
Data Integrity
NDBI046: Practical class 12

❖ We have prepared a data catalogue including distributions of our datasets

❖ We want to publish the data catalogue while ensuring their integrity

2

Use case

❖ Update the catalog description from Exercise 10.6 in order to secure distribution integrity

❖ In particular, extend the catalog description by spdx:checksum property and spdx:Checksum class to
provide digest for DCAT distributions

❖ spdx:checksum provides a mechanism to verify that the contents of a file have not been changed

❖ spdx:Checksum is a value that allows to check the integrity of the contents of a file

❖ Save data catalog description into file data-catalog.ttl

❖ For more information, see the DCAT vocabulary documentation: https://www.w3.org/TR/vocab-dcat-3/
#security_and_privacy

3

Exercise 12.1: Assurance of integrity and authenticity of distributions

Tip: To hash the contents of the file, use the sha1 algorithm from the hashlib module

https://www.w3.org/TR/vocab-dcat-3/#security_and_privacy
https://www.w3.org/TR/vocab-dcat-3/#security_and_privacy

OpenSSL
❖ An open source software library that provides cryptographic functions and protocols, including SSL/TLS

❖ Widely used for secure network communications and for implementing cryptographic protocols in various applications

Certificates
❖ Digital documents used to establish the identity of individuals, servers or organisations in online communications

❖ Contain information such as the identity of the subject, the public key and the digital signature, issued by a trusted certificate authority (CA)

❖ Play a crucial role in ensuring secure communications by verifying the authenticity and integrity of the parties involved

Certificate signing request (CSR)
❖ A request generated by an entity (such as a server or user) to obtain a digital certificate from a certification authority

❖ Contains information such as the public key and the identification details of the subject

❖ The CSR is signed with the private key of the subject, demonstrating control over the public key

Private key
❖ A cryptographic key that is kept secret and used to generate digital signatures and decrypt data

❖ It is paired with the public key to create a key pair for asymmetric encryption

4

OpenSSL and certificates

❖ Using openssl, create a new RSA private key

❖ Use 256-bit AES encryption

❖ Specify the name of the output file to which the newly generated private key will be saved

❖ Specify the key length in bits

❖ Usually 2048 bits are used in practice

❖ When prompted, enter the passphrase

❖ Then use openssl to create a certificate signing request from our existing private key

❖ Provide the following CSR information:

❖ countryName (C), organizationName (O), and commonName (CN)

❖ Certificate request has the file extension *.csr

5

Example 12.2: Create a certificate signing request

6

Example 12.2: Create a certificate signing request (Solution)

 1 openssl genrsa \
 -aes256 \
 -out private.key \
 2048

private key
is encrypted using AES with

256 bits

generate a new RSA key

the key
length in bits

the name of the
output file

openssl req \
 -key private.key \
 -new \
 -out request.csr \
 -subj "/C=CZ/O='Charles University'/CN=ksi.mff.cuni.cz"

 2

perform a CSR-related operationthe path to an existing
private key that will be used to

generate the CSR

subject information for the
certificate

create new CSR

name of the output

7

Example 12.2: Create a certificate signing request (Solution)
❖ Certificate authority will sign the CSR with the root CA certificate and its private key

❖ The user usually does not have access to this, hence the step must be requested from the CA

❖ Alternatively, you may create a self-signed certificate

❖

openssl req -x509 \
 -newkey rsa:4096 \
 -sha256 \
 -nodes \
 -keyout private.key \
 -out certificate.crt \
 -subj "/C=CZ/O='Charles University'/CN=ksi.mff.cuni.cz"

 3 openssl x509 \
 -req \
 -CA ca_root_certificate.crt \
 -CAkey ca_private.key \
 -in request.csr \
 -out certificate.crt \
 -days 365 \
 -CAcreateserial

 4

❖ Use openssl to sign data catalog file with your certificate

❖ Use the sha256 algorithm for hashing

❖ Encode binary content using base64 format

❖ Save the digital signature in the file data-catalog.sha256.sign

8

Example 12.3: Sign the data catalog file

9

Example 12.3: Sign the data catalog file (Solution)

openssl dgst \
 -sha256 \
 -sign private.key \
 -out data-catalog.sha256 \
 data-catalog.ttl

 5

name of the
output file where the output hash

is stored

the path to the
private key

hashing
algorithm sha256

hash calculation
tool (digest)

name of the input file for
which the hash is calculated

openssl base64 \
 -in data-catalog.sha256 \
 -out data-catalog.sha256.sign

 6

binary data
conversion to base64 format

input file
name

output file name

❖ Publish your data fragments on the server webik.ms.mff.cuni.cz

❖ Add an index.html page with links to the following files:

❖ Certificate certificate.crt

❖ Data catalog description data-catalog.ttl

❖ Digital signature data-catalog.sha256.sign

❖ CSV dataset distribution waste_dataset.csv

❖ Data cube distribution waste_cube.ttl

❖ Do not publish your private key!

10

Exercise 12.4: Publish data

DCAT Vocabulary

❖ Security and privacy: https://www.w3.org/TR/vocab-dcat-3/#security_and_privacy

❖ IANA media types: https://www.iana.org/assignments/media-types/media-types.xhtml

OpenSSL

❖ OpenSSL: https://www.openssl.org/

❖ Manual: https://www.openssl.org/docs/manmaster/man1/openssl.html

Python

❖ hashlib: https://docs.python.org/3/library/hashlib.html

HTML

❖ W3C HTML tutorial: https://www.w3schools.com/html/

11

References

https://www.w3.org/TR/vocab-dcat-3/#security_and_privacy
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.openssl.org/
https://www.openssl.org/docs/manmaster/man1/openssl.html
https://docs.python.org/3/library/hashlib.html
https://www.w3schools.com/html/

