

NDBI007: Practical class 6

Exercise 6.2 (Solution)

* Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node

Object	ABEF	GI	Difference
C	$6 \times 6-30=6$	$5 \times 3-6=9$	$\|6-9\|=3$
D	$8 \times 5-30=10$	$2 \times 8-6=10$	$\|10-10\|=0$

* The biggest difference shows the object C, hence it will be inserted into the node which is closer, i.e., ABEF
* Thus, we have nodes ABCEF and GI

Exercise 6.2 (Solution Continued)

* Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node

* The biggest difference shows the object H, hence it will be inserted into the node which is closer, i.e., ABCEF
* Thus, we have nodes ABCEFH and GI

Exercise 6.2 (Solution Continued)

* Finally, object D must be placed in the node GI because the minimum number of items per node is $m=3$ and

$$
G I=2, \text { that is } G I<m
$$

* As a result, we have nodes ABCEFH and DGI

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

Exercise 6.3 (Solution)

* Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node

Object	ABEF	GI	Difference
C	$6 \times 6-30=6$	$5 \times 3-6=9$	$\|6-9\|=3$
D	$8 \times 5-30=10$	$2 \times 8-6=10$	$\|10-10\|=0$

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

* The biggest difference shows the object C and H , yet we choose C being inserted into the node which is closer, i.e., ABEF
* Thus, we have nodes ABCEF and Gl

Exercise 6.3 (Solution Continued)

* Finally, objects H and D must be places in the node Gl because the minimum number of items per node is $m=4$ and $G I=2$, i.e., $G I<m$
* As a result, we have nodes ABCEF and DGHI
* There is a smaller death space in node ABCEF but for a price of a huge overlapping area, therefore it is already better to use smaller value of m in this particular case

ABCDEFGHI

Exercise 6.5 (Solution)

* PickSeeds
* The largest dead space has DJ thus those will be the seeds of the splitting method

Pair	Overall area	Area of the objects	Dead space
AB	$9 \times 8=72$	$5+4=9$	$72-9=63$
AC	$8 \times 5=40$	$5+4=9$	$40-9=31$
\ldots			
BG	$11 \times 8=88$	$4+2=6$	$88-6=82$
\ldots			
DJ	$12 \times 8=96$	$3+1=4$	$96-4=92$
\ldots			
IJ	$6 \times 1=6$	$2+1=3$	$6-3=3$

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

Exercise 6.5 (Solution Continued)

* ChooseAxis
* $x: 8 / 12=0.667$
* $y: 6 / 8=0.750$
* In this particular case, the axis y is better separating D and J

y: $6 / 8$	G			A			I	I				J
	G		A	A	A							
				A					C			
		F							C	C		
		F				H	H		C			
		F										
					E	E	E		B	B	B	
	D	D	D							B		

Exercise 6.5 (Solution Continued)

* Distribute according to axis y

Object	D	B	E	F	H	C	A	G	I	J
Start	0	0	1	2	3	3	5	6	7	7
end	0	1	1	4	3	5	7	7	7	7

* The solution:
* BDEFH || ACGIJ

G				A				1	1						J
G			A	A		A									
				A							C				
	F										C		c		
	F						H	H			C				
	F														
						E	E	E			B		B	B	
D	D		D										B		

Exercise 6.7 (Solution)

* Ordering* based on the x-axis: GDFAEHICBJ
* margin-value (GDF || AEHICBJ) $=(3+8)^{*} 2+(10+8)^{*} 2=22+36=58$
* margin-value (GDFA || EHICBJ) $=(5+8)^{*} 2+(8+8)^{*} 2=26+32=58$
* margin-value (GDFAE || HICBJ) $=(7+8)^{*} 2+(7+8)^{*} 2=30+30=60$
* margin-value (GDFAEH || ICBJ) $=(7+8)^{*} 2+(6+8)^{*} 2=30+28=58$
* margin-value (GDFAEHI || CBJ) $=(8+8)^{*} 2+(4+8)^{*} 2=32+24=56$
* Sum $=58+58+60+58+56=290$
* Ordering* based on the y-axis: DBEFHCAGIJ
* margin-value (DBE || FHCAGIJ) $=(11+2)^{*} 2+(12+6)^{*} 2=26+36=62$
* margin-value (DBEF || HCAGIJ) $=(11+5)^{*} 2+(12+5)^{*} 2=32+34=66$
* margin-value (DBEFH || CAGIJ) $=(11+5)^{*} 2+(12+5)^{*} 2=32+34=66$
* margin-value (DBEFHC || AGIJ) $=(11+6)^{*} 2+(12+3)^{*} 2=34+30=64$

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

DBEFHCAGIJ

* margin-value (DBEFHCA || GIJ) $=(11+8)^{*} 2+(12+2)^{*} 2=38+24=62$
* Sum $=62+66+66+64+62=320$

Exercise 6.7 (Solution Continued)

* We chose splitting along the x-axis (smaller sum)
* overlap-value (GDF || AEHICBJ) = 8 (column AD)
* overlap-value (GDFA || EHICBJ) $=8$ (column AE)
* overlap-value (GDFAE || HICBJ) = 16 (columns HE; IHE)
* overlap-value (GDFAEH || ICBJ) $=8$ (column IHE)
* overlap-value (GDFAEHI || CBJ) $=0$
* There is only one distribution having the smallest overlap, therefore the area-value does not have to be computed

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

* The result is: GDFAEHI || CBJ

