
B-Trees
NDBI007: Practical class 5

❖ B-Tree of degree is balanced -ary tree where:

❖ The root has at least 2 children unless it is a leaf

❖
Every inner node have at least and at most children

❖
Every inner node contains at least and at most data entries (e.g., keys, pointers)

❖ All the paths from the root to the leaf are of the same length

❖ The nodes have the structure

❖ - pointers to the children

❖ - keys

❖ - data or pointers to them

❖ - unused space

❖
where

❖ Records are sorted with respect to

❖ Keys in the subtree pointed by are greater than or equal to and less than

m m

⌈ m
2 ⌉ m

⌈ m
2 ⌉ − 1 m − 1

p0, (k1[, d1], p1), (k2[, d2], p2), …, (kn[, dn], pn), u

pi

ki

di

u

⌈ m
2 ⌉ − 1 ≤ n ≤ m − 1

(ki[, di], pi) ki

ki pi ki ii+1

2

B-Tree

p0 k1 p1[d1] kn pn[dn] u…

record

node

❖ Insert entries with keys 15, 9, and 23 into an empty tree

❖ Suppose a non-redundant B-tree of degree

❖ The inner nodes have between and children, i.e., they
contain between and keys

❖ The records with keys 15 and 9 fit into a single (root) node

❖ The record with key 23 does not fit and causes splitting

❖ First, we order the keys 15, 9, and 23 in ascending order, i.e., 9, 15, and

23

❖ The middle key (i.e., 15) will divide the smaller keys (i.e., 9) in one node

from the bigger keys (i.e., 23) in a new node

❖ The dividing key will be placed into the parent node (i.e., new root node)

m = 3
⌈3/2⌉ 3

1 2

3

Example 5.1: Insert (Splitting the Root)

15 159

239

15

❖ Insert records with keys 25, 19, and 50 into B-tree from
previous example

❖ The record with key 25 fits into the (right) leaf

❖ The record with key 19 will split the (right) node into two
nodes, i.e., (19) and (25) with (23) being the dividing record

❖ The dividing record (23) finds its place in the parent node

❖ The record 40 will fall into the right node

4

Example 5.2: Additional Inserts

25239

15

25199

2315

4025199

2315

❖ Insert records with keys 17 and 21 into the B-tree from
previous example

❖ The record 17 falls into the middle leaf

❖ The record 21 causes splitting of the middle leaf (17, 19,
21) and propagation of the record (19) to the parent

❖ However, there is no more space in the parent node

(root)

❖ Thus, the parent node (15, 19, 23) needs to be split as

well which increases the tree height

5

Example 5.3: Insert (Propagation)

402521179

2315

19

402519179

2315

4025199

2315

❖ Remove record with key 23 from the non-redundant B-
tree of degree 3 (see the upper figure)

❖ The deletion of a data entry from an inner node leads to
its replacement with the most left descendant entry from
the right subtree or the most right entry from its left
subtree

❖ If we delete 23 from the tree above, we can replace it

with entry 25 from the bottom node (leaf)

❖ Moving the entry 25 from the leaf (25, 40) is safe since

it still has the minimum number of entries
6

Example 5.4 Delete

402521179

2315

19

4021179

2515

19 23

❖ Remove record with key 17 from the non-redundant B-tree of degree 3 (see the
upper figure)

❖ We cannot borrow an entry from the neighbor (9) since it also contains the minimal
number of entries

❖ Therefore we have to merge nodes (9), (empty), and 15

❖ The entries of the current node (none left after removing 17), those from the

neighboring node (9) and the dividing node will be moved into a single node (9,
15)

❖ Thus, the entry 15 needs to be removed from the parent node which causes

underflow of that node

❖ We have to merge nodes (empty parent node), (19) and (25)

❖ Once again, we cannot borrow an entry from the neighbor node (25)

❖ The empty node (empty) is merged with the node (25) and dividing entry (19)

from the root node, resulting in the node (19, 25)

❖ Having entry 19 removed from the root (empty), the height of the tree decreases

7

Example 5.5: Delete (Merging)

4021179

2515

19

402117159

251915

19

17

❖ Suppose a non-redundant B-tree of degree (see
the figure)

❖ First, illustrate the B-tree after insertion of records with
keys 11, 18, and 14

❖ Second, illustrate the B-tree after deletion of records
with keys 40, and 14

m = 3

8

Exercise 5.6

4021159

2519

❖ B+-Tree differs from the original B-tree by:

❖ It is always redundant, i.e., the data are stored or pointed to from the leaf nodes

❖ The leaf nodes are chained using pointers in a linked list which simplifies range

queries

❖ In reality, often all the levels are linked (not just the leaf level)

❖ The inner nodes contain only the values using which the tree can be traversed

❖ The nodes have the structure

❖ - pointers to the children or data

❖ - keys

❖ Keys in the subtree pointed by are greater than or equal to and less than
, if exists

❖ The minimum number of children can be raised to

[prev,] p0, (k1, p1), …, (kn, pn), u [,next]

pi

ki

kj pi ki
ki+1 ki+1

⌈(m + 1)/2⌉

9

B+-Tree

p0 k1 p1 kn pn u…

node

nextprev

❖ Insert records with keys 10, 7, 15, 5, 30, and 20 into an empty B+-
tree

❖ Suppose a B+-tree of degree

❖ Hence, the minimum number of children is 3+1 (modified)

❖ Insertion of keys 10, 7, 15, 5, and 30 is trivial, all belong to the root
node

❖ Insertion of key 20 leads to a page split

❖ A half of the records, i.e., (5, 7, 10), stays in the original page

while the rest, i.e., (15, 20, 30), moves into a new page

❖ The maximal key value in the left node, i.e., 10, is propagated

into the higher level (new root note)

❖ However, any value would work

m = 6

10 ≤ value ≤ 14

10

Example 5.7: Insert

75 10 15 30

75 10

10

2015 30

❖ Insert additional records with keys 13, 3, 11, 21, 8, and 9 into the B+-Tree from the previous example

❖ The insertion of records with keys 13, 3, and 11 is trivial

❖ The insertion of a record with key 21 splits the right leaf node into nodes (11, 13, 15) and (20, 21, 30)

❖ The separating value (i.e., 15) is inserted into the parent node where there is enough space so it does not lead to another split

❖ Inserting of records with keys 8 and 9 leads to the split of the leaf into (3, 5, 7) and (8, 9, 10)

❖ The separation value 7 is inserted into the parent node

11

Example 5.8: Additional Inserts

53 7 10

1510

1311 15

2120 30

53 7

107 15

98 10

1311 15

2120 3053 7 10

10

1311 15 20 30

❖ Remove the record with key 15 from the B+-Tree

❖ When removing keys from a B+-Tree, the given key is simply removed from the leaf unless the
corresponding leaf underflows

❖ In such case, the tree tries to borrow a key from a sibling leaf and to change the splitting value

❖ If also the neighbors have the minimum number of entries, it is necessary to merge two nodes

into one and remove the splitting value from the parent

❖ Which can lead to the merge cascade up to the root

❖ In our example, every node (except the root) needs to include at least three keys

❖ Removing the key 15, the condition is violated and sibling leaves cannot lose any entry either

❖ Hence we merge node (11,13) with (20, 23, 30) and remove the splitting value 15 from the

parent

12

Example 5.9: Delete (and Merge Nodes)

53 7

107 15

98 10 1311 20 21 30

53 7

107 15

98 10

1311 15

2120 30

❖ Remove the entry with key 8 from the B+-tree

❖ To remove the entry 8 we need to move the entry with key 11 from the neighboring
node to keep the condition of minimum number of entries in every node

❖ It is necessary to change the splitting value in the parent from 10 to 11

13

Example 5.10: Delete (Borrow Key)

53 7

117

109 11 2013 21 30

53 7

107

98 10 1311 20 21 30

❖ Remove records with keys 3, 10, and 11 from the B+-tree
(see the previous page)

❖ Removing the key 3

❖ After the removal, the number of records in the node

(5, 7) falls under minimum and the neighboring node,
i.e., (9, 10, 11), cannot provide any record

❖ The nodes (5, 7) and (9, 10, 11) are merged

❖ Finally, the splitting value 7 is removed from the parent

❖ Removing the keys 10, 11

❖ It is sufficient to remove the keys from the node, no

modifying of splitting value is required

14

Example 5.11: Delete

75 9 10 11

11

2013 21 30

75 9

11

2013 21 30

❖ Suppose a B+-tree of degree (see the figure)

❖ Minimum modified number of children of a node is 3, i.e.,

❖ Illustrate the B+-tree after the insertion of keys 40, 50, and 60

m = 4
⌈(4 + 1)/2⌉

15

Exercise 5.12

209

75 139 2120 30

❖ B*-tree differ from the standard B-tree by:

❖ The non-root nodes have at least children

❖ If the tree contains few records (i.e., after splitting the root node), the only two

leafs can contain less records (about half)

❖ If a node has too few items, or overflows, it is balanced using both of its neighbors

❖ If a node and its neighbor are full, they are split (together with the new record) into

three nodes being 2/3 filled

⌈(2m − 1)/3⌉

16

B*-Tree

❖ Insert records with keys 10, 7, 15, 5, 30, 20, and 13 into an empty
redundant B*-tree

❖ Suppose an empty B*-tree of degree

❖ Minimum number of children is 3 and minimum number of keys is 2

❖ Insertion of records with keys 10, 7, 15, and 5 is trivial, all goes to the root
node

❖ Inserting a record with key 30 leads to root node split

❖ Split nodes are (5, 7, 10) and (15, 30)

❖ The dividing value 10 is inserted into the new parent (i.e., new root)

❖ A record with key 20 can be inserted into the right leaf, as well as a record
with a key 13

m = 5

17

Example 5.13: Insert

75 10

10

3015

75 10

10

1513 20 30

75 10 15

❖ Continue with the previous example and insert records with keys 21 and 3
into the redundant B*-tree

❖ Inserting the key 21

❖ We cannot insert the key 21 into the full node (13, 15, 20, 30), but the

record with key 13 can be moved to the neighboring and not yet filled
node

❖ The splitting value in the parent needs to be modified

❖ Inserting the key 3

❖ The key 3 cannot be inserted into the node (5, 7, 10, 13) and the

neighbor is full as well

❖ The records in both nodes, together with record 3, will be split into

three nodes (3, 5, 7), (10, 13, 15) and (20, 21, 30)

❖ Splitting values 7 and 15 need to be inserted into the parent node

instead of the existing splitting value 13

18

Example 5.14: Additional Inserts

75 10 13

13

2015 21 30

53 7

157

1310 15

2120 30

❖ Continue with the previous example and insert records with keys 8,
9, and 11 into the redundant B*-tree

❖ The record 8 fits into the middle leaf

❖ The record 9 causes redistribution of the record 8 to the leaf and
change of the splitting value from 7 to 8

❖ The record with a key 11 will cause one of two possibilities:

❖ The redistribution of the record with key 15 to the right and

modification of the splitting value in the parent from 15 to 13

❖ Split of nodes (3, 5, 7, 8) and (9, 10, 13, 15) into three nodes (3, 5,

7), (8, 9, 10) and (11, 13, 15)

❖ The splitting value 8 would be replaced by a pair 7 and 10

19

Example 5.15: Additional Inserts

53 7

157

108 13 15

2120 30

53 7 8

158

109 13 15

2120 30

53 7 8

138

109 11 13

2015 21 30

❖ Continue with previous example and delete the records
with keys 13, 11, and 10 from redundant B*-tree

❖ The record with key 13 can be easily deleted from the
middle leaf

❖ The same holds for the record with key 11

❖ The record with key 10 cannot be deleted directly

❖ The number of entries in a node would decrease under

the threshold

❖ Therefore it is necessary to move there the record with

key 15 from the neighboring node

❖ The splitting value in the parent changes from 13 to 15

20

Example 5.16: Delete

53 7 8

138

109 11 13

2015 21 30

53 7 8

158

159

2120 30

❖ Continue with previous example and delete records with keys 15, 9, and 8 from
redundant B*-tree (see the figure)

❖ Finally, remove (single) additional key of your choice from the B*-tree

❖ Illustrate and comment the removals step by step

21

Exercise 5.17

53 7 8

158

159

2120 30

