

Hard Disk Drive and Static Indexes NDBI007: Assignment 1

- Define a data structure for the *Aircraft* record that has the following attributes:
 - Unique aircraft *identifier* (*primary key*)
 - Aircraft manufacturer identifier (suppose there are only 4 aircraft manufacturers in the world)
 - Aircraft serial number (not necessary unique value, assigned by the aircraft manufacturer) *
 - In addition, at least 6 *more attributes* (e.g., binary, numeric or string values) *
 - * E.g., see <u>https://schema.org/Vehicle</u>
- *Draw any diagram* of the proposed data structure and include the size of each attribute (in bytes) *
- requirements from all tasks
 - I.e., appropriate secondary index selection and bitmap utilization
- Points: 0 (note that the data structure is only required to solve the remaining tasks)

Also review the assignments for all tasks to verify that your proposed Airplane data structure meets the

- database
 - * Block site is 4 kB
 - * Pointer size is 4 B
- power of 2

* For all the remaining tasks, assume we have 20,000,000 Aircraft records stored in the

Before the computation, round the size of Aircraft data structure to the lowest higher

- ** stored sequentially and sorted by the value of the primary key, namely:
 - A) Primary key index
 - B) Secondary key direct index (i.e., appropriately select a secondary key)
 - C) Secondary key indirect index
- In addition, in case B) also justify the choice of the attribute to create the secondary key **
 - I.e., not all attributes are suitable for use *
- * **Points:** 1.5

Propose a static index to search for records about specific aircraft if we have a primary dataset

* For all cases A), B), and C), determine the *height of the index*, the *number of blocks* in which each level is stored, and the *total size* of the index in MB, and *compare* all indexes with each other

- Having an index from the task 2A), determine the time required to read information about one aircraft from * the sequentially stored file on an IBM Deskstar HDD (75 GB)
 - You may use the following formulas to estimate the time:

$$T = 2 \cdot (s + r + btt) + 2 \cdot r + btt$$
$$btt = \frac{2 \cdot r}{TC} \cdot B$$

- ** website)
 - * As for the track capacity, use TC = 0.3 MB
- * Points: 0.5

Most of the required values can be found in the IBM Deskstar HDD white paper (see practical class

- * Propose two appropriate ways to use a bitmap to store the values of a selected attribute from the Aircraft data structure
 - Justify the choice of attribute over which to create the bitmap
 - * operations etc.)
- Points: 1 •

Compare the two methods (e.g., estimate theirs size in MB, effectivity of read

Bonus Task 5

- Describe how a *reading and writing data in an SSD* works
 - Compare this method with reading and writing data in HDD *
 - Indicate *typical use cases* for HDDs and SSDs *
 - Compare the typical cases and justify your answer
- literature
- Points: 1

When citing any source in your answer, please provide a reference (or a citation) to the

Submission

- practical class
 - * email: <u>pavel.koupil@matfyz.cuni.cz</u>
- Deadline: By the start of the next practical class where you are enrolled in SIS

* The solution can be handed in by email or on paper before the beginning of the next

