B-Trees

NDBI007: Practical class 5

B-Tree

* B-Tree of degree m is balanced m-ary tree where:
* The root has at least 2 children unless it is a leaf
*. Every inner node have at least $\left\lceil\frac{m}{2}\right\rceil$ and at most m children
*. Every inner node contains at least $\left\lceil\frac{m}{2}\right\rceil-1$ and at most $m-1$ data entries (e.g., keys, pointers)
* All the paths from the root to the leaf are of the same length
* The nodes have the structure $p_{0},\left(k_{1}\left[, d_{1}\right], p_{1}\right),\left(k_{2}\left[, d_{2}\right], p_{2}\right), \ldots,\left(k_{n}\left[, d_{n}\right], p_{n}\right), u$
* p_{i}-pointers to the children
* k_{i}-keys
* d_{i} - data or pointers to them

* u - unused space
* where $\left\lceil\frac{m}{2}\right\rceil-1 \leq n \leq m-1$
* Records $\left(k_{i}\left[, d_{i}\right], p_{i}\right)$ are sorted with respect to k_{i}
* Keys k_{i} in the subtree pointed by p_{i} are greater than or equal to k_{i} and less than i_{i+1}

Example 5.1: Insert (Splitting the Root)

* Insert entries with keys 15, 9, and 23 into an empty tree
* Suppose a non-redundant B-tree of degree $m=3$

* The inner nodes have between $\lceil 3 / 2\rceil$ and 3 children, i.e., they contain between 1 and 2 keys
* The records with keys 15 and 9 fit into a single (root) node

9 | 15 |

* The record with key 23 does not fit and causes splitting
* First, we order the keys 15, 9, and 23 in ascending order, i.e., 9, 15, and 23
* The middle key (i.e., 15) will divide the smaller keys (i.e., 9) in one node
 from the bigger keys (i.e., 23) in a new node
* The dividing key will be placed into the parent node (i.e., new root node)

Example 5.2: Additional Inserts

* Insert records with keys 25, 19, and 50 into B-tree from previous example

* The record with key 25 fits into the (right) leaf
* The record with key 19 will split the (right) node into two nodes, i.e., (19) and (25) with (23) being the dividing record

* The dividing record (23) finds its place in the parent node
* The record 40 will fall into the right node

Example 5.3: Insert (Propagation)

* Insert records with keys 17 and 21 into the B-tree from previous example

* The record 17 falls into the middle leaf
* The record 21 causes splitting of the middle leaf (17, 19,
 21) and propagation of the record (19) to the parent
* However, there is no more space in the parent node (root)
* Thus, the parent node $(15,19,23)$ needs to be split as well which increases the tree height

Example 5.4 Delete

* Remove record with key 23 from the non-redundant Btree of degree 3 (see the upper figure)

* The deletion of a data entry from an inner node leads to its replacement with the most left descendant entry from the right subtree or the most right entry from its left subtree
* If we delete 23 from the tree above, we can replace it with entry 25 from the bottom node (leaf)
* Moving the entry 25 from the leaf $(25,40)$ is safe since it still has the minimum number of entries

Example 5.5: Delete (Merging)

* Remove record with key 17 from the non-redundant B-tree of degree 3 (see the upper figure)
* We cannot borrow an entry from the neighbor (9) since it also contains the minimal number of entries
* Therefore we have to merge nodes (9), (empty), and 15

* The entries of the current node (none left after removing 17), those from the neighboring node (9) and the dividing node will be moved into a single node (9, 15)
* Thus, the entry 15 needs to be removed from the parent node which causes underflow of that node
* We have to merge nodes (empty parent node), (19) and (25)
* Once again, we cannot borrow an entry from the neighbor node (25)
* The empty node (empty) is merged with the node (25) and dividing entry (19) from the root node, resulting in the node $(19,25)$
* Having entry 19 removed from the root (empty), the height of the tree decreases

Exercise 5.6

* Suppose a non-redundant B-tree of degree $m=3$ (see the figure)
* First, illustrate the B-tree after insertion of records with keys 11, 18, and 14

* Second, illustrate the B-tree after deletion of records with keys 40 , and 14

B+-Tree

* B^{+}-Tree differs from the original B-tree by:
* It is always redundant, i.e., the data are stored or pointed to from the leaf nodes
* The leaf nodes are chained using pointers in a linked list which simplifies range queries
* In reality, often all the levels are linked (not just the leaf level)
* The inner nodes contain only the values using which the tree can be traversed
* The nodes have the structure $[\mathrm{prev},] p_{0},\left(k_{1}, p_{1}\right), \ldots,\left(k_{n}, p_{n}\right), u[$ next $]$

$* p_{i}$ - pointers to the children or data
* k_{i} - keys
* Keys k_{j} in the subtree pointed by p_{i} are greater than or equal to k_{i} and less than k_{i+1}, if k_{i+1} exists
* The minimum number of children can be raised to $\lceil(m+1) / 2\rceil$

Example 5.7: Insert

* Insert records with keys 10, 7, 15, 5, 30, and 20 into an empty B+tree
* Suppose a B+-tree of degree $m=6$
* Hence, the minimum number of children is $3+1$ (modified)
* Insertion of keys $10,7,15,5$, and 30 is trivial, all belong to the root

| 5 | 7 | 10 | $15\|\|30\|$ |
| :--- | :--- | :--- | :--- | :--- | node

* Insertion of key 20 leads to a page split
* A half of the records, i.e., $(5,7,10)$, stays in the original page while the rest, i.e., $(15,20,30)$, moves into a new page
* The maximal key value in the left node, i.e., 10, is propagated
 into the higher level (new root note)
* However, any value $10 \leq$ value ≤ 14 would work

Example 5.8: Additional Inserts

* Insert additional records with keys $13,3,11,21,8$, and 9 into the B^{+}-Tree from the previous example
* The insertion of records with keys 13,3 , and 11 is trivial
* The insertion of a record with key 21 splits the right leaf node into nodes $(11,13,15)$ and $(20,21,30)$
* The separating value (i.e., 15) is inserted into the parent node where there is enough space so it does not lead to another split
* Inserting of records with keys 8 and 9 leads to the split of the leaf into $(3,5,7)$ and $(8,9,10)$
* The separation value 7 is inserted into the parent node

Example 5.9: Delete (and Merge Nodes)

* Remove the record with key 15 from the B+-Tree
* When removing keys from a B^{+}-Tree, the given key is simply removed from the leaf unless the corresponding leaf underflows
* In such case, the tree tries to borrow a key from a sibling leaf and to change the splitting value
* If also the neighbors have the minimum number of entries, it is necessary to merge two nodes into one and remove the splitting value from the parent
* Which can lead to the merge cascade up to the root
* In our example, every node (except the root) needs to include at least three keys
* Removing the key 15, the condition is violated and sibling leaves cannot lose any entry either
* Hence we merge node $(11,13)$ with $(20,23,30)$ and remove the splitting value 15 from the parent

Example 5.10: Delete (Borrow Key)

* Remove the entry with key 8 from the B+-tree

* To remove the entry 8 we need to move the entry with key 11 from the neighboring node to keep the condition of minimum number of entries in every node
* It is necessary to change the splitting value in the parent from 10 to 11

Example 5.11: Delete

* Remove records with keys 3,10 , and 11 from the B+-tree (see the previous page)
* Removing the key 3
* After the removal, the number of records in the node $(5,7)$ falls under minimum and the neighboring node, i.e., $(9,10,11)$, cannot provide any record

* The nodes $(5,7)$ and $(9,10,11)$ are merged
* Finally, the splitting value 7 is removed from the parent
* Removing the keys 10, 11
* It is sufficient to remove the keys from the node, no modifying of splitting value is required

Exercise 5.12

* Suppose a $\mathrm{B}^{+-t r e e ~ o f ~ d e g r e e ~} m=4$ (see the figure)
* Minimum modified number of children of a node is 3 , i.e., $\lceil(4+1) / 2\rceil$
* Illustrate the B+-tree after the insertion of keys 40, 50, and 60

B*-Tree

* B*-tree differ from the standard B-tree by:
* The non-root nodes have at least $\lceil(2 m-1) / 3\rceil$ children
* If the tree contains few records (i.e., after splitting the root node), the only two leafs can contain less records (about half)
* If a node has too few items, or overflows, it is balanced using both of its neighbors
* If a node and its neighbor are full, they are split (together with the new record) into three nodes being 2/3 filled

Example 5.13: Insert

* Insert records with keys 10, 7, 15, 5, 30, 20, and 13 into an empty \square redundant B*-tree
* Suppose an empty B^{\star}-tree of degree $m=5$
* Minimum number of children is 3 and minimum number of keys is 2

```
5 5| 7 7 10 10 15 
```

* Insertion of records with keys 10, 7, 15, and 5 is trivial, all goes to the root node
* Inserting a record with key 30 leads to root node split

* Split nodes are $(5,7,10)$ and $(15,30)$
* The dividing value 10 is inserted into the new parent (i.e., new root)
* A record with key 20 can be inserted into the right leaf, as well as a record with a key 13

Example 5.14: Additional Inserts

* Continue with the previous example and insert records with keys 21 and 3 into the redundant B^{*}-tree
* Inserting the key 21
* We cannot insert the key 21 into the full node (13, 15, 20, 30), but the record with key 13 can be moved to the neighboring and not yet filled node
* The splitting value in the parent needs to be modified
* Inserting the key 3
* The key 3 cannot be inserted into the node ($5,7,10,13$) and the neighbor is full as well
* The records in both nodes, together with record 3, will be split into
 three nodes $(3,5,7),(10,13,15)$ and $(20,21,30)$
* Splitting values 7 and 15 need to be inserted into the parent node instead of the existing splitting value 13

Example 5.15: Additional Inserts

* Continue with the previous example and insert records with keys 8, 9 , and 11 into the redundant B^{*}-tree
* The record 8 fits into the middle leaf

* The record 9 causes redistribution of the record 8 to the leaf and change of the splitting value from 7 to 8

* The redistribution of the record with key 15 to the right and modification of the splitting value in the parent from 15 to 13
* Split of nodes $(3,5,7,8)$ and $(9,10,13,15)$ into three nodes $(3,5$, $7),(8,9,10)$ and $(11,13,15)$
* The splitting value 8 would be replaced by a pair 7 and 10

Example 5.16: Delete

* Continue with previous example and delete the records with keys 13, 11, and 10 from redundant B^{*}-tree
* The record with key 13 can be easily deleted from the middle leaf
* The same holds for the record with key 11
* The record with key 10 cannot be deleted directly
* The number of entries in a node would decrease under the threshold
* Therefore it is necessary to move there the record with key 15 from the neighboring node

* The splitting value in the parent changes from 13 to 15

Exercise 5.17

* Continue with previous example and delete records with keys 15, 9, and 8 from redundant B^{\star}-tree (see the figure)
* Finally, remove (single) additional key of your choice from the B^{\star}-tree
* Illustrate and comment the removals step by step

