Hard Disk Drive
NDBI007: Practical class

Disk Structure

* Read-write head
* The surface of platters is divided into tracks
* The set of all tracks with the same diameter form a cylinder
* Track is divided into sectors

Zone bit recording

* The tracks closest to the outer edge contain more sectors per track
* The data transfer speed over the outside cylinders is
 higher since the angular speed is constant regardless which track is being read

Important Terms

Rotational latency r

* Time needed to come to the right track
* Single rotation is equal to $2 \cdot r$

$$
r=\frac{1}{\text { rotational_speed }}
$$

Seek time s

* Time needed to move read-write head from one track to another
* Average seek time from one random track (cylinder) to any other is the most common seek time metric
* Track-to-track seek time is the amount of time that is required to seek between adjacent tracks
* Full-track seek time (full stroke) is the time needed to seek data from the first track to the last

Block transfer time btt

* Time needed to read block to memory (buffer)

Track Capacity (TC)

* Track capacity can be based on different characteristics*
* The size of a sector is constant
* As the number of sector differ (i.e., zone bit recording), we expect the estimated track capacity to differ

User cylinders

$$
\begin{aligned}
T C & =\frac{\text { capacity }}{\text { data_heads } \bullet \text { user_cylinders }} \\
T C & =\frac{75 \cdot 10^{9}}{10 \cdot 27724} \\
T C & \approx 0.28 \mathrm{MB}
\end{aligned}
$$

Sectors per track (SPT)**

$$
T C=S P T \cdot \text { sector_size }
$$

Exercise 1.1

Estimate track capacity based on latency (r) and media transfer rate (MTR)*

* Media transfer rate uses bits not bytes as a unit (1B = 8b)
* Use MTR (max) measured at the outer edge of the HDD
* Use 2 • r since we need the amount of time required to full rotation of plates
* Transfer speed on outer edge is maximal, hence the

IBM Deskstar HDD
Media transfer rate $448 \mathrm{Mb} / \mathrm{s}$
Latency $\quad 4.17 \mathrm{~ms}$ result is the upper bound

$$
M T R=\frac{T C}{2 \cdot r}
$$

Exercise 1.2

Estimate track capacity based on sustained data rate $(S D R)^{\star}$

* SDR is computed as the average transfer speed

IBM Deskstar HDD

* Hence, we must consider:
* The time taken to get heads to the right track
* The time taken to switch tracks in a single cylinder, i.e., head_switch_time
* The value is not presented in data sheet, consider it to be $\pm 1 \mathrm{~ms}$

Data heads 10

head_switch_time 1 ms
track_to_track_time 1.2 ms
Sustained data rate $37 \mathrm{MB} / \mathrm{s}$

* To get SDR, we have to:
* Move heads to a cylinder
* Read the whole cylinder, one track to another. Only one head can be read at a certain time
* Move heads to another cylinder, i.e., track_to_track_time

$$
S D R=\frac{d a t a _h e a d s \cdot T C}{2 \cdot r \cdot d a t a _h e a d s+\left(d a t a _h e a d s-1\right) \cdot \text { head_switch_time }+ \text { track_to_track_time }}
$$

[^0]
Example 1.3: Reading Fully Fragmented File From the HDD

* Consider fully fragmented file, i.e., the blocks are not adjacent
* We assume uniformly distributed blocks
* File size is 1 GB
* Block size is 4 kB
* The process of reading fragmented data looks like this:

1. Move heads to the right cylinder
2. Read a sector
3. Continue with 1 . until the whole file is read

Example 1.3 (Continued)

First, we need to know how many blocks form the 1 GB file, i.e., the block count $(B C)$

$$
B C=\frac{\text { file_size }}{\text { block_size }}=\frac{1 \cdot 10^{9}}{4 \cdot 10^{3}}=250,000
$$

We compute how long does it take to transfer a single block, i.e., we compute the block transfer time $(b t t)^{*}$

$$
\begin{gathered}
b t t=\frac{2 \cdot r}{T C} \cdot b l o c k _ \text {size }=\frac{2 \cdot 4.17}{0.3} \cdot 0.004 \\
b t t=0.11 \mathrm{~ms}
\end{gathered}
$$

IBM Deskstar HDD

Tack capacity	0.3 MB
Latency	4.17 ms
Block size	0.004 MB
Average seek time	8.5 ms

Finally, we combine all together

* read_time $=B C \cdot(s+r+b t t)$
* read_time $=250,000 \cdot(8.5+4.17+0.11)$
* read_time $\approx 3,195 s \approx 53 \mathrm{~m}$

Exercise 1.4

Solve example 1.3 having track capacity ($T C$) estimate based on latency and media transfer rate (MTR; see exercise 1.1)

$$
b t t=\frac{2 \cdot r}{T C} \cdot \text { block }_{-} \text {size }
$$

IBM Deskstar HDD

* You can also use MTR to compute btt directly
* Reminder: Media transfer rate uses bits not bytes as a unit $(1 \mathrm{~B}=8 \mathrm{~b})$

$$
b t t=\frac{\text { block_size }}{M T R}
$$

* Try it yourself: Usage of $M T R$ and usage of $T C$ computed from $M T R$ have the same result

Block size $\quad 0.004 \mathrm{MB}$
Media transfer rate $448 \mathrm{Mb} / \mathrm{s}$
Latency
4.17 ms

Example 1.5: Reading Sequential Data From the HDD

* In this case, blocks are adjacent
* Once again, file size is 1 GB and block size is 4 kB
* We can use sustained transfer rate (STR) since it equals to $M T R+h e a d _s w i t c h _t i m e+t r a c k _t o _t r a c k _t i m e$
* But let's assume that the STR is unknown to us

IBM Deskstar HDD

Track capacity 0.3 MB
Data heads 10

$$
n_{T}=\frac{\text { file_size }}{T C}=\frac{1 \cdot 10^{9}}{0.3 \cdot 10^{6}}=3333.3
$$

* We compute number of cylinders n_{C}

$$
n_{C}=\frac{n_{T}}{\text { data_heads }}=\frac{3333.3}{10}=333.3
$$

Example 1.5 (Continued)

* Now, we can compute the read time as the summation of several times:
* Move heads to the initial cylinder $(s+r)$
* Read blocks (2•r• n_{T})
* Number of head switches $\left(n_{C} \bullet(\right.$ data_heads -1$) \cdot$ head_switch_time $)$
* I.e., for each cylinder we have to do data_heads -1 switches
* Time to move between adjacent cylinders ($n_{C} \bullet$ track_to_track_time)
* Note that we assume the best possible positioning for block

$$
\begin{array}{ll}
* & t_{\text {read }}=(s+r)+\left(2 \bullet r \bullet n_{T}\right)+\left(n_{C} \bullet(\text { data_heads }-1) \bullet \text { head_switch_time }\right)+\left(n_{C} \bullet \text { track_to_track_time }\right) \\
* & t_{\text {read }}=(8.5+4.17)+(2 \bullet 4.17 \bullet 3333.3)+(333.3 \bullet(10-9) \bullet 1)+(333.3 \bullet 1.2) \\
* & t_{\text {read }}=31 \mathrm{~s}
\end{array}
$$

IBM Deskstar HDD
Average seek time 8.5 ms
Latency $\quad 4.17 \mathrm{~ms}$
Data heads 10
Head switch time 1 ms
Track-to-track $\quad 1.2 \mathrm{~ms}$

Example 1.6: Bank Withdrawals

Design a record structure for a credit card system managing 5,000,000 cards

* The system should allow a defined amount of money to be withdrawn when a card is inserted
* The withdrawal should identify the relevant DB record, i.e., the account associated with that card, and check the daily and weekly limits on withdrawals
* The log records withdrawals for the last 7 days and the start date is the information when the first recorded withdrawal was made
* To test the limit for the last 7 days, we simply check what date is the last log entry (from the start date)

Record structure:

Example 1.6 (Continued)

Estimate time required for a single withdrawal

* The withdrawal needs to find the record and write it to the log
* Consider a situation where we have an index-sequential file, i.e., data stored sequentially with an index to a primary key built over the primary file

First, determine how many records fits the size of one block

* We define block size 4 kB , pointer size 4 B (needed to calculate index blocking factor)
* Record size $R=128 B$ (rounded to nearest power of 2)

$$
\begin{array}{r}
b=\frac{B}{R} \\
b=\frac{4 \cdot 2^{10}}{128}=32
\end{array}
$$

Example 1.6 (Continued)

Second, determine blocking factor for the index R_{I}

* We need $N=5,000,000 \div 32=156,250$ blocks to store records of all the accounts
* The number of blocks is also the number of index sheets
* We need to know how many index records (key-pointer pairs) can fit in the index block, i.e., the blocking factor (b) for the index R_{I}

$$
\begin{gathered}
R_{I}=8+4=12 \\
b=\frac{B}{R_{I}}=\frac{4 \cdot 2^{10}}{12}=341
\end{gathered}
$$

Example 1.6 (Continued)

Third, the height of the tree (h) is calculated

$$
h=\left\lceil\log _{R_{I}} N\right\rceil=\left\lceil\log _{341} 156,250\right\rceil=3
$$

* The root of the index tree is always stored in memory (it is 1 page)
* Therefore, 3 disk accesses are needed to read the record (2 index levels and 1 data file blocks)
* However, in this particular case, tree-level 2 has only 2 pages
* 2 pages can address $2 \cdot 341 \cdot 341$ pages, which is more pages than the primary file has
* Hence, we can keep the second level of the index straight in memory, and then we only need to access the disk twice

Finally, the time it takes to load the record is*

$$
\begin{gathered}
T=2 \cdot(s+r+b t t)+2 \cdot r+b t t \\
T=2 \cdot(8.5+4.17+0.11)+2 \cdot 4.17+0.11 \\
T=34 \mathrm{~ms}
\end{gathered}
$$

* If a record is processed in one rotation of the disk, then after the time of one rotation $(2 \bullet r)$ the modified data can be written to disk

Example 1.7: Bank Transactions per Day

* In 2007, the number of all transactions in the Czech Republic was approximately 800,000 per day
* Can our system handle such a number, assuming that we handle a quarter of all transactions in the country?
* Assume that the load is not evenly distributed over the day and that half of all transactions are made at peak times
* That is, 100,000 requests per hour go to our system
* In other words, how many request are we able to serve per hour?

$$
n_{T}=\frac{60 \cdot 60 \cdot 1,000}{T}=\frac{60 \cdot 60 \cdot 1,000}{34}=105,882
$$

* $n_{T}>100,000$, hence the system handles the workload

[^0]: * All used characteristics can be found in the data sheet for the IBM Deskstar HDD

