
Load
NDBI046: Practical class 4

❖ The data analysts in our company asked us to prepare waste management datasets and load them to
the data warehouse so that they could perform the required analyses

❖ Specifically, they need datasets related to waste management in the Czech Republic at the level of

individual regions and the extent of funds used to mitigate the environmental burden due to waste
management

❖ Their aim is to assess municipal and corporate waste production and address impacts, and they
require that the amount of waste can be calculated per capita or per unit area

❖ As a source of data, we are to use open data on waste from Czech open data portal, data published
by the Czech Statistical Office and generally known facts can be extracted from Wikipedia

2

User Story

❖ Data Engineer roles:

❖ Extract datasets from (various) sources

❖ Transform data into a uniform form, detect and correct inconsistencies, etc.

❖ Load the data to a data warehouse so that analysts can perform analyses

❖ Data extraction involves extracting data from homogeneous or
heterogeneous sources

❖ Data transformation processes clean and transform data into a suitable
format/structure for querying and analysis

❖ Data loading involves the insertion of data into, e.g., operational data store,
data warehouse, data lake, or data mart

❖ The slowest part of the ETL process

❖ Databases may operate slowly as they have to maintain concurrency,
integrity and indexes

❖ To improve performance, following may be useful:

❖ Performing all data transformation outside the database

❖ Disabling integrity constraint checking (DROP CONSTRAINT) in the

target database during the load

❖ Removing indexes on a table or partition (DROP INDEX) before loading

and re-creating them after the data is loaded (CREATE INDEX)

❖ Using parallel bulk loading whenever possible

3

Extract Transform Load (ETL)

Load

R2 E4 Y_W _EWP2

Transform

R1

R2

W1

W2

W3

P2

E1

E2

E3WP1_W _E

E4 Y

P1

WP2

Extract

R1 W1 E1P1

❖ Check which version of Python is installed (if any)

❖ If Python 3 is not installed, download the (latest) version of

Python#1 and follow the installation

❖ Once installed, create any folder for your NDBI046 project and
navigate to it, e.g., ~/Projects/python-ndbi046

❖ Create your Python environment, e.g., ndbi046_env

❖ Activate you Python environment

❖ Install the required packages

❖ Download the requirements.txt file from the practical class

website

❖ You may also install additional packages

❖ You may always export the list of installed packages to a file

❖ Exit the Python environment after completing the practical class (not
before)

❖ You can return to the environment at any time by activating it

4

Prerequisite: Setting up Python (Linux, macOS)

#1 https://www.python.org/downloads/

% python3 --version

% mkdir ~/Projects/python-ndbi046
% cd ~/Projects/python-ndbi046

% python3 -m venv ndbi046_env

% source ndbi046_env/bin/activate

(ndbi046_env) % pip install -r requirements.txt

(ndbi046_env) % pip install pandas

(ndbi046_env) % pip freeze > requirements.txt

(ndbi046_env) % deactivate

% cat requirements.txt

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

checking the
installed version

installation
of the required

packages

export of
installed packages

deactivating a
virtual environmentlist installed

packages

creating
and activating a virtual

environment

https://www.python.org/downloads/

❖ Check which version of Python is installed (if any)

❖ If Python 3 is not installed, download the (latest) version of

Python#1 and follow the installation

❖ Once installed, create any folder for your NDBI046 project and
navigate to it, e.g., C:\Projects\python-ndbi046

❖ Create your Python environment, e.g., ndbi046_env

❖ Activate you Python environment

❖ Install the required packages

❖ Download the requirements.txt file from the practical class

website

❖ You may also install additional packages

❖ You may always export the list of installed packages to a file

❖ Exit the Python environment after completing the practical class (not
before)

❖ You can return to the environment at any time by activating it

5

Prerequisite: Setting up Python (Windows)

#1 https://www.python.org/downloads/

> python3 --version

> mkdir C:\Projects\python-ndbi046
> cd C:\Projects\python-ndbi046

> python3 -m venv ndbi046_env

> ndbi046_env\Scripts\activate.bat

(ndbi046_env) > pip install -r requirements.txt

(ndbi046_env) > pip install pandas

(ndbi046_env) > pip freeze > requirements.txt

(ndbi046_env) > deactivate

> type requirements.txt

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

checking the
installed version

installation
of the required

packages

export of
installed packages

deactivating a
virtual environmentlist installed

packages

creating
and activating a virtual

environment

https://www.python.org/downloads/

❖ Before you can use the psycopg2 library in Python, ensure that:

❖ Python 3.5 or newer is installed on your system as psycopg2 is compatible only with Python 3.5 and above

❖ psycopg2 is a PostgreSQL adapter for Python, hence PostgreSQL must be installed and running on your system

❖ Download: https://www.postgresql.org/

❖ Postgres.app: https://postgresapp.com/ (macOS)

❖ Once the prerequisites are in place, install psycopg2 as follows in terminal or command prompt:

❖ If the installation fails due to a missing psycopg2-binary library, proceed as follows:

❖

6

Prerequisite: Setting up PostgreSQL and psycopg2 library

(ndbi046_env) % pip install psycopg2-binary
(ndbi046_env) % export export PATH=$PATH:/Applications/Postgres.app/Contents/Versions/15/bin
(ndbi046_env) % pip install psycopg2

 4
 5
 6

add PostgreSQL
bin directory to PATH

(ndbi046_env) % python3 --version
(ndbi046_env) % python3 -m pip install --upgrade pip
(ndbi046_env) % pip install psycopg2

 1
 2
 3

make
sure that appropriate
virtual environment is

activated

upgrade pip and
install psycopg2-binary

https://www.postgresql.org/
https://postgresapp.com/

7

Objectives of the practical class
❖ Having prepared the datasets in csv format, we load them

into the data warehouse

❖ For data warehouse we choose PostgreSQL database

system

❖ Easy to start with, but it's an OLTP system (certain

limitation)

❖ Data warehouse galaxy schema:

❖ Fact tables fact_waste_population, fact_expenses

❖ Dimension tables dim_years, dim_regions,
dim_waste_categories, dim_expenses_categories

❖ Three different methods of loading datasets will be utilized:

❖ Row by row loading (simple, but slowest)

❖ Bulk loading

❖ Bulk loading with integrity constraints deactivated

(fastest, but most complex)

dim_regio
ns

dim_wast
e_categori

es
dim_years dim_expe

nses_cate
gories

fact_wast
e_populati

on

fact_expen
ses

year (PK)

dim_years

region_ref (FK)
year (FK)

cate_ref (FK)
expenses_amount

region_ref (FK)
year (FK)

cate_ref (FK)
population

waste_amount
waste_per_capita

fact_expensesfact_waste
_population

region_id (PK)
region_name
region_area

cate_id (PK)
ukazatel

ozp

cate_id (PK)
stapro
cznace

dim_regions dim_expenses
_categories

dim_waste
_categories

❖ Write a Python script to load the dataset dim_regions.csv (see Example 3.2) into the table dim_regions in the data
warehouse

❖ The dimension table will contain the columns region_id (PRIMARY KEY), region_name, and region_area

❖ Use appropriate data types to represent individual columns (e.g., INTEGER, FLOAT, TEXT, VARCHAR)

❖ Insert data into the table row by row, i.e., for each data row generate and execute the insert statement separately

❖ Read the user credentials and information for connecting to PostgreSQL from the configuration file (e.g., credentials.json)

8

Example 4.1: Load dataset 'Regions' into dim_regions (row by row)

region_name

Hlavní město Praha
Středočeský kraj

Zlínský kraj
...

region_id

1
2

14
...

region_area

496.21
10928.50

3963.04
...

csv

❖ Tip: A suitable choice for interaction with the PostgreSQL database system in Python is, e.g., the
Psycopg2#2 library (version 2.9.9).

#2 https://pypi.org/project/psycopg2/

https://pypi.org/project/psycopg2/

9

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)
import json
import logging
import sys
from typing import Any, Dict

import pandas as pd
from psycopg2 import Error, connect

logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

def read_credentials_file(credentials_file: str) -> Dict[str, Any]:
 pass

def read_data_from_file(file_path: str) -> pd.DataFrame:
 pass

def execute_ddl(conn_params: Dict[str, Any], ddl_statement: str) -> None:
 pass

def insert_data(conn_params: Dict[str, Any], insert_query: str, data_df: pd.DataFrame
) -> None:
 pass

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

21

import library for
interaction with PostgreSQL

logging into
the console

program
decomposition:

(1) loading credentials
(2) loading the dataset
(3) executing the DDL

statements (i.e., create
table, drop table)

(4) inserting
data

10

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)
def read_credentials_file(credentials_file: str) -> Dict[str, Any]:
 try:
 with open(credentials_file, "r") as file:
 credentials = json.load(file)
 except FileNotFoundError:
 logging.error(f"Credentials file '{credentials_file}' not found.")
 raise
 except Exception as e:
 logging.error(f"An error occurred while reading credentials file: {e}")
 raise
 return credentials

def read_data_from_file(file_path: str) -> pd.DataFrame:
 try:
 data_df = pd.read_csv(file_path, dtype=str)
 except FileNotFoundError:
 logging.error(f"File '{file_path}' not found.")
 raise
 except Exception as e:
 logging.error(f"An error occurred while reading data from file: {e}")
 raise
 return data_df

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

load values as text strings
to avoid errors such as "An

unexpected error occurred: can't adapt
type 'numpy.int64'" when inserting

data into PostgreSQL

reading
credentials from

json file

11

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)

def execute_ddl(conn_params: Dict[str, Any], ddl_statement: str) -> None:
 try:
 conn = connect(**conn_params)

 cur = conn.cursor()

 cur.execute(ddl_statement)

 conn.commit()
 except Error as e:
 logging.error(f"Error altering table: {e}")
 raise
 finally:
 cur.close()
 conn.close()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

required
parameters for connection to the

database server

connect to the database server and
create a cursor that allows you to execute commands

in the database

execution of DDL statement
followed by committing a transaction

closing the
cursor and the database

connection to prevent leakage of
system resources

DDL statement to be
executed

12

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)

def insert_data(conn_params: Dict[str, Any], insert_query: str, data_df: pd.DataFrame
) -> None:
 try:
 conn = connect(**conn_params)
 cur = conn.cursor()

 for index, row in data_df.iterrows():
 cur.execute(insert_query, tuple(row))
 conn.commit()
 except Error as e:
 logging.error(f"Error inserting data: {e}")
 raise
 finally:
 cur.close()
 conn.close()

 1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

each
row of input data is inserted

individually within the scope of one
transaction

13

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)

class DimRegionsQueries:
 drop_table_query = """
 DROP TABLE IF EXISTS dim_regions;
 """

 create_table_query = """
 CREATE TABLE dim_regions (
 region_id INTEGER PRIMARY KEY,
 region_name VARCHAR(255),
 region_area FLOAT
);
 """

 insert_query = """
 INSERT INTO dim_regions (region_id, region_name, region_area)
 VALUES (%s, %s, %s);
 """

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

DDL statement
to delete a table if the

table exists

DDL statement to
create a table with primary key

region_id DML statement for
inserting one row of data

into the dim_regions

14

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)
if __name__ == "__main__":
 if len(sys.argv) != 3:
 logging.error("Usage: python script.py <credentials_file> <dataset_file>")
 sys.exit(1)

 credentials_file = sys.argv[1]
 dataset_file = sys.argv[2]

 try:
 conn_params = read_credentials_file(credentials_file)

 data_df = read_data_from_file(dataset_file)

 execute_ddl(conn_params, DimRegionsQueries.drop_table_query)

 execute_ddl(conn_params, DimRegionsQueries.create_table_query)

 insert_data(conn_params, DimRegionsQueries.insert_query, data_df)

 logging.info("Data insertion completed successfully.")
 except Exception as e:
 logging.error(f"An unexpected error occurred: {e}")

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

assembling a row
by row insertion from

individual steps

the program
accepts two arguments: (1) the path

to the credentials file and (2) the
path to the data file

❖ Use your favorite IDE or database explorer to verify that the data was successfully loaded

15

Example 4.1: Load dataset 'Regions' into dim_regions (row by row) (Solution)

❖ Write a Python script to load the dataset dim_regions.csv (see Example 3.2) into the table dim_regions in the data
warehouse

❖ The dimension table will contain the columns region_id (PRIMARY KEY), region_name, and region_area

❖ Use appropriate data types to represent individual columns (e.g., INTEGER, FLOAT, TEXT, VARCHAR)

❖ Insert data into the table utilizing bulk loading, i.e., insert multiple rows of data (or entire dataset) at once

❖ Read the user credentials and information for connecting to PostgreSQL from the configuration file (e.g., credentials.json)

16

Example 4.2: Load dataset 'Regions' into dim_regions (bulk loading)

region_name

Hlavní město Praha
Středočeský kraj

Zlínský kraj
...

region_id

1
2

14
...

region_area

496.21
10928.50

3963.04
...

csv

❖ Tip: A suitable choice for interaction with the PostgreSQL database system in Python is, e.g., the
Psycopg2#2 library (version 2.9.9).

#2 https://pypi.org/project/psycopg2/

https://pypi.org/project/psycopg2/

17

Example 4.2: Load dataset 'Regions' into dim_regions (bulk loading) (Solution)

def insert_data(conn_params: Dict[str, Any], insert_query: str, data_df: pd.DataFrame
) -> None:
 try:
 conn = connect(**conn_params)
 cur = conn.cursor()

 execute_values(cur, insert_query, data_df.to_numpy())
 conn.commit()
 except Error as e:
 logging.error(f"Error inserting data: {e}")
 raise
 finally:
 cur.close()
 conn.close()

 1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

 insert_query = """
 INSERT INTO dim_regions (region_id, region_name, region_area)
 VALUES %s;
 """

 1
 2
 3
 4

 insert_data(conn_params, DimRegionsQueries.insert_query, data) 1

modify the
insert_data function to insert

all rows of data in a single
transaction

from psycopg2.extras import execute_values 1

necessary to
import the function execute_values

for bulk loading

❖ Write a Python script to load the dataset dim_regions.csv (see Example 3.2) into the table dim_regions in the data warehouse

❖ The dimension table will contain the columns region_id (PRIMARY KEY), region_name, and region_area

❖ Use appropriate data types to represent individual columns (e.g., INTEGER, FLOAT, TEXT, VARCHAR)

❖ Insert data into the table utilizing bulk loading, i.e., insert multiple rows of data (or entire dataset) at once

❖ Load data efficiently, i.e., set integrity constraints only after all data has been loaded into the table dim_regions

❖ Read the user credentials and information for connecting to PostgreSQL from the configuration file (e.g., credentials.json)

18

Example 4.3: Load dataset 'Regions' into dim_regions (bulk loading & alter table)

region_name

Hlavní město Praha
Středočeský kraj

Zlínský kraj
...

region_id

1
2

14
...

region_area

496.21
10928.50

3963.04
...

csv

❖ Tip: A suitable choice for interaction with the PostgreSQL database system in Python is, e.g., the
Psycopg2#2 library (version 2.9.9).

#2 https://pypi.org/project/psycopg2/

https://pypi.org/project/psycopg2/

...
 execute_ddl(conn_params, DimRegionsQueries.drop_table_query)

 execute_ddl(conn_params, DimRegionsQueries.create_table_query)

 insert_data(conn_params, DimRegionsQueries.insert_query, data)

 execute_ddl(conn_params, DimRegionsQueries.alter_table_query)
...

19

Example 4.3: Load dataset 'Regions' into dim_regions (bulk loading & alter table) (Solution)
class DimRegionsQueries:
...
 create_table_query = """
 CREATE TABLE dim_regions (
 region_id INTEGER,
 region_name VARCHAR(255),
 region_area FLOAT
);
 """

 alter_table_query = """
 ALTER TABLE dim_regions
 ADD CONSTRAINT dim_regions_pk PRIMARY KEY (region_id);
 """

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

14
14
14
14
14
14
14
14
14

create a
table without

primary key (IC)
DDL statement

for adding integrity
constraint

dim_regions_pk

add
integrity constraints

after all data has been
inserted

no
integrity checking or index
creation occurs during data

insertion

❖ Extend the script from Example 4.4 to allow bulk loading of the following
datasets into the corresponding tables in the data warehouse:

❖ dim_regions.csv (already solved)

❖ dim_regions.csv

❖ dim_waste_dategories.csv

❖ dim_expenses.categories.csv

❖ fact_waste_population.csv

❖ fact_expenses.csv

❖ Use appropriate data types to represent individual columns

❖ Load into the tables utilizing bulk loading, i.e., insert multiple rows of data

(or entire dataset) at once

❖ Load data efficiently, i.e., set integrity constraints only after all data has

been loaded

❖ Ensure error-free repetition of script execution

❖ Determine the appropriate order of DDL and DML statements

❖ Read the user credentials and information for connecting to data
warehouse from the configuration file (e.g., credentials.json)

20

Exercise 4.4: Efficient and repeatable bulk loading of all datasets

year (PK)

dim_years

region_ref (FK)
year (FK)

cate_ref (FK)
expenses_amount

region_ref (FK)
year (FK)

cate_ref (FK)
population

waste_amount
waste_per_capita

fact_expensesfact_waste
_population

region_id (PK)
region_name
region_area

cate_id (PK)
ukazatel

ozp

cate_id (PK)
stapro
cznace

dim_regions dim_expenses
_categories

dim_waste
_categories

Python

❖ Python 3.x (LATEST) documentation: https://docs.python.org/3/

❖ venv documentation: https://docs.python.org/3/library/venv.html

❖ Python W3Schools Tutorial: https://www.w3schools.com/python/

❖ psycopg2: https://pypi.org/project/psycopg2/

PostgreSQL

❖ Documentation: https://www.postgresql.org/docs/

❖ SQL W3Schools Tutorial: https://www.w3schools.com/sql/

IDEs and Database Tools

❖ Apache NetBeans: https://netbeans.apache.org/front/main/index.html

❖ Visual Studio Code: https://code.visualstudio.com/

❖ DBeaver: https://dbeaver.io/

21

References

https://docs.python.org/3/
https://docs.python.org/3/library/venv.html
https://www.w3schools.com/python/
https://pypi.org/project/psycopg2/
https://www.postgresql.org/docs/
https://www.w3schools.com/sql/
https://netbeans.apache.org/front/main/index.html
https://code.visualstudio.com/
https://dbeaver.io/

