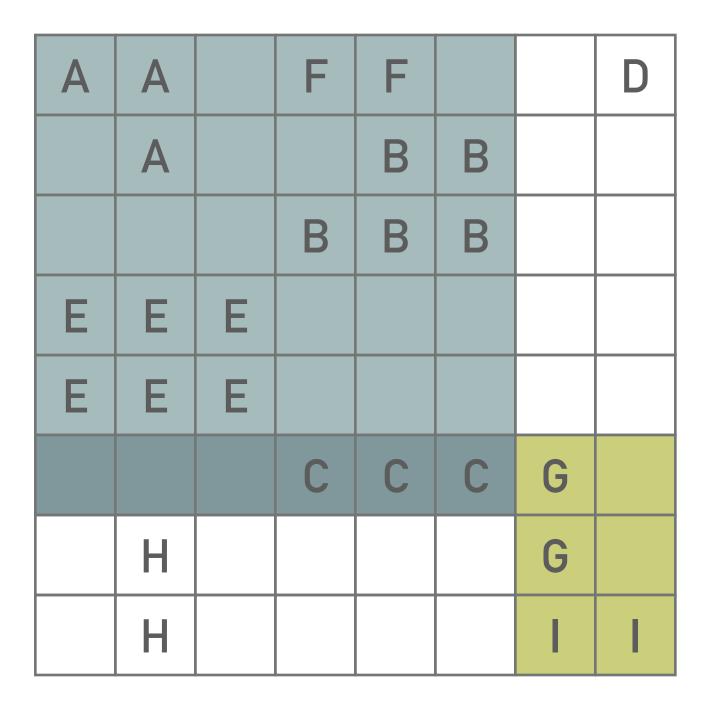


Solution

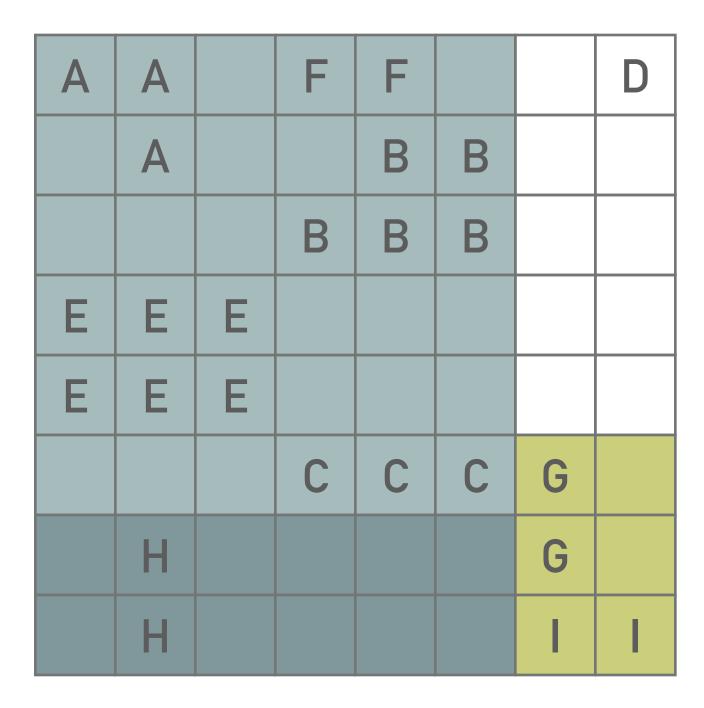

NDB1007: Practical class 6

Exercise 6.2 (Solution)

 Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node

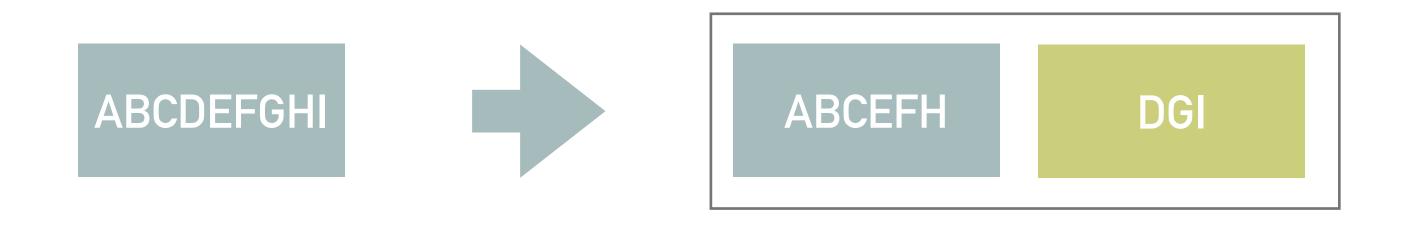
ABEF	GI	Difference
6x6-30=6	5x3-6=9	6-9 =3
8x5-30=10	2x8-6=10	10-10 =0
6x8-30=18	7x3-6=15	18-15 =3
	6x6-30=6 $8x5-30=10$	6x6-30=6 5x3-6=9 $8x5-30=10 2x8-6=10$

- * The biggest difference shows the object C, hence it will be inserted into the node which is closer, i.e., ABEF
- * Thus, we have nodes ABCEF and GI



Exercise 6.2 (Solution Continued)

 Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node


Object	ABCEF	GI	Difference
D	8x6-36=12	2x8-6=10	12-10 =2
Н	6x8-36=12	7x3-6=15	12-15 =3

- * The biggest difference shows the object H, hence it will be inserted into the node which is closer, i.e., ABCEF
- * Thus, we have nodes ABCEFH and GI

Exercise 6.2 (Solution Continued)

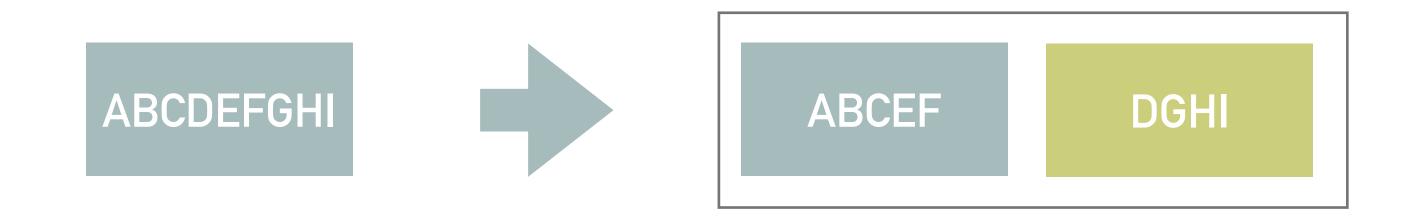
- * Finally, object D must be placed in the node GI because the minimum number of items per node is m=3 and GI=2, that is GI< m
 - * As a result, we have nodes ABCEFH and DGI

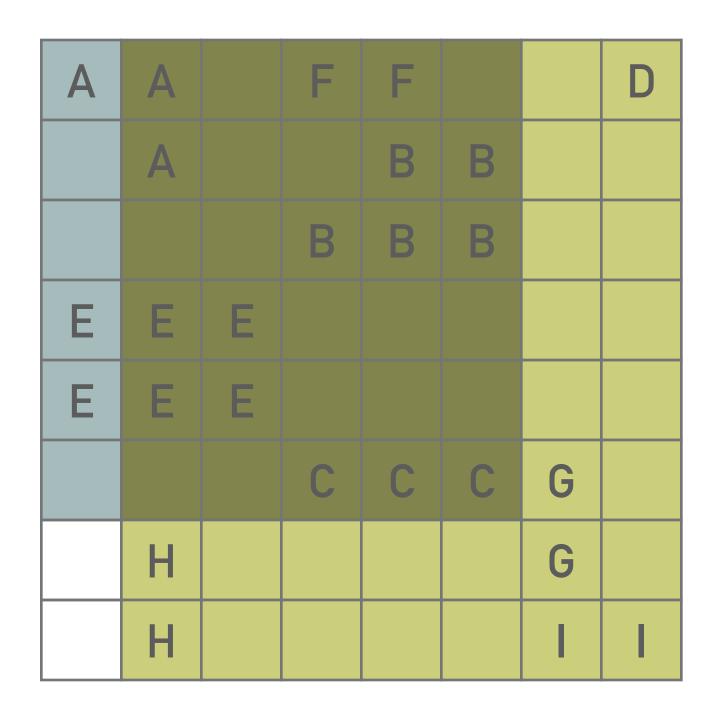
Α	A		F	F			D
	A			В	В		
			В	В	В		
Е	Е	Е					
Е	Е	Е					
			С	С	С	G	
	Н					G	
	Н					Τ	Τ

Exercise 6.3 (Solution)

Next, iteratively add such an object into a node which will maximize the difference in the node area enlargements if the object was inserted into the first or second node

Object	ABEF	GI	Difference
C	6x6-30=6	5x3-6=9	6-9 =3
D	8x5-30=10	2x8-6=10	10-10 =0
Н	6x8-30=18	7x3-6=15	18-15 =3


*	The biggest difference shows the object C and H, yet we choose
	C being inserted into the node which is closer, i.e., ABEF



Α	A		F	F			D
	A			В	В		
			В	В	В		
Е	Е	Е					
Е	Е	Е					
			С	С	С	G	
	Н					G	
	Н					Ι	Τ

Exercise 6.3 (Solution Continued)

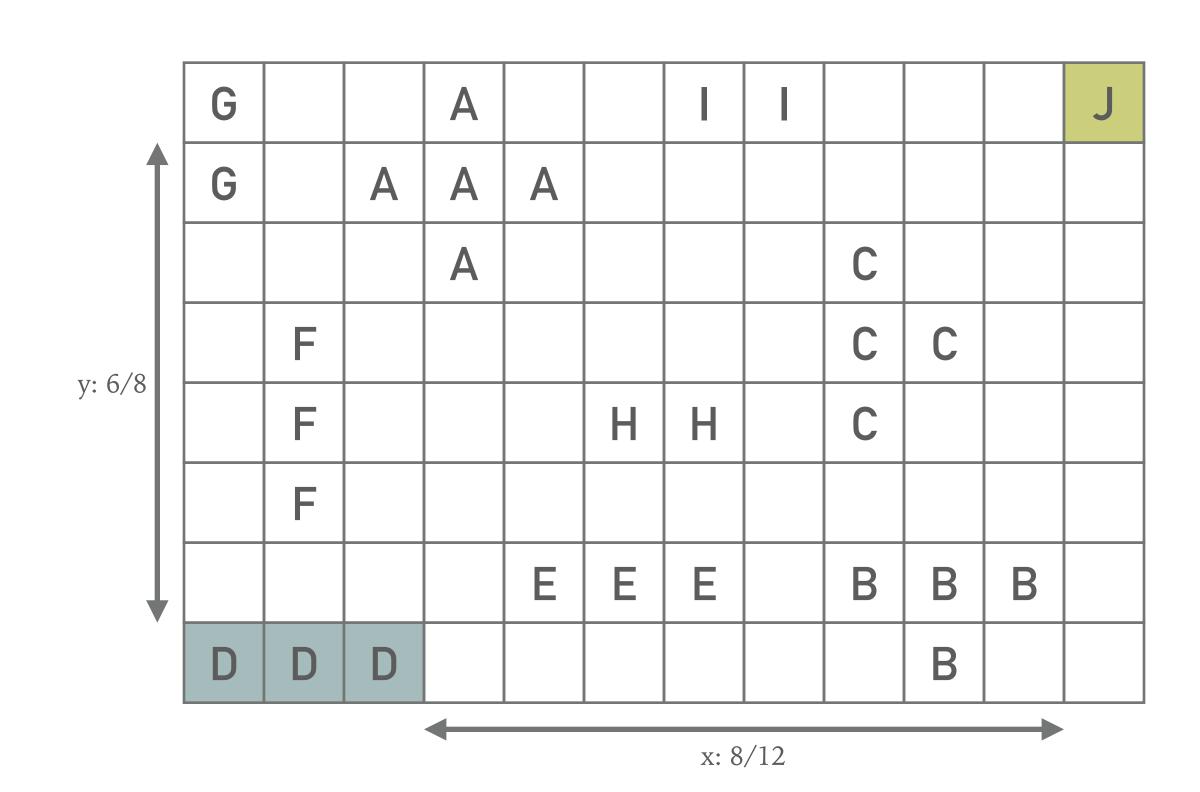
- * Finally, objects H and D must be places in the node GI because the minimum number of items per node is m = 4 and GI = 2, i.e., GI < m
 - * As a result, we have nodes ABCEF and DGHI
 - * There is a smaller death space in node ABCEF but for a price of a huge overlapping area, therefore it is already better to use smaller value of *m* in this particular case

Exercise 6.5 (Solution)

* PickSeeds

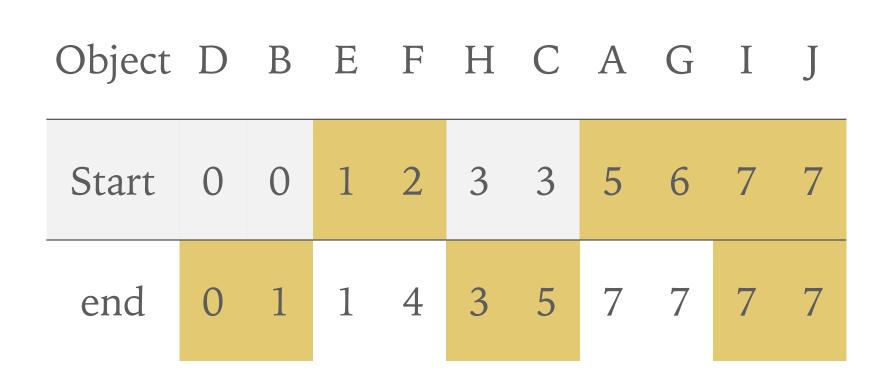
* The largest dead space has DJ thus those will be the seeds of the splitting method

Pair	Overall area	Area of the objects	Dead space
AB	9x8 = 72	5+4=9	72-9=63
AC	8x5=40	5+4=9	40-9=31
* * *			
BG	11x8 = 88	4+2=6	88-6=82
* * *			
DJ	12x8=96	3+1=4	96-4=92
* * *			
IJ	6x1=6	2+1=3	6 - 3 = 3

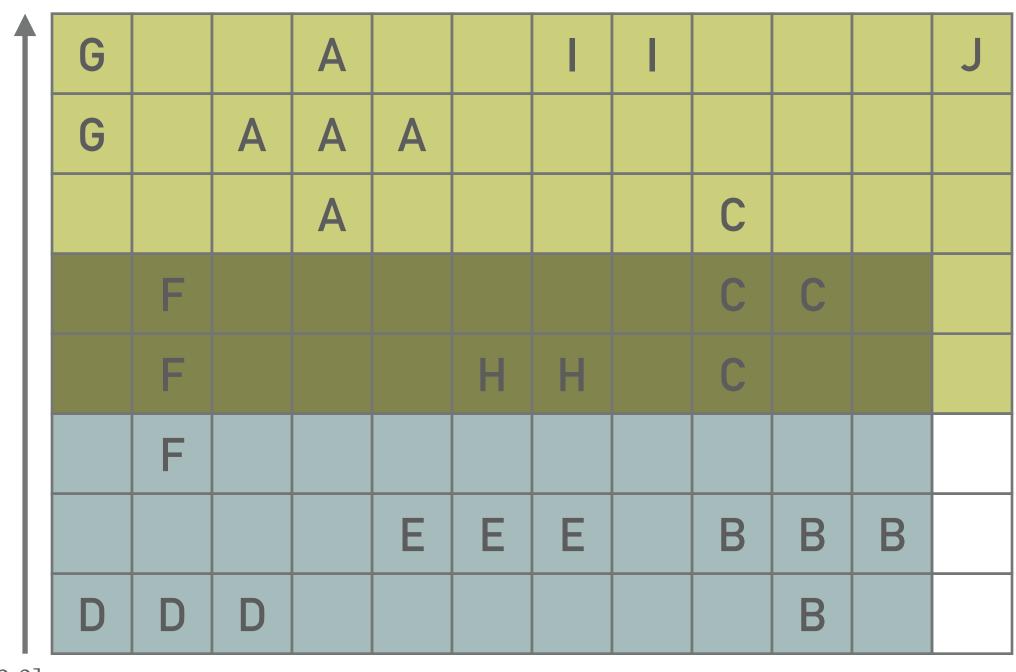

G			Α			ı	ı				J
G		A	A	Α							
			A					С			
	F							С	С		
	F				Н	Н		С			
	F										
				Ε	Ε	Ε		В	В	В	
D	D	D							В		

Exercise 6.5 (Solution Continued)

* ChooseAxis


- x: 8/12 = 0.667
- vec* y: 6/8 = 0.750

 In this particular case, the axis y is better separating D and J



Exercise 6.5 (Solution Continued)

* Distribute according to axis y

- * The solution:
 - * BDEFH | ACGIJ

[0,0]

Exercise 6.7 (Solution)

- Ordering* based on the x-axis: GDFAEHICBJ
 - margin-value (GDF || AEHICBJ) = (3+8)*2+(10+8)*2=22+36=58
 - * margin-value (GDFA || EHICBJ) = $(5+8)^2+(8+8)^2=26+32=58$
 - * margin-value (GDFAE | HICBJ) = $(7+8)^2+(7+8)^2=30+30=60$
 - * margin-value (GDFAEH | ICBJ) = (7+8)*2+(6+8)*2=30+28=58
 - * margin-value (GDFAEHI | CBJ) = (8+8)*2+(4+8)*2=32+24=56
 - * Sum = 58+58+60+58+56 = 290
- Ordering* based on the y-axis: DBEFHCAGIJ
 - * margin-value (DBE | FHCAGIJ) = (11+2)*2+(12+6)*2=26+36=62
 - * margin-value (DBEF | HCAGIJ) = (11+5)*2+(12+5)*2=32+34=66
 - * margin-value (DBEFH || CAGIJ) = (11+5)*2+(12+5)*2=32+34=66
 - * margin-value (DBEFHC | AGIJ) = (11+6)*2+(12+3)*2=34+30=64
 - * margin-value (DBEFHCA | GIJ) = (11+8)*2+(12+2)*2=38+24=62
 - * Sum = 62+66+66+64+62 = 320

1	G			Α			_	_				J
	G		Α	Α	Α							
				Α					С			
		F							С	С		
		F				Н	Н		С			
		F										
					Е	Е	Е		В	В	В	
	D	D	D							В		
_ '												
EFH	CAGII					APITEI						

DBEFHCAGIJ **AEHFBCGID**

Exercise 6.7 (Solution Continued)

- We chose splitting along the x-axis (smaller sum)
 - overlap-value (GDF || AEHICBJ) = 8 (column AD)
 - * overlap-value (GDFA || EHICBJ) = 8 (column AE)
 - overlap-value (GDFAE | HICBJ) = 16 (columns HE; IHE)
 - * overlap-value (GDFAEH | ICBJ) = 8 (column IHE)
 - * overlap-value (GDFAEHI || CBJ) = 0
- * There is only one distribution having the smallest overlap, therefore the area-value does not have to be computed

G			Α			1	1				J
G		A	A	А							
			A					С			
	F							С	С		
	F				Н	Н		С			
	F										
				Е	Е	Е		В	В	В	
D	D	D							В		

* The result is: GDFAEHI || CBJ