Krystof Hruby



Daiabase Model

= SQL relational database
= Search engine
= Document store

= Time Series database




SQL relational database

Supports most SQL commands
Joins, Aggregation, Sort, ...

Built as distributed database from the start
Uses Apache Lucene, Elasticsearch, Netty

Each table split into shards
Shards are distributed uniformly across cluster

Replication factor can be chosen

Eventual Consistency

No support for transactions
Any operation on a row is atomic

Write-ahead logging




Search Engine

Uses Apache Lucene
Storage, indexing, text and geospatial search

Provides full-text and geospatial search




Document Store

Each table row is a semi structured document
Document — nested structure of object and array types
JSON data can be loaded to either Object or Array type
Operations on documents are atomic

Object similar to JSON Object




Query - Create Table

LDDO‘-‘IO‘\U'IPWI\JI—‘.

(IR
= ®

12
13
14
15
16
17
18

INSERT INTO products (
id,
name,
description,
specification,
cost,
inStock
) VALUES (
1)
"Fieldmann FZR 70335-A 2x2eV',
"Akumulatorova sekacka na travu znacky FIE
LDMANN. .. ",

{
"length" = 130.4,
"width" = 50.4

}J

3399.90,

10

)s

CREATE TABLE products (
id INT PRIMARY KEY,
name TEXT,
description TEXT,
specification OBJECT(DYNAMIC) AS (
length FLOAT,
width FLOAT

)
cost FLOAT,

inStock INT,

reviews ARRAY(TEXT),

INDEX productNameFt USING FULLTEXT(name)
) CLUSTERED INTO 1© SHARDS;




Query - Delete, Update

1 DELETE FROM products
2 WHERE id = ©;

1 UPDATE products SET
2 specification['length'] = 1060.0
3  WHERE id = 1;




Query - Text search

'"Fieldmann -A")

00

1 SELECT name, inStock, _score
2 FROM products

3  WHERE MATCH(productNameFt,

4  ORDER BY _score DESC;

name inStock
Fieldmann FZR 70335-A 2x20V 10
Fieldmann FZR 70435-0 3

_score
0.26152915
0.13076457

®




Query - Joins

CREATE TABLE productsOrders (
productId INT,
orderId INT,
count INT,
PRIMARY KEY (productId, orderId)

)5

CREATE TABLE orders (
id INT PRIMARY KEY,
customer TEXT

)5

INSERT INTO orders (

id,

customer
) VALUES (@, 'Jan Novak'), (1, 'Katerina Novo
tna');

INSERT INTO productsOrders (
productId,
orderlId,
count
) VALUES (o, o, 1), (1, o, 2), (2, 1, 3);

W 00 N O Bhw N

1
2
3
4
5
6
7
8
9

[ S
N R®




Query - Joins

00

1 SELECT o.customer, SUM(po.count * p.cost) AS paid
2 FROM products p

3 JOIN productsOrders po ON p.id = po.productId

4  JOIN orders o ON po.orderld = o.id

5 GROUP BY o.customer;

name paid
Katerina Novotna 16199.699
Jan Novak 11299.699




Advantages, Disadvantages

SQL language with objects

It might lead user to use slow joins
Easy to setup
Provides free client with db management, console, ...

Nice documentation
Although sometimes not clear what is supported and what not

Full-text indices can be created only when creating table

When data are inserted, subsequent select may not find them
Even for small cluster with one node

Weird float arithmetics




Thanks for your attention




