
Apache AirFlow
NDBI046: Practical class 6

❖ We want to automate and schedule ETL workflow execution

2

User Story

❖ Install Docker Desktop (or Docker and Docker Compose)

❖ Download: https://www.docker.com/products/docker-desktop/

❖ Launch Docker Desktop and verify that Docker is running

❖ Create a new folder for the Airflow project and navigate to the folder

❖ e.g., mkdir ~/Projects/python-ndbi046/airflow

❖ cd ~/Projects/python-ndbi046/airflow

❖ Extend the Docker container with additional Python dependencies

❖ Download the Dockerfile, docker-compose.yaml, and

requirements.txt from the practical class website

❖ Execute docker build . --tag mff/airflow:latest

❖ Create new folders for DAGs, logs, customized plugins, and
configuration

❖ Execute mkdir -p ./dags ./logs ./plugins ./config

❖ Linux only: execute echo -e "AIRFLOW_UID=$(id -u)" > .env

3

Prerequisite: Setting up Apache Airflow in Docker (1/2)
% docker --version
% docker-compose --version

% mkdir ~/Projects/python-ndbi046/airflow

% cd ~/Projects/python-ndbi046/airflow

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/
Dockerfile?ref_type=heads&inline=false'

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/docker-
compose.yaml?ref_type=heads&inline=false'

% curl -LfO 'https://gitlab.mff.cuni.cz/
contosp/ndbi046/-/raw/master/class06/
requirements.txt?inline=false'

% docker build . --tag mff/airflow:latest

% mkdir -p ./dags ./logs ./plugins ./config

 1
 2
 3
 4
 5
 6
 7
 8

 9
10

11
12

13
14
15
16

if you
see version output,

you are running
Docker

extending
the official

image

downloading
files

source: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker

https://www.docker.com/products/docker-desktop/
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker

❖ Initialize the database for Apache Airflow

❖ Execute docker compose up airflow-init

❖ At the same time, all docker dependencies are downloaded

and the initial user is created

❖ Start Airflow services

❖ Execute docker compose up

❖ In the second terminal you can check the condition of the
containers and make sure that all of them are in a healthy
condition

❖ Execute docker ps

❖ Go to http://127.0.0.1:8080 and check if Airflow (web server) is
running

❖ Username: airflow

❖ Password: airflow

4

Prerequisite: Setting up Apache Airflow in Docker (2/2)
% docker compose up airflow-init
airflow-init-1 | User "airflow" created with
role "Admin"
airflow-init-1 | 2.8.3
airflow-init-1 exited with code 0

% docker compose up

17
18
19
20
21
22
23
24

if you can see the
following, the database

initialization is
complete

launching
Airflow services

database
initialization

http://127.0.0.1:8080

❖ Open-source platform for developing, scheduling, and monitoring batch-oriented workflows

❖ User-friendly interface allowing us to visualize workflows and track the progress of tasks

❖ Provides operators to connect with various technologies, e.g., database systems

❖ Deployable in various setups, from a single process on a single computer to distributed

environments

❖ Architecture

❖ The scheduler organizes the execution of tasks

❖ The executor is responsible for the execution of tasks

❖ Workers are distributed processes that perform tasks

❖ Website: https://airflow.apache.org/
5

Apache Airflow

https://airflow.apache.org/

❖ Represented as a directed acyclic graph (DAG)

❖ Consists of tasks (i.e. individual parts of the work) and dependencies between them

❖ The of dependencies determines the order of tasks execution

❖ Three basic kinds of tasks:

❖ Operators represent predefined task templates, e.g.:

❖ BashOperator: executes a bash command

❖ PythonOperator: calls an arbitrary Python function

❖ PostgresOperator: executes a particular SQL statement

❖ Sensors are special cases of Operators useful for waiting for en external event to

happen (e.g., upload of a required file)

❖ TaskFlow allows an ordinary Python function to be decorated as a @task

❖ Automatically calculates the dependencies between tasks

❖ Dependencies

❖ Upstream task directly precedes the other task

❖ Downstream task directly postpones the other task

6

Apache Airflow: Workflow

❖ none: the task has not yet been queued for execution

❖ scheduled: Scheduler has determined the tasks should run

❖ queued: the task is assigned to an Executor and is a waiting a Worker

❖ running: the task is running on a worker

❖ success: the task finished running without errors

❖ restarting: while running, the task was externally requested to restart

❖ failed: the task had an error during execution and failed to run

❖ skipped: the task was skipped due to branching, LatestOnly, or similar

❖ upstream_failed: an upstream task failed and the Trigger Rule says we
needed it

❖ up_for_retry: the task failed, but has retry attempts left and will be
rescheduled

❖ up_for_reschedule: the task is a Sensor that is in reschedule mode

❖ deferred: the task has been deferred to a trigger

❖ removed: the task has vanished from the DAG since the run started

7

Apache Airflow: Task lifecycle

none Scheduler scheduled Executor queued Worker running success

removed

upstream_failed

up_for_reschedule

failed

up_for_retry

restarting

Mark failed
False

True Eligible to retry?

Error

Clearsource: https://airflow.apache.org/docs/apache-airflow/stable/
core-concepts/tasks.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html

❖ Create a simple Apache Airflow workflow consisting of the following tasks:

❖ Print the content of webpage https://cs.wikipedia.org/wiki/Kraje_v_Česku

❖ Record that the workflow was successfully completed

❖ Use BashOperator

❖ Copy the Python script into the dags folder within Airflow project

❖ (see Setting up Apache Airflow in Docker)

8

Example 6.1: BashOperator

❖ Tip: If the execution of any task fails, check the task log for the reason for the failure

https://cs.wikipedia.org/wiki/Kraje_v_%C4%8Cesku

from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.bash_operator import BashOperator

default_args = {"owner": "koupil", "retries": 3, "retry_delay": timedelta(minutes=5)}

with DAG(
 dag_id="dag_bash_operator",
 default_args=default_args,
 description="A simple Apache Airflow workflow to print Wikipedia page content",
 start_date=datetime(2024, 3, 22),
 schedule_interval="@daily",
) as dag:
 task_print_web_page = BashOperator(
 task_id="download_wiki_page",
 bash_command="curl https://cs.wikipedia.org/wiki/Kraje_v_Česku",
)

 task_finish_work = BashOperator(
 task_id="finish_work",
 bash_command='echo "Work has finished"',
)

 task_print_web_page >> task_finish_work 9

Example 6.1: BashOperator (Solution)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import DAG and
BashOperator definition of

common arguments

create an
instance of DAG

the required
attributes are dag_id,

default_args, start_date and
schedule_interval

task printing
webpage contentfinishing

task

task task
dependency definition using

the bitshift operator

schedule_interval
specifies the frequency of execution

using CRON

10

Example 6.1: BashOperator (Solution)
❖ Copy the Python script to the dags folder

❖ On the main Apache Airflow page, the DAG is displayed (after a while)

❖ View the detail of a DAG by selecting its name

❖ Select Graph View

❖ Trigger DAG

1

2

1

2
list of all

DAGs

displayed
tasks and dependencies

between them

3

3

11

Example 6.1: BashOperator (Solution)
❖ The indicator (i.e., the left panel) reflects the current task status

❖ After (un)successful completion, select a task and view the log of its run

❖ The log is convenient to use for debugging, e.g., in case of an unsuccessful job run

the
current status

of tasks

1 2

1

2 log

❖ Create Airflow Workflow to extract the table 'Základní data o krajích' (Basic data about regions) from the
Wikipedia article about Czech regions

❖ Create a DAG consisting of a single PythonOperator implementing dataset extraction

❖ Reuse existing solution from Example 2.3

❖ The input parameters will be url and output_file_name

12

Example 6.2: PythonOperator

13

Example 6.2: PythonOperator (Solution)

import logging
from datetime import datetime, timedelta

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from library_extract import extract_table, fetch_html_content, save_as_csv

def extract_regions_dataset(url: str, output_file_path: str):
 try:
 html_content = fetch_html_content(url)
 table = extract_table(html_content)
 save_as_csv(table, output_file_path)
 logging.info("File was successfully saved as " + output_file_path)
 except Exception:
 logging.error("Failed to download file content.")

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

import DAG and
PythonOperator

reuse already
implemented code

create a simple Python
function implementing our task, i.e.,

extracting the region dataset

14

Example 6.2: PythonOperator (Solution)
default_args = {
 "owner": "koupil",
 "retries": 3,
 "retry_delay": timedelta(minutes=5),
}

with DAG(
 dag_id="dag_python_operator",
 default_args=default_args,
 start_date=datetime(2024, 3, 22),
 schedule_interval="@daily",
) as dag:
 extract_regions_task = PythonOperator(
 task_id="extract_regions_task",
 python_callable=extract_regions_dataset,
 op_kwargs={
 "url": "https://cs.wikipedia.org/wiki/Kraje_v_Česku",
 "output_file_path": "dataset_regions.csv",
 },
)

extract_regions_task

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

our
task is an instance of

PythonOperator

each task
has a task_id python_callable

determines the Python function
to be executed

passing
parameters using the
op_kwargs dictionaryassembling

the DAG

create an
instance of DAG

❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the Wikipedia

article about Czech regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions dimension

❖ Each of the tasks should be implemented as a separate PythonOperator

❖ Reuse the existing solution from Example 2.3 (extract) and 3.2 (transform)

15

Exercise 6.3: Data Sharing via Airflow Xcoms

❖ Tip: To share data between tasks, use XComs

❖ Note that maximum size of Xcoms is 48 kB (i.e., do not share large data directly using XComs)

❖ Documentation: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html

❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the Wikipedia article about Czech

regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions dimension

❖ Load dim_regions dataset into the dim_regions table in PostgreSQL

❖ Create a new Connection to access the PostgreSQL database system

❖ Use PythonOperator for extraction and transformation

❖ Use PostgreOperator to interact with PostgreSQL

❖ You may implement a custom operator for bulk loading

❖ Reuse the existing solution from Examples 2.3 (extract), 3.2 (transform), and 4.3 (bulk loading)

16

Example 6.4: Connection to PostgreSQL and PostgreOperator

❖ Typically, when creating an ETL DAG, we need to connect to some external services

❖ We can create and manage them using Airflow Connections

❖ In the Airflow web server user interface, go to Admin → Connections

❖ Add a new record

❖ A form will appear in which you fill in the Connection Id, Connection Type select 'Postgres', Host, Database, Login, Password, Port

❖ Confirm the data by pressing the Save button

17

Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)

1 2

3

1

2

3

18

Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)

class PostgresBulkLoadOperator(BaseOperator):
 template_fields = ("table_name", "file_path")

 @apply_defaults
 def __init__(self, *, postgres_conn_id: str, table_name: str, file_path: str, **kwargs):
 super().__init__(**kwargs)
 self.postgres_conn_id = postgres_conn_id
 self.table_name = table_name
 self.file_path = file_path

 def execute(self, context):
 try:
 hook = PostgresHook(postgres_conn_id=self.postgres_conn_id)
 with open(self.file_path, "r") as f:
 columns = f.readline().strip().split(",")
 copy_sql = f"COPY {self.table_name} ({', '.join(columns)}) FROM STDIN WITH CSV HEADER"
 hook.copy_expert(copy_sql, f.name)
 except FileNotFoundError:
 logging.error(f"File '{self.file_path}' not found.")
 except Exception as ex:
 logging.error(f"An error occurred while reading data from file: {ex}")

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

implement a
custom operator for bulk

loading
set

required parameters, i.e.,
table_name and file_path, as

template fields

PostgresHook
allows execution of

statements in
PostgreSQL

template fields
must be passed in the

constructor

19

Example 6.4: Connection to PostgreSQL and PostgreOperator (Solution)
 drop_table_task = PostgresOperator(
 task_id="drop_table_task",
 sql=DimRegionsQueries.drop_table_query,
 postgres_conn_id="postgres_webik",
)

 create_table_task = PostgresOperator(
 task_id="create_table_task",
 sql=DimRegionsQueries.create_table_query,
 postgres_conn_id="postgres_webik",
)

 alter_table_task = PostgresOperator(
 task_id="alter_table_task",
 sql=DimRegionsQueries.alter_table_query,
 postgres_conn_id="postgres_webik",
)

 insert_data_task = PostgresBulkLoadOperator(
 task_id="insert_data_task",
 postgres_conn_id="postgres_webik",
 table_name="dim_regions",
 file_path="{{ ti.xcom_pull(task_ids='transform_regions_task', key='dim_regions') }}",
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

PostgreOperator task
implementing drop table

PostgreOperator
implementing create

table

PostgreOperator task
implementing alter table

custom operator task
implementing bulk loading

passing the
argument from xcom

❖ @dag() creates a DAG

❖ @task() creates a Python Task

❖ @task_group() creates a TaskGroup

❖ @task.sensor() changes Python function into a Sensor

❖ @task.docker() creates a DockerOperator task

❖ @task.branch() creates a branch in DAG based on evaluated condition

❖ @task.short_circuit() evaluates a condition and skips downstream tasks if the condition is False

❖ @task.virtualenv() runs Python task in a virtual environment

❖ It is also possible to add custom decorator to the TaskFlow API

❖ see https://airflow.apache.org/docs/apache-airflow/stable/howto/create-custom-decorator.html

20

Apache Airflow: TaskFlow API Decorators

https://airflow.apache.org/docs/apache-airflow/stable/howto/create-custom-decorator.html

❖ Create the following Apache Airflow Workflow:

❖ Extract the table 'Základní data o krajích' (Basic data about regions) from the

Wikipedia article about Czech regions

❖ Transform the input dataset into a dataset corresponding to the dim_regions

dimension

❖ Load dim_regions dataset into the dim_regions table in PostgreSQL

❖ This time use the TaskFlow API

21

Exercise 6.5: TaskFlow API

❖ Create an Apache Airflow workflow that implements the following ETL:

❖ Extract datasets:

❖ Production of industrial and municipal waste (see Example 2.1)

❖ Costs of environmental protection (see Exercise 2.2)

❖ Regions dataset (see Exercise 2.3)

❖ Population dataset (see Example 2.4)

❖ Transform the input datasets according to the data transformation
workflow (see Example 3.1)

❖ Finally, perform bulk loading of the transformed datasets into the
corresponding tables in PostgreSQL (see Exercise 4.4)

❖ Use existing solutions from previous practical classes

❖ Use Operators, TaskFlow API or a suitable combination of both approaches

❖ You can implement Sensor that detect if a particular dataset is available

❖ Schedule an execution workflow once a day

22

Exercise 6.6: Complete ETL Workflow in Apache Airflow

❖ The CRON expression is a string of five fields separated by a white space that represents a set of times

❖ Airflow already provides some presets for the schedule_interval (see Table)

23

CRON expression

preset meaning cron
None Do not schedule, use exclusively "externally triggered" DAGs
@once Schedule once and only once
@continuous Run as soon as the previous run finishes
@hourly Run once an hour at the beginning of the hour 0 * * * *

@daily Run once a day at midnight 0 0 * * *

@weekly Run once a day at midnight on Sunday morning 0 0 * * 0

@monthly Run once a month at midnight of the first day of the month 0 0 1 * *

@quarterly Run once a quarter at midnight on the first day 0 0 1 */3 *

@yearly Run once a year at midnight of January 1 0 0 1 1 *
source: https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html

https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html

❖ Adjust the Apache Airflow workflow that implements ETL (see Exercise 6.6) so that it
executes once a month

❖ Use CRON expression for scheduling

❖ Instead of overwriting the database, just update the data valid for the current year in

which the task instance is executed

24

Exercise 6.7: Scheduling using the cron expression

Apache Airflow

❖ Running Airflow in Docker: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-

docker

❖ Core Concepts: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/index.html

❖ DAGs: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#

❖ Tasks: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html#

❖ TaskFlow: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/taskflow.html#

❖ XComs: https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html

Docker

❖ Docker: https://www.docker.com/

❖ Docker Docs: https://docs.docker.com/

CRON

❖ Python-crontab: https://pypi.org/project/python-crontab/

❖ Cron & Time Intervals (Airflow): https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html

❖ Editor from cron schedule expressions: https://crontab.guru/

25

References

https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#running-airflow-in-docker
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/index.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html#
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/taskflow.html#
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/xcoms.html
https://www.docker.com/
https://docs.docker.com/
https://pypi.org/project/python-crontab/
https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/cron.html
https://crontab.guru/

