

R-Trees

NDBI007: Assignment 5

Task 1

* Insert the following 11 elements arbitrarily into a node with dimensions $a=\langle 8,14\rangle$, $b=\langle 8,14\rangle, a \neq b$
* Elements can be rotated and overlapped freely
* You will use this node in the following tasks

* Points: 0

Task 2: Guttman's Split

* Split the overflown node with Guttman's method
* The maximum number of items in a node is $M=10$
* The minimum number of items in a node is $m=\langle 3,5\rangle$
* In the PickSeeds method, calculate the overall area, area of the elements, and dead space only for the 4 selected most distant pairs of elements
* I.e., you do not need to consider all possible pairs of elements
* Illustrate all the steps of splitting a node and the result
* Or, you may implement the algorithm and log all events (i.e., submit the source code and, e.g., makefile)
* The permitted languages are Java, Python, C, C++, and Swift
* Points: 1

Task 3: Greene's Split

* Split the overflown node with Greene's method
* The maximum number of items in a node is $M=10$
* The minimum number of items in a node is $m=\langle 3,5\rangle$
* In the PickSeeds method, calculate the overall area, area of the elements, and dead space only for the 4 selected most distant pairs of elements
* I.e., you do not need to consider all possible pairs of elements
* Illustrate all the steps of splitting a node and the result
* Or, you may implement the algorithm and log all events (i.e., submit the source code and, e.g., makefile)
* The permitted languages are Java, Python, C, C++, and Swift
* Points: 1

Task 4: Splitting In R* Tree

* Split the overflown node with R^{*} Tree split method
* The maximum number of items in a node is $M=10$
* The minimum number of items in a node is $m=\langle 3,5\rangle$
* Illustrate all the steps of splitting a node and illustrate the result
* Or, you may implement the algorithm and log all events (i.e., submit the source code and, e.g., makefile)
* The permitted languages are Java, Python, C, C++, and Swift
* Points: 1

Bonus Task 5

* Compare the individual methods of splitting of an overflown node
* I.e., Guttman's, Greene's, and R* Tree split
* What are the advantages and disadvantages?
* What effect do they have on the height or occupancy of the $\mathrm{R}\left(^{*}\right)$ tree?
* Points: 1

