites or adds a value into target array depending on existence of a value in the target array

▸ Equivalent AQL statement is INSERT INTO sourceArray targetArray

▸ store(operator(operator_args), target_array);

▸ store(source_array, target_array);

▸ Saves the result from operator(operator_args) into an existing or new target array

▸ Duplicates an array

▸ store(filter(actors, year >= 1966), youngActors);

16

NDBI040: PRACTICAL CLASS 8

EXERCISE 2
▸ Insert the following data into array of actors

▸ identifier: geislerova

▸ name: Anna

▸ surname: Geislerova

▸ year: 1976

▸ Do not rewrite any existing actor

17

NDBI040: PRACTICAL CLASS 8

UPDATE VALUE
▸ When an array is updated, a new array version is created

▸ "no overwrite" storage model

▸ UPDATE movies SET rating = rating +10, length = length - 20 WHERE rating < 70;

▸ You can list versions and browse the contents of any previous versions by using the version number or the array timestamp

▸ SELECT * FROM versions(actors);

▸ list('arrays', true);

▸ SELECT * FROM actors@1;

▸ scan(actors@datetime('...'));

18

SETUPDATE ARRAY ATTR =

,

EXPRESSION

WHERE CONDITION

NDBI040: PRACTICAL CLASS 8

APPLY OPERATOR
▸ apply(array, newAttribute1, expression1[, ..., ..., newAttributeN, expressionN]);

▸ Produces an array with an additional attributes

▸ The schema of the resulting array is modified (added attribute(s))

▸ The shape of the resulting array is the same

▸ apply(actors, fullname, name + ' ' + surname);

19

NDBI040: PRACTICAL CLASS 8

EXERCISE 3

▸ Use apply operator to derive age of actors

▸ Store result into a new array, i.e. use operator store

20

NDBI040: PRACTICAL CLASS 8

DELETE VALUE, REMOVE ARRAY
▸ delete(array, expression);

▸ Deletes data from an array that satisfy an expression

▸ remove(array);

▸ AFL statement that removes an array including all of its versions and its schema definition

▸ Equivalent AQL statement is DROP ARRAY array

▸ remove_versions(array, version_id);

▸ remove_versions(array, keep: count);

▸ remove_versions(array);

21

NDBI040: PRACTICAL CLASS 8

QUERY

▸ AQL's Data Manipulation Language (DML) provides queries to access and operate on data

22

INTO

EXPR | *

TARGET

SOURCE

DIMENSION

ATTR

,

,

SELECT FROM

EXPRESSION WHERE CONDITION

ORDER BY ATTR ORDERAGGREGATION

,

NDBI040: PRACTICAL CLASS 8

QUERY STRUCTURE
▸ Data types

▸ Define the classes of values that database can store and perform operations on

▸ list('types'); lists all allowed types

▸ Operators

▸ Accepts one or more array as an input and return an array as output

▸ May be used as a standalone or nested within AFL, or within AQL

▸ list('operators'); lists all allowed operators

▸ Functions

▸ Accepts scalar value or one/more arrays as arguments and return a scalar value

▸ list('functions'); lists all allowed functions, i.e. comparison functions

▸ Aggregates

▸ Take an arbitrarily set of values as its input and outputs single scalar value

▸ list('aggregates'); lists all allowed aggregates functions

23

NDBI040: PRACTICAL CLASS 8

ARRAY JOINS
▸ join(leftArray, rightArray);

▸ I.e. combines the attributes of two input arrays at matching dimension values

▸ Equivalent AQL statement is SELECT * FROM leftArray, rightArray;

▸ merge(leftArray, rightArray)

▸ Requires both arrays have the same number and types of attributes

▸ Merges data from two arrays

▸ Equivalent AQL statement is SELECT * FROM merge(leftArray, rightArray);

▸ cross_join(leftArray [AS leftAlias], rightArray [AS rightAlias], [leftAlias.]leftDim1, [rightAlias.]rightDim1, ...);

▸ Provides a cross-product join of two arrays

▸ Dimensions match by explicitly provided pairings

▸ Array operands may have unmatched dimensions

▸ Equivalent AQL statement is SELECT * FROM cross_join(leftArray, rightArray, leftDim1, rightDim1, ...);

24

NDBI040: PRACTICAL CLASS 8

ARRAY JOINS
▸ JOIN ... ON statement

▸ Calculates the multidimensional join of two arrays after applying the constraints specified in the ON clause

▸ The result is a subset(eq) of a cross_join()

▸ Duplicit attributes are renamed by suffix convention

▸ SELECT * FROM actors, roles;

▸ SELECT * FROM cross_join(actors, roles);

▸ SELECT * INTO actorsRoles FROM actors JOIN roles ON actors.actor = roles.actor;

25

NDBI040: PRACTICAL CLASS 8

FILTERING OPERATORS
▸ project(array, attribute, ...);

▸ Projects a subset of attributes from a source array

▸ Equivalent AQL statement is SELECT attribute, ... FROM array;

▸ filter(array, expression);

▸ Filters out values based on a boolean expression

▸ Regular expressions may be used, i.e. filter(list('operators'),regex(name,'(.*)q(.*)'));

▸ Equivalent AQL statement is SELECT * FROM array WHERE expression;

▸ between(array, lowCoord1[, ..., lowCoordN], highCoord1[, ..., highCoordN]);

▸ Produces a subarray that is specified by a list of coordinates of an input array

▸ HighCoordN does not have to be set, i.e. null value is allowed

▸ Equivalent AQL statement is SELECT * FROM between(array, lowCoord1[, ..., lowCoordN], highCoord1[, ..., highCoordN]);

26

NDBI040: PRACTICAL CLASS 8

FILTERING OPERATORS
▸ slice(array, dimension1, value1[, ..., ..., dimensionN, valueN]);

▸ Produces an array that is a subset of the source array where one or more dimension values is constant

▸ Equivalent AQL statement is SELECT * FROM array WHERE dimension1 = value1, ..., dimensionN = valueN;

▸ subarray(array, lowCoord1[, ..., lowCoordN], highCoord1[, ..., highCoordN]);

▸ Produces a subarray whose shape is defined by the boundary coordinates

▸ The between() operator is similar, except that it returns an array with the same shape as the input array

▸ SELECT * FROM subarray(array, lowCoord1[, ..., lowCoordN], highCoord1[, ..., highCoordN]);

27

NDBI040: PRACTICAL CLASS 8

EXERCISE 4
▸ Rewrite following AQL queries into equivalent AFL statements

▸ SELECT name, surname FROM actors WHERE name = 'Ivan';

▸ SELECT * FROM between(actors, 0, 1);

▸ SELECT * FROM actorsRoles WHERE i=0;

▸ SELECT * FROM actorsRoles WHERE k=3;

28

NDBI040: PRACTICAL CLASS 8

AGGREGATING OPERATORS AND FUNCTIONS

▸ Grand aggregates compute summaries over entire arrays

▸ Group-by aggregates compute summaries by grouping array data by dimension values

▸ Grid aggregates compute summaries for non-overlapping subarrays

▸ Window aggregates compute summaries over a moving window in an array

29

GROUP BY

REGRID AS

DIMENSION

()DIMENSION SIZE

,

,

PARTITION BY

WINDOW AS (PARTITION BY DIMENSION LOW AND DIMENSION HIGHPRECEDING FOLLOWING)

,

NDBI040: PRACTICAL CLASS 8

AGGREGATING OPERATORS AND FUNCTIONS

OPERATORS
▸ aggregate(array, aggregateFn1(attribute)[as Alias1][, ...] [, dimension1, ...]);

▸ regrid(array, grid1[, ...], aggregateFn1(attribute)[as Alias1][, ...]);

▸ window(array, dimPre1, dimFol1[,...], aggregateFn1(attribute)[as Alias1][, ...]);

FUNCTIONS
▸ count(attribute | *), approxdc(attribute)

▸ avg(attribute), var(attribute), stddev(attribute)

▸ min(attribute), max(attribute)

▸ sum(attribute), prod(attribute)

30

NDBI040: PRACTICAL CLASS 8

EXAMPLE: AGGREGATING OPERATORS AND FUNCTIONS
▸ SELECT avg(year), count(award), count(*), min(year), max(year), sum(year) FROM actorsRoles;

▸ aggregate(actorsRoles, avg(year), count(award), count(*), min(year), max(year), sum(year));

▸ SELECT max(year) FROM actorsRoles GROUP BY i;

▸ aggregate(actorsRoles, max(year), i);

▸ SELECT sum(year) AS sumYear FROM actorsRoles REGRID AS (PARTITION BY i 2, k 2);

▸ regrid(actorsRoles, 2, 2, sum(year) AS sumYear);

▸ SELECT sum(year) FROM actorsRoles WINDOW AS (PARTITION BY i 1 PRECEDING AND 3 FOLLOWING, k 1 PRECEDING AND
2 FOLLOWING);

▸ window(actorsRoles, 1, 3, 1, 2, sum(year));

31

NDBI040: PRACTICAL CLASS 8

EXERCISE 5: NESTED SUBQUERIES

▸ Rewrite following nested AQL queries into AFL statements

▸ SELECT min(actor) AS actor, count(*), count(award) FROM (SELECT * FROM actorsRoles
WHERE year > 1964) GROUP BY i;

▸ SELECT min(actor) AS actor, count(*), count(award) FROM (SELECT * FROM actorsRoles
WHERE year > 1964 ORDER BY actor DESC) GROUP BY n;

32

NDBI040: PRACTICAL CLASS 8

REFERENCES

▸ SciDB Reference Guide

▸ https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268216/
SciDB+Reference+Guide

▸ SciDB Operators

▸ https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268277/
SciDB+Operators

▸ SciDB Functions

▸ https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730269046/SciDB+Functions

33

https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268216/SciDB+Reference+Guide
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268216/SciDB+Reference+Guide
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268277/SciDB+Operators
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730268277/SciDB+Operators
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/730269046/SciDB+Functions

