
Hard Disk Drive
NDBI007: Practical class 1

❖ Read-write head

❖ The surface of platters is divided into tracks

❖ The set of all tracks with the same diameter form a

cylinder

❖ Track is divided into sectors

Zone bit recording
❖ The tracks closest to the outer edge contain more

sectors per track

❖ The data transfer speed over the outside cylinders is

higher since the angular speed is constant regardless
which track is being read

2

Disk Structure

source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/10_MassStorage.html

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/10_MassStorage.html

Rotational latency

❖ Time needed to come to the right track

❖ Single rotation is equal to

Seek time

❖ Time needed to move read-write head from one track to another

❖ Average seek time from one random track (cylinder) to any other is the most common seek time metric

❖ Track-to-track seek time is the amount of time that is required to seek between adjacent tracks

❖ Full-track seek time (full stroke) is the time needed to seek data from the first track to the last

Block transfer time

❖ Time needed to read block to memory (buffer)

r

2 ∙ r

r =
1

rotational_speed

s

btt

3

Important Terms

❖ Track capacity can be based on different characteristics*

❖ The size of a sector is constant

❖ As the number of sector differ (i.e., zone bit recording), we expect the estimated track capacity to differ

User cylinders

Sectors per track (SPT)**

TC =
capacity

data_heads ∙ user_cylinders

TC =
75 ∙ 109

10 ∙ 27724
TC ≈ 0.28 MB

TC = SPT ∙ sector_size
4

Track Capacity (TC)

* All used characteristics can be found in the data sheet for the IBM Deskstar HDD

** SPT is not provided for the IBM Deskstar HDD as the number of sectors per track is not constant

IBM Deskstar HDD
Capacity 75 GB

Data heads 10
User cylinders 27,724

Estimate track capacity based on latency () and media
transfer rate ()*

❖ Media transfer rate uses bits not bytes as a unit (1B = 8b)

❖ Use (max) measured at the outer edge of the HDD

❖ Use since we need the amount of time required to
full rotation of plates

❖ Transfer speed on outer edge is maximal, hence the
result is the upper bound

r
MTR

MTR

2 ∙ r

MTR =
TC
2 ∙ r

5

Exercise 1.1

* All used characteristics can be found in the data sheet for the IBM Deskstar HDD

IBM Deskstar HDD
Media transfer rate 448 Mb/s

Latency 4.17 ms

Estimate track capacity based on sustained data rate ()*

❖ SDR is computed as the average transfer speed

❖ Hence, we must consider:

❖ The time taken to get heads to the right track

❖ The time taken to switch tracks in a single cylinder, i.e.,

❖ The value is not presented in data sheet, consider it to be

❖ To get SDR, we have to:

❖ Move heads to a cylinder

❖ Read the whole cylinder, one track to another. Only one head can be read at a certain time

❖ Move heads to another cylinder, i.e.,

SDR

head_switch_time
±1 ms

track_to_track_time

SDR =
data_heads ∙ TC

2 ∙ r ∙ data_heads + (data_heads − 1) ∙ head_switch_time + track_to_track_time
6

Exercise 1.2

IBM Deskstar HDD
Data heads 10

head_switch_time 1 ms
track_to_track_time 1.2 ms
Sustained data rate 37 MB/s

* All used characteristics can be found in the data sheet for the IBM Deskstar HDD

❖ Consider fully fragmented file, i.e., the blocks are not adjacent

❖ We assume uniformly distributed blocks

❖ File size is 1 GB

❖ Block size is 4 kB

❖ The process of reading fragmented data looks like this:

1. Move heads to the right cylinder

2. Read a sector

3. Continue with 1. until the whole file is read

7

Example 1.3: Reading Fully Fragmented File From the HDD

First, we need to know how many blocks form the 1 GB file, i.e., the block count ()

We compute how long does it take to transfer a single block, i.e., we compute the block transfer
time ()*

Finally, we combine all together

❖

❖

❖

BC

BC =
file_size

block_size
=

1 ∙ 109

4 ∙ 103
= 250,000

btt

btt =
2 ∙ r
TC

∙ block_size =
2 ∙ 4.17

0.3
∙ 0.004

btt = 0.11 ms

read_time = BC ∙ (s + r + btt)
read_time = 250,000 ∙ (8.5 + 4.17 + 0.11)
read_time ≈ 3,195 s ≈ 53 m

8

Example 1.3 (Continued)

* It is important to realize that we use TC that is somewhere between the estimates we got before

IBM Deskstar HDD
Tack capacity 0.3 MB

Latency 4.17 ms
Block size 0.004 MB

Average seek time 8.5 ms

Solve example 1.3 having track capacity () estimate based on latency and
media transfer rate (; see exercise 1.1)

❖ You can also use to compute directly

❖ Reminder: Media transfer rate uses bits not bytes as a unit (1B = 8b)

❖ Try it yourself: Usage of and usage of computed from have
the same result

TC
MTR

btt =
2 ∙ r
TC

∙ block_size

MTR btt

btt =
block_size

MTR

MTR TC MTR

9

Exercise 1.4

IBM Deskstar HDD
Block size 0.004 MB

Media transfer rate 448 Mb/s
Latency 4.17 ms

❖ In this case, blocks are adjacent

❖ Once again, file size is 1 GB and block size is 4 kB

❖ We can use sustained transfer rate (STR) since it equals to

❖ But let's assume that the STR is unknown to us

❖ First, we need to determine number of tracks that the file occupies

❖ We compute number of cylinders

MTR + head_switch_time + track_to_track_time

nT

nT =
file_size

TC
=

1 ∙ 109

0.3 ∙ 106
= 3333.3

nC

nC =
nT

data_heads
=

3333.3
10

= 333.3

10

Example 1.5: Reading Sequential Data From the HDD

IBM Deskstar HDD
Track capacity 0.3 MB

Data heads 10

❖ Now, we can compute the read time as the summation of several times:

❖ Move heads to the initial cylinder

❖ Read blocks

❖ Number of head switches

❖ I.e., for each cylinder we have to do switches

❖ Time to move between adjacent cylinders

❖ Note that we assume the best possible positioning for block

❖

❖

❖

(s + r)
(2 ∙ r ∙ nT)

(nC ∙ (data_heads − 1) ∙ head_switch_time)

data_heads − 1
(nC ∙ track_to_track_time)

tread = (s + r) + (2 ∙ r ∙ nT) + (nC ∙ (data_heads − 1) ∙ head_switch_time) + (nC ∙ track_to_track_time)

tread = (8.5 + 4.17) + (2 ∙ 4.17 ∙ 3333.3) + (333.3 ∙ (10 − 9) ∙ 1) + (333.3 ∙ 1.2)

tread = 31 s

11

Example 1.5 (Continued)

IBM Deskstar HDD
Average seek time 8.5 ms

Latency 4.17 ms
Data heads 10

Head switch time 1 ms
Track-to-track 1.2 ms

Design a record structure for a credit card system managing 5,000,000 cards
❖ The system should allow a defined amount of money to be withdrawn when a card is inserted

❖ The withdrawal should identify the relevant DB record, i.e., the account associated with that card, and check the daily and

weekly limits on withdrawals

❖ The log records withdrawals for the last 7 days and the start date is the information when the first recorded withdrawal was
made

❖ To test the limit for the last 7 days, we simply check what date is the last log entry (from the start date)

Record structure:

12

Example 1.6: Bank Withdrawals

2B8B 8B 8B 2B 2B 4B7x 8B

card_number (PK)

account_number

balance

PIN

one_day_limit

seven_days_limit

log

start_date

Estimate time required for a single withdrawal
❖ The withdrawal needs to find the record and write it to the log

❖ Consider a situation where we have an index-sequential file, i.e., data stored sequentially with an index to a primary

key built over the primary file

First, determine how many records fits the size of one block

❖ We define block size 4 kB, pointer size 4 B (needed to calculate index blocking factor)

❖ Record size (rounded to nearest power of 2)

R = 128B

b =
B
R

b =
4 ∙ 210

128
= 32

13

Example 1.6 (Continued)

Second, determine blocking factor for the index

❖ We need blocks to store records of all the accounts

❖ The number of blocks is also the number of index sheets

❖ We need to know how many index records (key-pointer pairs) can fit in the index block,
i.e., the blocking factor () for the index

RI

N = 5,000,000 ÷ 32 = 156,250

b RI

RI = 8 + 4 = 12

b =
B
RI

=
4 ∙ 210

12
= 341

14

Example 1.6 (Continued)

Third, the height of the tree () is calculated

❖ The root of the index tree is always stored in memory (it is 1 page)

❖ Therefore, 3 disk accesses are needed to read the record (2 index levels and 1 data file blocks)

❖ However, in this particular case, tree-level 2 has only 2 pages

❖ 2 pages can address pages, which is more pages than the primary file has

❖ Hence, we can keep the second level of the index straight in memory, and then we only need to access the disk twice

Finally, the time it takes to load the record is*

❖ If a record is processed in one rotation of the disk, then after the time of one rotation () the modified data can be written to disk

h

h = ⌈logRI
N⌉ = ⌈log341 156,250⌉ = 3

2 ∙ 341 ∙ 341

T = 2 ∙ (s + r + btt) + 2 ∙ r + btt

T = 2 ∙ (8.5 + 4.17 + 0.11) + 2 ∙ 4.17 + 0.11
T = 34 ms

2 ∙ r

15

Example 1.6 (Continued)

* Twice because we go once to the index level 3 and once to the data file

❖ In 2007, the number of all transactions in the Czech Republic was approximately 800,000 per day

❖ Can our system handle such a number, assuming that we handle a quarter of all transactions in the

country?

❖ Assume that the load is not evenly distributed over the day and that half of all transactions are made

at peak times

❖ That is, 100,000 requests per hour go to our system

❖ In other words, how many request are we able to serve per hour?

❖ , hence the system handles the workload

nT =
60 ∙ 60 ∙ 1,000

T
=

60 ∙ 60 ∙ 1,000
34

= 105,882

nT > 100,000
16

Example 1.7: Bank Transactions per Day

