5
-
ol \ ‘
.
-
i
.
)
ll
; y
-
3
T8
piw .-\‘,
Ay SR
W 515
’ ¥ :
-
S R O
; :
:
oy} ."{'\‘.Y,J't:
'—-‘.c';\ Lad 4
. : . v e . "N
. - t‘ -8 -
S ‘'Y N AT e s 3
: .
e .v. - ",
2 ';

by < - - . a8 il ; ‘ - M g .
\ : ~ X N : . =2 . &5 v NP __A‘.
i '.) . . . » - B . . » . : - e ’.
- V N . ‘ L » b
- : i - S ’ . ! _4,‘..~;‘~N‘:§:.‘: (1 - ls - \ .
O O 4 y 5 T ‘ " . - o . ‘y‘lf" ' - .
. ; St &5 XS ~ . - .
v : - A
; ! - § A CDE : B 4

:
. -
PP L)
: : ’ -5 "~ e
- (D
o “ B 9 4 .
—'y s ; v t q : et)
e LW SN . : - P ——— -l
v > ' 5 - . v — 25
AR et S 4 S » = Tty N . -
- 2 ~ - - N -y -
. e, — ek '”\‘_‘,:.\:;_\7 3 P
N b . \,' ~ -
2 By S o S ety
. - . . - -

NDBIOO7: Practical class 5

- -y

+ B-Tree of degree m is balanced m-ary tree where:
+ The root has at least 2 children unless it is a leaf

m
. Everyinner node have at least [E] and at most m children

m
. Everyinner node contains at least [—] — 1 and at most m — 1 data entries (e.g., keys, pointers)

+ All the paths from the root to the leaf are of the same length

« The nodes have the structure p, (k([, di1, p,), (k,[, d>51, py), ..., (k [, d 1, p,), u

+ p; - pointers to the children

« k. - keys

« d. - data or pointers to them

+ U - unused space

m
. Where [E] —1<n<m-1

« Records (k[, d.], p;) are sorted with respect to £;

» Keys k; in the subtree pointed by p; are greater than or equal to k; and less than i,

Example 3.1: Insert (Splitting the Root)

+ Insert entries with keys 15, 9, and 23 into an empty tree

+ Suppose a non-redundant B-tree of degree m = 3

+ The inner nodes have between [3/2| and 3 children, i.e., they
contain between 1 and 2 keys

+ The records with keys 15 and 9 fit into a single (root) node

+ The record with key 23 does not fit and causes splitting

+ First, we order the keys 15, 9, and 23 in ascending order, I.e., 9, 15, and
23

+ The middle key (i.e., 15) will divide the smaller keys (i.e., 9) in one node
from the bigger keys (i.e., 23) in a new node

+ The dividing key will be placed into the parent node (i.e., new root node)

Example 5.2: Additional Inserts

+ Insert records with keys 25, 19, and 40 into B-tree from
previous example

+ The record with key 25 fits into the (right) leaf

+ The record with key 19 will split the (right) node into two
nodes, i.e., (19) and (25) with (23) being the dividing record

+ The dividing record (23) finds its place in the parent node

+ The record 40 will fall into the right node

Example 3.3: Insert (Propagation)

+ Insert records with keys 17 and 21 into the B-tree from
previous example

+ The record 17 falls into the middle leaf

+ The record 21 causes splitting of the middle leaf (17, 19,
21) and propagation of the record (19) to the parent

+ However, there iIs no more space Iin the parent node
(root)

+ Thus, the parent node (15, 19, 23) needs to be split as s AN
well which increases the tree height
AT [P AR PPl

s ;

Example 3.4 Delete

+ Remove record with key 23 from the non-redundant B-
tree of degree 3 (see the upper figure)

do i iz i s 4o |

+ The deletion of a data entry from an inner node leads to
its replacement with the most left descendant entry from
the right subtree or the most right entry from its left

subtree Lol

+ |f we delete 23 from the tree above, we can replace it T
with entry 25 from the bottom node (leaf)

23

ISl

o
+ Moving the entry 25 from the leaf (25, 40) is safe since AP [FEA T (S

It still has the minimum number of entries \/

6

Example 3.3: Delete (Merging)

+ Remove record with key 17 from the non-redundant B-tree of degree 3 (see the
upper figure)

sl

+ We cannot borrow an entry from the neighbor (9) since it also contains the minimal
number of entries

+ Therefore we have to merge nodes (9), (empty), and 15 I 9 I I I 17' I |21 I I |40| I

+ The entries of the current node (none left after removing 17), those from the
neighboring node (9) and the dividing node will be moved into a single node (9,

15)

+ Thus, the entry 15 needs to be removed from the parent node which causes
underflow of that node

+ We have to merge nodes (empty parent node), (19) and (25)

+ Once again, we cannot borrow an entry from the neighbor node (25)

+ The empty node (empty) is merged with the node (25) and dividing entry (19)
from the root node, resulting in the node (19, 25)

+ Having entry 19 removed from the root (empty), the height of the tree decreases _, 17

Exercise 5.6

+ Suppose a non-redundant B-tree of degree m = 3 (see
the figure)

+ First, illustrate the B-tree after insertion of records with
keys 11, 18, and 14

+ Second, illustrate the B-tree after deletion of records
with keys 40, and 14

+ B+-Tree differs from the original B-tree by:
+ |t is always redundant, i.e., the data are stored or pointed to from the leaf nodes

+ The leaf nodes are chained using pointers in a linked list which simplifies range
queries

+ |n reality, often all the levels are linked (not just the leaf level)

+ The inner nodes contain only the values using which the tree can be traversed

prey . kl

+ The nodes have the structure [prev,] py, (ki,p{), ---, (k,, p,), u [,next]

+ p; - pointers to the children or data

« k. - keys

+ Keys kj in the subtree pointed by p. are greater than or equal to k; and less than

ki, if k. exists

+ The minimum number of children can be raised to [(m + 1)/2]

Example 3.7: Insert

+ Insert records with keys 10, 7, 15, 5, 30, and 20 into an empty B+-
tree

+ Suppose a B+-tree of degree m = 6

+ Hence, the minimum number of children is 3+1 (modified)

1587 Jo)15080f

+ Insertion of keys 10, 7, 15, 5, and 30 is trivial, all belong to the root
node

+ |Insertion of key 20 leads to a page split I 10| I I I I

+ A half of the records, i.e., (5, 7, 10), stays in the original page
while the rest, i.e., (15, 20, 30), moves into a new page

+ The maximal key value in the left node, i.e., 10, is propagated I 5 I 7 |10| I I |15 I 20|30| I I
into the higher level (new root note)

+ However, any value 10 < value < 14 would work

10

Example 3.8: Additional Inserts

+ |Insert additional records with keys 13, 3, 11, 21, 8, and 9 into the B+-Tree from the previous example

+ The insertion of records with keys 13, 3, and 11 is trivial

+ The insertion of a record with key 21 splits the right leaf node into nodes (11, 13, 15) and (20, 21, 30)

+ The separating value (i.e., 15) is inserted into the parent node where there is enough space so it does not lead to another split

+ |nserting of records with keys 8 and 9 leads to the split of the leaf into (3, 5, 7) and (8, 9, 10)

+ The separation value 7 is inserted into the parent node

20 21 30

11

Example 3.9: Delete (and Merge Nodes)

+ Remove the record with key 15 from the B+-Tree

+ When removing keys from a B+*-Tree, the given key is simply removed from the leaf unless the
corresponding leaf underflows

+ |n such case, the tree tries to borrow a key from a sibling leaf and to change the splitting value

+ |f also the neighbors have the minimum number of entries, it is necessary to merge two nodes
iInto one and remove the splitting value from the parent

+ Which can lead to the merge cascade up to the root

+ In our example, every node (except the root) needs to include at least three keys
+ Removing the key 15, the condition is violated and sibling leaves cannot lose any entry either 20 21! 30

+ Hence we merge node (11,13) with (20, 23, 30) and remove the splitting value 15 from the
parent

30

12

Example 3.10: Delete (Borrow Key)

+ To remove the entry 8 we need to move the entry with key 11 from the neighboring
node to keep the condition of minimum number of entries in every node

+ |t is necessary to change the splitting value in the parent from 10 to 11

13

Example 3.11: Delete

+ Remove records with keys 3, 10, and 11 from the B+*-tree
(see the previous page)

+ Removing the key 3

+ After the removal, the number of records in the node
(5, 7) falls under minimum and the neighboring node,
l.e., (9, 10, 11), cannot provide any record

+ The nodes (5, 7) and (9, 10, 11) are merged

+ Finally, the splitting value 7 is removed from the parent

+ Removing the keys 10, 11

+ It is sufficient to remove the keys from the node, no
modifying of splitting value is required

14

Exercise 5.12

+ Suppose a B+-tree of degree m = 4 (see the figure)

+ Minimum modified number of children of a node is 3, i.e., [(4 + 1)/2]

+ |llustrate the B+-tree after the insertion of keys 40, 50, and 60

15

+ B*-tree differ from the standard B-tree by:

+ The non-root nodes have at least |[(2m — 1)/3] children

+ |f the tree contains few records (i.e., after splitting the root node), the only two
leafs can contain less records (about half)

+ |If a node has too few items, or overflows, it is balanced using both of its neighbors

+ |f a node and its neighbor are full, they are split (together with the new record) into
three nodes being 2/3 filled

16

Example 5.13: Insert

+ |nsert records with keys 10, 7, 15, 5, 30, 20, and 13 into an empty
redundant B*-tree

+ Suppose an empty B*-tree of degree m = 5

+ Minimum number of children is 3 and minimum number of keys is 2

+ |nsertion of records with keys 10, 7, 15, and 5 is trivial, all goes to the root
node

+ Inserting a record with key 30 leads to root node split
+ Split nodes are (5, 7, 10) and (15, 30)

+ The dividing value 10 is inserted into the new parent (i.e., new root)

+ A record with key 20 can be inserted into the right leaf, as well as a record
with a key 13

Example 3.14: Additional Inserts

+ Continue with the previous example and insert records with keys 21 and 3
into the redundant B*-tree

+ Inserting the key 21

+ We cannot insert the key 21 into the full node (13, 15, 20, 30), but the I 5 I 7 I 10 I 13 I I 15 I 20 I 21 I 30 I
record with key 13 can be moved to the neighboring and not yet filled

node

+ The splitting value in the parent needs to be modified

+ Inserting the key 3

+ The key 3 cannot be inserted into the node (5, 7, 10, 13) and the WBlsizl 1200210300k
neighbor is full as well

+ The records in both nodes, together with record 3, will be split into I s I = I = I I
three nodes (3, 5, 7), (10, 13, 15) and (20, 21, 30)

+ Splitting values 7 and 15 need to be inserted into the parent node
instead of the existing splitting value 13

18

Example 3.15: Additional Inserts

+ (Continue with the previous example and insert records with keys 8,
O, and 11 into the redundant B*-tree

200 211 30
+ The record 8 fits into the middle leaf

1315

+ The record 9 causes redistribution of the record 8 to the leaf and
change of the splitting value from 7 to 8

20 21 30
+ The record with a key 11 will cause one of two possibillities: 13115

+ The redistribution of the record with key 15 to the right and
modification of the splitting value In the parent from 15 to 13

+ Split of nodes (3, 5, 7, 8) and (9, 10, 13, 15) into three nodes (3, 5,
7),(8,9,10)and (11, 13, 15)

+ The splitting value 8 would be replaced by a pair 7 and 10

15 20 21 30

1113

Example 5.16: Delete

+ (Continue with previous example and delete the records
with keys 13, 11, and 10 from redundant B*-tree

+ The record with key 13 can be easily deleted from the
middle leaf

+ The same holds for the record with key 11

+ The record with key 10 cannot be deleted directly

+ The number of entries in a node would decrease under I 8 I 15' I I

the threshold
+ Therefore it is necessary to move there the record with Ll l20f21]30f |
key 15 from the neighboring node I 9 |15| I I

+ The splitting value in the parent changes from 13 to 15

20

Exercise 5.17

+ Continue with previous example and delete records with keys 15, 9, and 8 from
redundant B*-tree (see the figure)

+ Finally, remove (single) additional key of your choice from the B*-tree

+ [llustrate and comment the removals step by step

LA

N N A 120f21]s0] F
SIS

21

