:
»
.

——-

i &

e T8

A |

|
t»ﬂ..vﬂn.. . S VRN ' n 1
. v p: sl l v.”h.
p AV Y . . : L o SN AN !
- Lo 1 & A >y LS 28 X A
v v 'y Tl . - i 3 . ("’ -
-..\mr £. 4 - " 'vﬁh A ~ . F I LR Sl |
R —_— 1 i d - -, : wiy : - v
.r. -l " Y.W E s «.o.:. oo S End 1
. <y . o, 4 v e, T SEN § A4 gl g 1
AL et r AT
iR “’P‘ - 4 : od eV o A ASTRT T]
$) .) : 4 4 N < e
I3 Bl ks L A :]
3 L ibgd, . %» : .
: AT <

- e Y -

ryl
o e NA

Practical class 2

NDBIOO7

-,
.

Aty
™
Al

Ic Indexes and Bitma

.ﬁs,;.'(“

~’..~‘
S

.t .

%

‘.W‘~‘ -

R : N
" . :
- A
.w ao S -~
: S T
1
a 2
o
~ I
. ‘-
-
9

Stat

Important Terms

+ B - page size in bytes

+ R - object (e.qg., a record) size in bytes

+ 1 - number of objects

+ b - blocking factor, i.e., the number of objects that fit into a

single page

B
. Gan be computed as h = [EJ

+ h - height of a tree, that is stored using the blocking factor b

+ Can be computed as h = [logb n|

Index Sequential File

+ (Consists of at least two files

* Primary file contains all the data, that are sorted according to a
primary key

+ [ndex file contains the index of the primary file, built over the
primary key

+ Static index is a hierarchical structure of index pages that contains
record of type [value of the primary key; pointer to a page]

+ There exists the following types of static indexes
+ Primary key, non-primary (secondary) key
+ Direct index

+ |ndirect index

Primary Key Index

+ |n sequential file, the primary key is sorted based on the primary key”

+ |t Is exploited in the primary index structure as it enables omit one
level of the index

+ The primary key index record consists of two values
+ Value of the primary key (e.g., 5 B)
+ Pointer to a page 4 B

+ Total size of arecord is 9 B
+ The size is fixed for all records

+ Only one the last level of the index the pointers point not to
another index page, but to a page of the primary file

* In the case of non-sequential file, it is the same as direct index 4

Exercise 2.1: Primary Key Index

+ Build primary key index for a sequential file that contains 5,000,000 student records (of size 256 B)

+ Determine index height and compute the size of every index level

« You will have to compute blocking factor b for the primary file in order to determine number of blocks
N

+ Remember that the index (bottom) level points directly into the primary file
+ You will have to compute blocking factor for the primary index

+ Suppose page size equal to 4 kB and record size 9 B

+ The number of pages on the next level can be computed as

| "PAGES,L=i-1
NpAGES,L=i = A

Primary Key Index: Access to Hard Drive

+ |f the index is stored in external memory, it requires & + 1 hard drive accesses to get a
record based on a primary key

+ The first two index levels are small so we keep them in the main memory to save external
memory accesses

« Therefore, we need only 4 — 1 hard drive accesses to retrieve a record

+ In real applications, the whole primary index is commonly kept in the primary memory (RAM)
+ The primary key is typically small (4-8 B)

+ The retrieval of a record based on the primary key requires only 1 access to the external
memory

+ The presence of primary index in main memory is also utilized by the indirect indexes

Primary Key Direct Index

+ Primary file cannot be sorted by keys of multiple indexes 0 Pavel Straka
1 Karel Zeman
2 Jitka Novakova
+ The sample depicts the primary key index for the database 3 Tomaés Zeleny
for ID* 4 Karel Svoboda
5 Zuzana Novotna

+ To see how this structure works we can query for Tomas
2nd level index 1st level index primary file

+ The queryisID =3

+ \We start at page 5 (index root)

+ Then we go to page 3 (we follow the highest lowest |ID

+ From page 3 to the page 1 (the same principle as
before)

+ We find Tomas on the page 1

* Note, that we use different page size in pictures just to save space and make picture simpler 7

Non-Primary Key Direct Index

+ We try to apply the same process to build a direct index 0 Pavel Straka
for a non-primary key attribute, i.e., firstName 1 Karel Zeman
2 Jitka Novakova
3 Tomas Zeleny
+ However, this approaches does not work, i.e., the index is 4 Karel Svoboda
5 Zuzana Novotna

broken
2nd level index 1st level index primary file

> It can be easily demonstrated by a simple query for Karel

+ \We start at page number 5 (root of the index) |:| |:| |:|
 Here, we take the largest smaller key, I.e., Pavel, and we
go to page 3

+ |n page 3, we repeat the same process, this time Jitka is |:| |:|

the largest smaller key. Jitka stands for page number 1
+ But Iin this way we fall to retrieve Karel on page O

Non-Primary Key Direct Index (Correct)

+ Solution: Additional level between the index and the primary file

0 Pavel Straka

+ |.e., zero level index 1 Karel Terna
2 Jitka Novakova

+ Query for Karel once again: 3 Tomas Zeleny
+ \We start on page 8 (index root) 4 Karel Svoboda

5 Zuzana Novotna

+ We continue on page 6 (Jitka) and then on page 3

+ Here, we see the first record for Karel. then we scan the 2nd level index 1st level index Oth level index primary file

o . . PAGE: 3
following index page until we reach a higher key FIRSTNAME PG
+ Hence, we get Karel on page 0 as well as Karel on page 2 JITKA 1
+ The Oth level is a copy of given key with pointer to the respective — U
page PAGE: 4
+ This level is sorted by the key and it is basically a very this E&SETEIAME PzG
replication of a primary file PAVEL 0

+ Note: The "zero level index" is used in the case of non-sequential
file with index

PAGE: 5
FIRSTNAME PG

+ The primary file is not sorted by any property ;ﬂyAANi 12

Exercise 2.2: Direct Index

+ Build direct index on firstName for a sequential file that contains 5,000,000 student
records

+ Suppose that index record is 20 B + 4 B (size of key + size of the pointer) and page
size IS 4 kB

+ Determine index height and compute the size of every index level
+ Gompare the structure with primary key index structure

+ |.e., number of levels, sizes of levels, total size of index (in MB)

birthday phoneNumber
id (PK) secondName
o ze | E _ ﬂ
firstName address note

ae
9 10

Indirect Index

+ Direct indexing and primary index share one disadvantage

+ In the case of any modification (records shuffling) in the primary file, the first (zero) level must be
updated

+ The solution is indirect indexing that does not point to the primary file pages

+ |t points to the primary keys, i.e., indirect index can be described as a map from some property to a
primary key

+ |n addition, indirect index does not point to the file directly, therefore it is not affected by modifications
of the primary file

+ As the primary index is commonly stored in primary memory (RAM), we just need to read pages from
the indirect index and retrieve pages from the primary file

+ Although the first level is slightly larger than that of a direct index, the main advantage is that an indirect
index does not need to be updated in case od primary file movements

11

Exercise 2.3: Indirect Index

+ Build indirect index on secondName for a sequential file that contains 5,000,000
student records

+ Note that first level records and other level records differ in its size
+ First level: 25 B + 5 B (secondName key size + primary key size)
+ Other level: 25 B + 4 B (secondName key size + pointer to another page)

+ Determine index height and compute the size of every index level

birthday phoneNumber
id (PK) secondName
G I E _ ﬂ
firstName address note

ae
9 12

Searching in Index From Multiple Attributes

+ Two properties can be concatenated (e.q., firstName and secondName)
+ Enables us to search for both of the attributes at once
+ Attribute ordering in the index is fixed

+ E.q., firstName followed by secondName does not allow us to search for
secondName followed by firstName

13

+ Note: Having 50 percent men and 50 percent women in our database, usage of
previous indices is not effective at all

+ We prefer bitmaps with database sequential scan over hierarchical index

+ Bitmap consists of multiple columns

+ Each column is stored in separate page

+ Pages are stored sequentially, allowing effective reading

+ A value of a given column is represented by a single bit

+ E.g., having page size 4 kB, we can store 4,096 ¢« 8 = 32,768 values in every
pPage

+ Useful for attributes having small domain, e.g., traditional concept of gender
(male, female)

ol | b W | DN | = | O
O | — | — | O | |
_— O | O | = | OO

+ Bitmaps allow effective evaluation of logical operations over columns (T =1, F = 0)

+ Based on the value distribution, we may also consider some compression (e.g., RLE
compression®)

¥ https://en.wikipedia.org/wiki/Run-length encoding 14

https://en.wikipedia.org/wiki/Run-length_encoding

Example 2.4: Bitmaps for Birthdays

+ Birthday (day, month) can be represented in different ways using
bitmaps

One column for each day in year

L D 01/01 .. 07/03 .. 3112
+ Positives:

+ One column is read to get all people having birthday in a certain
day

+ We can easily add information about other important day for a
price of just another single column

O~ |O | O |
S| o |~ |~ |0
— O | O | O | O

0
1
2
3
4
5

+ Negatives:

+ Bitmap takes a lot of space, i.e., 366 ¢ 153 ¢4 o 210~ 218.7 MB

+ Gompression may decrease the size but read time increases as
we need to decompress bitmap

* We consider database having 5,000,000 records, hence 5,000,000 + 32,768 = 153 pages are required to store single column 15

Example 2.4: Bitmaps for Birthdays (Continued)

Two sets of bitmaps

+ One for day (31) and other for months (12) (1) 1 8 8

+ We need a single AND operation to read this day 2 0O 1 0
R R
5 0 0 1

+ Positives:
+ Smaller size, i.e., 43 ¢ 153 ¢4 ¢ 21V ~ 257 MB

+ Negatives:

0

1

+ We have to read two columns to get information about ,,,,,:n
birthdays in a given day 3
4

5

16

Example 2.4: Bitmaps for Birthdays (Continued)

Binary representation of a day in a year
+ Number 366 can be saved into 9 bits

+ E.g., 01/01 = 000 000 001, 02/01 = 000 000 010,
01/02 = 000 100 000

+ Positives:

+ Much smaller size, i.e., 9 153 ¢4 2 ~ 54 MB
+ Negatives:

+ We have to read all columns to find all birthdays in a
certain day

0 1 0 1 0
1 1 0 1 1
2 0 0 0
3 0 0 1
4 1 1 0
5 0 1 1

17

