
Apache AirFlow
NDBI046: Practical class 6



❖ We want to automate and schedule ETL workflow execution
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User Story



❖ Install Docker Desktop (or Docker and Docker Compose)

❖ Download: https://www.docker.com/products/docker-desktop/


❖ Launch Docker Desktop and verify that Docker is running


❖ Create a new folder for the Airflow project and navigate to the folder

❖ e.g., mkdir ~/Projects/python-ndbi046/airflow


❖ cd ~/Projects/python-ndbi046/airflow


❖ Extend the Docker container with additional Python dependencies

❖ Download the Dockerfile, docker-compose.yaml, and 

requirements.txt from the practical class website


❖ Execute docker build . --tag mff/airflow:latest


❖ Create new folders for DAGs, logs, customized plugins, and 
configuration


❖ Execute mkdir -p ./dags ./logs ./plugins ./config


❖ Linux only: execute echo -e "AIRFLOW_UID=$(id -u)" > .env
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Prerequisite: Setting up Apache Airflow in Docker (1/2)
% docker --version 
% docker-compose --version 

% mkdir ~/Projects/python-ndbi046/airflow 

% cd ~/Projects/python-ndbi046/airflow 

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/
Dockerfile?ref_type=heads&inline=false' 

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/docker-
compose.yaml?ref_type=heads&inline=false' 

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/
requirements.txt?inline=false' 

% docker build . --tag mff/airflow:latest 

% mkdir -p ./dags ./logs ./plugins ./config
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if you 
see version output, 

you are running 
Docker

extending 
the official 

image

downloading 
files

source: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker

https://www.docker.com/products/docker-desktop/
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker


❖ Initialize the database for Apache Airflow

❖ Execute docker compose up airflow-init

❖ At the same time, all docker dependencies are downloaded 

and the initial user is created


❖ Start Airflow services

❖ Execute docker compose up


❖ In the second terminal you can check the condition of the 
containers and make sure that all of them are in a healthy 
condition


❖ Execute docker ps


❖ Go to http://127.0.0.1:8080 and check if Airflow (web server) is 
running


❖ Username: airflow


❖ Password: airflow
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Prerequisite: Setting up Apache Airflow in Docker (2/2)
% docker compose up airflow-init 
airflow-init-1  | User "airflow" created with 
role "Admin" 
airflow-init-1  | 2.8.3 
airflow-init-1 exited with code 0 

% docker compose up 
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if you can see the 
following, the database 

initialization is 
complete

launching 
Airflow services

database 
initialization

http://127.0.0.1:8080


❖ Open-source platform for developing, scheduling, and monitoring batch-oriented workflows

❖ User-friendly interface allowing us to visualize workflows and track the progress of tasks

❖ Provides operators to connect with various technologies, e.g., database systems

❖ Deployable in various setups, from a single process on a single computer to distributed 

environments


❖ Architecture

❖ The scheduler organizes the execution of tasks

❖ The executor is responsible for the execution of tasks

❖ Workers are distributed processes that perform tasks


❖ Website: https://airflow.apache.org/
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Apache Airflow

https://airflow.apache.org/


❖ Represented as a directed acyclic graph (DAG)

❖ Consists of tasks (i.e. individual parts of the work) and dependencies between them

❖ The of dependencies determines the order of tasks execution


❖ Three basic kinds of tasks:

❖ Operators represent predefined task templates, e.g.:


❖ BashOperator: executes a bash command


❖ PythonOperator: calls an arbitrary Python function


❖ PostgresOperator: executes a particular SQL statement

❖ Sensors are special cases of Operators useful for waiting for en external event to 

happen (e.g., upload of a required file)

❖ TaskFlow allows an ordinary Python function to be decorated as a @task


❖ Automatically calculates the dependencies between tasks


❖ Dependencies

❖ Upstream task directly precedes the other task

❖ Downstream task directly postpones the other task
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Apache Airflow: Workflow



❖ none: the task has not yet been queued for execution

❖ scheduled: Scheduler has determined the tasks should run

❖ queued: the task is assigned to an Executor and is a waiting a Worker

❖ running: the task is running on a worker

❖ success: the task finished running without errors

❖ restarting: while running, the task was externally requested to restart

❖ failed: the task had an error during execution and failed to run

❖ skipped: the task was skipped due to branching, LatestOnly, or similar


❖ upstream_failed: an upstream task failed and the Trigger Rule says we 
needed it


❖ up_for_retry: the task failed, but has retry attempts left and will be 
rescheduled


❖ up_for_reschedule: the task is a Sensor that is in reschedule mode

❖ deferred: the task has been deferred to a trigger

❖ removed: the task has vanished from the DAG since the run started
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Apache Airflow: Task lifecycle

none Scheduler scheduled Executor queued Worker running success

removed

upstream_failed

up_for_reschedule

failed

up_for_retry

restarting

Mark failed
False

True Eligible to retry?

Error

Clearsource: https://airflow.apache.org/docs/apache-airflow/stable/
core-concepts/tasks.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html


❖ Create a simple Apache Airflow workflow consisting of the following tasks:

❖ Print the content of webpage https://cs.wikipedia.org/wiki/Kraje_v_Česku

❖ Record that the workflow was successfully completed


❖ Use BashOperator


❖ Copy the Python script into the dags folder within Airflow project

❖ (see Setting up Apache Airflow in Docker)

8

Example 6.1: BashOperator

❖ Tip: If the execution of any task fails, check the task log for the reason for the failure

https://cs.wikipedia.org/wiki/Kraje_v_%C4%8Cesku


from datetime import datetime, timedelta 
from airflow import DAG 
from airflow.operators.bash_operator import BashOperator 

default_args = {"owner": "koupil", "retries": 3, "retry_delay": timedelta(minutes=5)} 

with DAG( 
  dag_id="dag_bash_operator", 
  default_args=default_args, 
  description="A simple Apache Airflow workflow to print Wikipedia page content", 
  start_date=datetime(2024, 3, 22), 
  schedule_interval="@daily", 
) as dag: 
  task_print_web_page = BashOperator( 
    task_id="download_wiki_page", 
    bash_command="curl https://cs.wikipedia.org/wiki/Kraje_v_Česku", 
  ) 

  task_finish_work = BashOperator( 
    task_id="finish_work", 
    bash_command='echo "Work has finished"', 
  ) 

 task_print_web_page >> task_finish_work 9

Example 6.1: BashOperator (Solution)
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Example 6.1: BashOperator (Solution)
❖ Copy the Python script to the dags folder


❖ On the main Apache Airflow page, the DAG is displayed (after a while)

❖ View the detail of a DAG by selecting its name

❖ Select Graph View

❖ Trigger DAG
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Example 6.1: BashOperator (Solution)
❖ The indicator (i.e., the left panel) reflects the current task status

❖ After (un)successful completion, select a task and view the log of its run


❖ The log is convenient to use for debugging, e.g., in case of an unsuccessful job run

the 
current status 

of tasks

1 2

1

2 log



❖ Create Airflow Workflow to extract the table 'Základní data o krajích' (Basic data about regions) from the 
Wikipedia article about Czech regions

❖ Create a DAG consisting of a single PythonOperator implementing dataset extraction

❖ Reuse existing solution from Example 2.3

❖ The input parameters will be url and output_file_name
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Example 6.2: PythonOperator
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Example 6.2: PythonOperator (Solution)

import logging 
from datetime import datetime, timedelta 

from airflow import DAG 
from airflow.operators.python_operator import PythonOperator 
from library_extract import extract_table, fetch_html_content, save_as_csv 

def extract_regions_dataset(url: str, output_file_path: str): 
  try: 
    html_content = fetch_html_content(url) 
    table = extract_table(html_content) 
    save_as_csv(table, output_file_path) 
    logging.info("File was successfully saved as " + output_file_path) 
  except Exception: 
    logging.error("Failed to download file content.")
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Example 6.2: PythonOperator (Solution)
default_args = { 
  "owner": "koupil", 
  "retries": 3, 
  "retry_delay": timedelta(minutes=5), 
} 

with DAG( 
  dag_id="dag_python_operator", 
  default_args=default_args, 
  start_date=datetime(2024, 3, 22), 
  schedule_interval="@daily", 
) as dag: 
  extract_regions_task = PythonOperator( 
    task_id="extract_regions_task", 
    python_callable=extract_regions_dataset, 
    op_kwargs={ 
      "url": "https://cs.wikipedia.org/wiki/Kraje_v_Česku", 
      "output_file_path": "dataset_regions.csv", 
    }, 
  ) 

extract_regions_task
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❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the Wikipedia 

article about Czech regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions dimension


❖ Each of the tasks should be implemented as a separate PythonOperator

❖ Reuse the existing solution from Example 2.3 (extract) and 3.2 (transform)
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Exercise 6.3: Data Sharing via Airflow Xcoms

❖ Tip: To share data between tasks, use XComs

❖ Note that maximum size of Xcoms is 48 kB (i.e., do not share large data directly using XComs)

❖ Documentation: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html


❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the Wikipedia article about Czech 

regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions dimension


❖ Load dim_regions dataset into the dim_regions table in PostgreSQL


❖ Create a new Connection to access the PostgreSQL database system

❖ Use PythonOperator for extraction and transformation


❖ Use PostgreOperator to interact with PostgreSQL

❖ You may implement a custom operator for bulk loading


❖ Reuse the existing solution from Examples 2.3 (extract), 3.2 (transform), and 4.3 (bulk loading)
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Example 6.4: Connection to PostgreSQL and PostgreOperator



❖ Typically, when creating an ETL DAG, we need to connect to some external services

❖ We can create and manage them using Airflow Connections


❖ In the Airflow web server user interface, go to Admin → Connections


❖ Add a new record

❖ A form will appear in which you fill in the Connection Id, Connection Type select 'Postgres', Host, Database, Login, Password, Port


❖ Confirm the data by pressing the Save button
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Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)
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Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)

class PostgresBulkLoadOperator(BaseOperator): 
  template_fields = ("table_name", "file_path") 

  @apply_defaults 
  def __init__(self, *, postgres_conn_id: str, table_name: str, file_path: str, **kwargs): 
    super().__init__(**kwargs) 
    self.postgres_conn_id = postgres_conn_id 
    self.table_name = table_name 
    self.file_path = file_path 

  def execute(self, context): 
    try: 
      hook = PostgresHook(postgres_conn_id=self.postgres_conn_id) 
      with open(self.file_path, "r") as f: 
        columns = f.readline().strip().split(",") 
        copy_sql = f"COPY {self.table_name} ({', '.join(columns)}) FROM STDIN WITH CSV HEADER" 
        hook.copy_expert(copy_sql, f.name) 
    except FileNotFoundError: 
      logging.error(f"File '{self.file_path}' not found.") 
    except Exception as ex: 
      logging.error(f"An error occurred while reading data from file: {ex}")
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Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)
  drop_table_task = PostgresOperator( 
    task_id="drop_table_task", 
    sql=DimRegionsQueries.drop_table_query, 
    postgres_conn_id="postgres_webik", 
  ) 

  create_table_task = PostgresOperator( 
    task_id="create_table_task", 
    sql=DimRegionsQueries.create_table_query, 
    postgres_conn_id="postgres_webik", 
  ) 

  alter_table_task = PostgresOperator( 
    task_id="alter_table_task", 
    sql=DimRegionsQueries.alter_table_query, 
    postgres_conn_id="postgres_webik", 
  ) 

  insert_data_task = PostgresBulkLoadOperator( 
    task_id="insert_data_task", 
    postgres_conn_id="postgres_webik", 
    table_name="dim_regions", 
    file_path="{{ ti.xcom_pull(task_ids='transform_regions_task', key='dim_regions') }}", 
  )
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❖ @dag() creates a DAG


❖ @task() creates a Python Task


❖ @task_group() creates a TaskGroup


❖ @task.sensor() changes Python function into a Sensor


❖ @task.docker() creates a DockerOperator task


❖ @task.branch() creates a branch in DAG based on evaluated condition


❖ @task.short_circuit() evaluates a condition and skips downstream tasks if the condition is False


❖ @task.virtualenv() runs Python task in a virtual environment


❖ It is also possible to add custom decorator to the TaskFlow API

❖ see https://airflow.apache.org/docs/apache-airflow/stable/howto/create-custom-decorator.html
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Apache Airflow: TaskFlow API Decorators

https://airflow.apache.org/docs/apache-airflow/stable/howto/create-custom-decorator.html


❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the 

Wikipedia article about Czech regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions 

dimension

❖ Load dim_regions dataset into the dim_regions table in PostgreSQL


❖ This time use the TaskFlow API
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Exercise 6.5: TaskFlow API



❖ Create an Apache Airflow workflow that implements the following ETL:

❖ Extract datasets:


❖ Production of industrial and municipal waste (see Example 2.1)

❖ Costs of environmental protection (see Exercise 2.2)

❖ Regions dataset (see Exercise 2.3)

❖ Population dataset (see Example 2.4)


❖ Transform the input datasets according to the data transformation 
workflow (see Example 3.1)


❖ Finally, perform bulk loading of the transformed datasets into the 
corresponding tables in PostgreSQL (see Exercise 4.4)


❖ Use existing solutions from previous practical classes

❖ Use Operators, TaskFlow API or a suitable combination of both approaches

❖ You can implement Sensor that detect if a particular dataset is available

❖ Schedule an execution workflow once a day
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Exercise 6.6: Complete ETL Workflow in Apache Airflow



❖ The CRON expression is a string of five fields separated by a white space that represents a set of times

❖ Airflow already provides some presets for the schedule_interval (see Table)
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CRON expression

preset meaning cron
None Do not schedule, use exclusively "externally triggered" DAGs
@once Schedule once and only once
@continuous Run as soon as the previous run finishes
@hourly Run once an hour at the beginning of the hour 0 * * * *

@daily Run once a day at midnight 0 0 * * *

@weekly Run once a day at midnight on Sunday morning 0 0 * * 0

@monthly Run once a month at midnight of the first day of the month 0 0 1 * *

@quarterly Run once a quarter at midnight on the first day 0 0 1 */3 *

@yearly Run once a year at midnight of January 1 0 0 1 1 *
source: https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html


❖ Adjust the Apache Airflow workflow that implements ETL (see Exercise 6.6) so that it 
executes once a month

❖ Use CRON expression for scheduling

❖ Instead of overwriting the database, just update the data valid for the current year in 

which the task instance is executed
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Exercise 6.7: Scheduling using the cron expression



Apache Airflow

❖ Running Airflow in Docker: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-

docker

❖ Core Concepts: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/index.html

❖ DAGs: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#

❖ Tasks: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html#

❖ TaskFlow: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/taskflow.html#

❖ XComs: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html


Docker

❖ Docker: https://www.docker.com/

❖ Docker Docs: https://docs.docker.com/


CRON

❖ Python-crontab: https://pypi.org/project/python-crontab/

❖ Cron & Time Intervals (Airflow): https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html

❖ Editor from cron schedule expressions: https://crontab.guru/
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