

Static Hashing

NDB1007: Assignment 2

Task 1: Cormack

- * Use Cormack perfect static hashing method and insert assigned keys in a given order into directory of size s=7
 - * The assignment of keys is attached in a separate file
- Use the following hashing functions:
 - * Primary hashing function is given as $h(k, s) = k \mod s$
 - * Secondary hashing function is $h_i(k, r) = (k > > i) \mod r$
- * Compute all the parameters and illustrate the directory and primary file changes with each step
 - * After each addition you may only note changes in the structure of the directory and the primary file
 - Illustrate the structure after addition of all keys
- * Or, you may implement the Cormack method and log all events (i.e., submit the source code and, e.g., makefile)
 - The permitted languages are Java, Python, C, C++, and Swift
- * **Points:** 2.5

Task 2: Larson & Kalja

- * Use Larson & Kalja static hashing method and insert assigned keys in a given order into a structure that consists of n pages
 - * The assignment of keys is attached in a separate file
 - * Select $n \in \langle 3,5 \rangle$ as a page number
 - * Select page *capacity* within range $\langle 3,4 \rangle$
 - * *Initial separator* values are set to 111_2
- * To get the page number in which the data should be inserted, use hash function $h_i(k) = (k+i) \mod n$
- * To get the *signatures*, apply *function* $s_i(k) = (k >> i) \mod 7$
 - * *i* stands for the number of *previously unsuccessful inserts*
- * Note all the computations and illustrate the result
- * Or, you may implement the Larson & Kalja method and log all events (i.e., submit the source code and, e.g., makefile)
 - The permitted languages are Java, Python, C, C++, and Swift
- * **Points:** 2.5

Bonus Task 3

- * Can we use arbitrary hashing functions for Cormack or are some more or less suitable?
 - In particular, we are interested in appropriate selection of primary and secondary hashing functions
 - * Provide an *informal reason* for your answer *and example*, i.e., no need to attach a mathematical proof.

* Help:

- * G. V. Cormack, R. N. S. Horspool, and M. Kaiserwerth, Practical perfect hashing, The Computer Journal, 28(1), 54-58, Oxford University Press (1985)
- * D. Knuth, The Art of Computer Programming, vol III, Addison-Wesley, Reading (1973)

* Points: 1