

B-Trees

NDBI007: Assignment 4

Task 1: Non-Redundant B-Tree

- * Suppose a *non-redundant B-tree* of degree $m \in \langle 3, 5 \rangle$
 - Determine the *minimum number of children* and the *minimum number of keys* at each node except * the root of the tree

 - * Insert only the first 10 assigned values into the tree in the given order * Finally, *delete the first 4 inserted* values from the tree (in an arbitrary order)
- * I.e., if you are only trivially inserting or deleting a key, just describe what happened The permitted languages are Java, Python, C, C++, and Swift
- * Illustrate the state of the tree each time a node is split or merged and also the final result * Or, you may *implement* the B-tree and log all events (i.e., submit the source code and, e.g., makefile)
- * **Points:** 2

Task 2: B+-Tree

- * Suppose a *B*+-*tree* of degree $m \in \langle 3,6 \rangle$
 - Determine the *minimum number of children* and the *minimum number of keys* at each node except • the root of the tree
 - * Insert all 15 assigned values into the tree in the given order
 - * Finally, *delete the first 4 inserted* values from the tree (in an arbitrary order)
- * I.e., if you are only trivially inserting or deleting a key, just describe what happened The permitted languages are Java, Python, C, C++, and Swift
- * Illustrate the state of the tree each time a node is split or merged and also the final result * Or, you may *implement* the B+-tree and log all events (i.e., submit the source code and, e.g., makefile)
- * **Points:** 1.5

3

Task 3: B*-Tree

- * Suppose a B*-tree of degree $m \in \langle 4, 6 \rangle$
 - the root of the tree
 - * Insert all 15 assigned values into the tree in the given order
 - * Finally, *delete the first 4 inserted* values from the tree (in an arbitrary order)
- * Illustrate the state of the tree each time a node is split or merged and also the final result * I.e., if you are only trivially inserting or deleting a key, just describe what happened
- - The permitted languages are Java, Python, C, C++, and Swift
- * **Points:** 1.5

Determine the *minimum number of children* and the *minimum number of keys* at each node except

* Or, you may *implement* the B*-tree and log all events (i.e., submit the source code and, e.g., makefile)

Bonus Task 4: Redundant B-Tree

- Solve the Task 1 for redundant B-tree *
- another example illustrating a suitable utilization of *non-redundant B-tree*

Points: 1

* In addition, *illustrate an example* in which case you will use a redundant B-tree and an

