
RIAKKV
NDBI040: PRACTICAL CLASS 3

Based on NDBI040 practical class materials created by Martin Svoboda; Tutor: Pavel Čontoš; November 4th 2020

NDBI040: PRACTICAL CLASS 3

(RECOMMENDED) REQUIREMENTS

▸ macOS / Linux command line or PuTTy / WinSCP on Windows

▸ TextEdit, nano, Notepad or any other simple text editor

2

NDBI040: PRACTICAL CLASS 3

SERVER ACCESS

CONNECT TO NOSQL SERVER
▸ ssh on macOS / Linux

▸ PuTTy on Windows

▸ nosql.ms.mff.cuni.cz:42222

▸ Login and password send by e-mail

▸ Change your initial password (if not yet changed) by passwd

TRANSFER FILES
▸ scp on macOS / Linux

▸ WinSCP on Windows

3

http://nosql.ms.mff.cuni.cz:42222

NDBI040: PRACTICAL CLASS 3

RIAKKV
▸ Highly available distributed key-value store

▸ http://basho.com/products/riak-kv/

DATA MODEL
▸ Instance (bucket types) buckets objects

▸ Bucket is a logical collection of objects

▸ Object is a key-value pair with metadata

▸ Key is a Unicode string, unique within a bucket

▸ Value can be anything (text, binary object, image, ...)

▸ Each object is also associated with metadata

→ → →

4

http://basho.com/products/riak-kv/

NDBI040: PRACTICAL CLASS 3

CRUD OPERATIONS

HTTP API
▸ All the user requests are submitted as HTTP requests with appropriately selected / constructed

methods, URLs, headers and data

▸ URL pattern of HTTP requests for all the CRUD operations

▸ Optional parameters (depending on the operation)

5

/ buckets bucket/ / /keys key

? parameter = value

&

NDBI040: PRACTICAL CLASS 3

CRUD OPERATIONS

BASIC OPERATIONS ON OBJECTS
▸ Create: POST or PUT methods

▸ Inserts a key-value pair into a given bucket

▸ Key is specified manually, or will be generated automatically

▸ Read: GET method

▸ Retrieves a key-value pair from a given bucket

▸ Update: PUT method

▸ Updates a key-value pair in a given bucket

▸ Delete: DELETE method

▸ Removes a key-value pair from a given bucket

6

NDBI040: PRACTICAL CLASS 3

HTTP API
▸ cURL tool

▸ Allows to transfer data from / to a server using HTTP (or other supported protocols)

OPTIONS
▸ -X command, --request command

▸ HTTP request method to be used (GET, ...)

▸ -d data, --data data

▸ Data to be sent to the server (implies the POST method)

▸ -H header, --header header

▸ Extra headers to be included when sending the request

▸ -i, --include

▸ Prints both headers and (not just) body of a response

7

NDBI040: PRACTICAL CLASS 3

FIRST STEPS

▸ Check Riak cluster status

▸ curl -v http://localhost:10011/ping

▸ And with higher permissions...

▸ riak ping

▸ riak-admin test

▸ riak-admin status

▸ riak-admin status | grep ring_members

8

http://localhost:10011/ping

NDBI040: PRACTICAL CLASS 3

READ AND WRITE OPERATIONS

INSERT OBJECT FOR A NEW ACTOR
▸ Prefix all the bucket names with your M201LOGIN

▸ curl -i -X PUT -H 'Content-Type: text/plain' -d 'Ivan Trojan, 1964'
http://localhost:10011/buckets/$(whoami)_actors/keys/trojan

RETRIEVE THE PREVIOUSLY INSERTED ACTOR
▸ Examine both response body and headers

▸ curl -i -X GET http://localhost:10011/buckets/$(whoami)_actors/keys/trojan

9

Do not access your buckets directly
Use $(whoami) instead of M201LOGIN

NDBI040: PRACTICAL CLASS 3

BUCKET OPERATIONS

LIST ALL THE BUCKETS
▸ Only buckets with at least one object will be included

▸ curl -i -X GET http://localhost:10011/buckets?buckets=true

LIST ALL THEY KEYS IN THE BUCKET OF ACTORS
▸ Note that this operation cannot be executed efficiently

▸ curl -i -X GET http://localhost:10011/buckets/$(whoami)_actors/keys?keys=true

10

NDBI040: PRACTICAL CLASS 3

UPDATE AND DELETE OPERATIONS

UPDATE OUR ACTOR OBJECT
▸ curl -i -X PUT -H 'Content-Type: application/json' -d '{ "name" : "Ivan Trojan",
"year" : 1964 }' http://localhost:10011/buckets/$(whoami)_actors/keys/trojan

CHECK THE UPDATED ACTOR OBJECT
▸ Use different virtual nodes as well

▸ localhost:10011, localhost:10012, localhost:10013

REMOVE THE ACTOR OBJECT
▸ curl -i -X DELETE http://localhost:10011/buckets/$(whoami)_actors/keys/trojan

11

NDBI040: PRACTICAL CLASS 3

EXERCISE 1: SAMPLE DATA
▸ Insert objects for new actors

▸ Put the data into $(whoami)_actors bucket

▸ Use application/json content type

▸ Make sure that suffixes recognizable by the JSON extractor were added (we will need later)

▸ Do not use Czech accented characters

{ "name_s" : "Ivan Trojan", "year_i" : 1964 }

{ "name_s" : "Jiri Machacek", "year_i" : 1966 }

{ "name_s" : "Jitka Schneiderova", "year_i" : 1973 }

{ "name_s" : "Zdenek Sverak", "year_i" : 1936 }

12

SAVE YOUR COMMANDS
YOU WILL NEED THEM LATER AGAIN

NDBI040: PRACTICAL CLASS 3

EXERCISE 1: ADDITIONAL SAMPLE DATA
▸ Insert objects for new movies

▸ Put the data into $(whoami)_movies bucket

▸ Use application/json content type once again

{ "title" : "Vratne lahve", "year" : 2006,

 "actors" : ["Zdenek Sverak" , "Jiri Machacek"] }

{ "title" : "Samotari", "year" : 2000,

 "actors" : ["Jitka Schneiderova" , "Ivan Trojan", "Jiri Machacek"] }

{ "title" : "Medvidek", "year" : 2007,

 "actors" : ["Jiri Machacek" , "Ivan Trojan"] }

13

NDBI040: PRACTICAL CLASS 3

LINKS AND LINK WALKING
▸ Links are directed relationships between objects

PARAMETERS
▸ Bucket assumes only a given target bucket

▸ Tag considers only a given link tag

▸ Keep whether the objects should be included in the result

14

/ buckets bucket/ / /keys key / bucket , tag ,

_

1

0_

_

NDBI040: PRACTICAL CLASS 3

EXERCISE 2: LINKS AND LINK WALKING
▸ Create new links actor movie for all the actors

▸ curl -i -X PUT -H 'Content-Type: application/json' -H 'Link: </buckets/m201_login_movies/keys/
samotari>; riaktag="tmovie"' -H 'Link: </buckets/m201_login_movies/keys/medvidek>;
riaktag="tmovie"' -d '{ "name_s" "Ivan Trojan", "year_i" : 1964 }' http://localhost:10011/buckets/
$(whoami)_actors/keys/trojan

▸ Check the updated actor object

▸ Verify the presence of links in particular

TRAVERSE THE LINKS FROM THE ACTOR
▸ curl -i -X GET http://localhost:10011/buckets/$(whoami)_actors/keys/trojan/$
(whoami)_movies,tmovie,1

→

15

http://localhost:10011/buckets/$(whoami)_actors/keys/trojan
http://localhost:10011/buckets/$(whoami)_actors/keys/trojan

NDBI040: PRACTICAL CLASS 3

EXERCISE 3

▸ First, add all the links movie actor

▸ Next, express a more complicated link walking query:

▸ Find all the actors who appeared in movies where Trojan stared

→

16

NDBI040: PRACTICAL CLASS 3

SEARCH 2.0

CREATE A FULL-TEXT INDEX FOR THE BUCKET OF ACTORS
▸ curl -i -X PUT -H 'Content-Type: application/json' -d '{ "schema" : "_yz_default" }'
http://localhost:10011/search/index/$(whoami)_iactors

▸ curl -i -X PUT -H 'Content-Type: application/json' -d '{ "props" : { "search_index" :
"m201_login_iactors" } }' http://localhost:10011/buckets/$(whoami)_actors/props

VERIFY THE NEW BUCKET PROPERTIES
▸ curl -i -X GET http://localhost:10011/buckets/$(whoami)_actors/props

17

NDBI040: PRACTICAL CLASS 3

SEARCH 2.0
▸ Reinsert objects for all the actors

▸ see page #12 and your notepad (or history of commands)

{ "name_s" : "Ivan Trojan", "year_i" : 1964 }

{ "name_s" : "Jiri Machacek", "year_i" : 1966 }

{ "name_s" : "Jitka Schneiderova", "year_i" : 1973 }

{ "name_s" : "Zdenek Sverak", "year_i" : 1936 }

▸ Find all the actors born in 1964

▸ curl -i -X GET 'http://localhost:10011/search/query/m201_login_iactors?
wt=json&omitHeader=true&q=year_i:1964'

18

NDBI040: PRACTICAL CLASS 3

EXERCISE 4

▸ Express a more complicated full-text query

▸ Find all the actors who were born in 1960 or later and their name contains
substring de

19

NDBI040: PRACTICAL CLASS 3

REFERENCES

▸ Riak documentation

▸ https://docs.riak.com/riak/kv/latest/

▸ Search queries (Apache Solr query syntax)

▸ https://docs.riak.com/riak/kv/latest/developing/usage/search/

▸ https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html

20

https://docs.riak.com/riak/kv/latest/
https://docs.riak.com/riak/kv/latest/developing/usage/search/
https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html

