Jaroslav Luknis

Introduction

* New generation of DBMS
* Released in 2021

 Written in Low-Level-Java (Java8+), without using high-level
API

 Able to run on every sw/hw configuration

« Can run as embedded with language that runs Java Virtual
Machine or can run with Docker, Kubernetes or just by
running server script

* Free open source

—

 Multi-Model: engine supports Graph, Document,
Key/Value and Time-Series models

 Fast and scalable
* Originally forked from OrientDB

 Supports schema-less, schema-full and mixed
modes

 Supports multiple languages: SQL, Cypher,
Gremlin, GraphQL, MongoDB

—

chadeDB

LY
i
]
]
]

[

" Multi-Model ;
f\;&’” -
4 ¥V -

Time-Series """ Key/Value

Example to execute a query by using GraphQL:

GRAPHQL

{graphgl}{ bookById(id: "book-1"){ id name authors { firstName, lastName } }
Example to use Cypher:
{cypher}MATCH (m:Movie)<-[a:ACTED_IN]-(p:Person) WHERE id(m) = '#1:0' RETURN *

Example of using Gremlin:

{gremlin}g.V()

Graph Model

« Model is represented by concept of property graph, which defines:
« Vertex - an entity, linked with other Vertices, mandatory properties:
- Unique identifier
- Set of incoming/outgoing Edges
- Edges - an entity, links two Vertices, mandatory properties:
- Unique identifier
- Link to incoming Vertex (head)
- Link to outgoing
- Label defining type of connection/relationship
« Also they can have custom properties defined by user

—

Relational Model

Table

Row

Column

Relationship

Light
American
Wheat Ale or
Lager Original
White Ale

Graph Model

Vertex and Edge Types
Vertex
Vertex and Edge property

Edge

Brouwerij
van
Hoegaarden

ArcadeDB Graph Model
Type

Vertex

Vertex and Edge property

Edge

Document Model

« document is a set of key/value pairs
 not typically forced to have a schema
+ flexible and easy to modify

- documents are stored in collections, ArcadeDB uses Types
and Buckets as form of collections

- adds the concept of a "Link" as a relationship between
documents

« With ArcadeDB, you can decide whether to embed documents
or link to them directly, when you fetch a document, all the
links are automatically resolved by ArcadeDB

—

llnamell z "Jay" ;

"surname":"Miner",
"job":"Developer",
"creations":[{
"name":"Amiga 1000",
"company":"Commodore Inc."
Fod
"name":"Amiga 500",
"company" : " Commodore Inc."

.
b
Relational Model Document Model ArcadeDB Document Model
Table Collection Type or Bucket
Row Document Document
Column Key/value pair Document property
Relationship not available Relationships

—

Key/Value Model

- Everything can be reached by key, values can be
simple and complex types

 ArcadeDB allows graph elements and documents
as values for richer model

 model provides "buckets" to group key/value pairs
in different containers

Relational Model Key/Value Model ArcadeDB Key/Value Model

Table Bucket Bucket

Row Key/Value pair Document

Column not available Document field or Vertex/Edge property

Relationship not available Relationships

Main Concepts

« Record - smallest unit, come in 3 types: Document, Vertex, Edge

« Document - schema-full/schema-less, handle fields in flexible manner, import/export in
JSON format

* Vertex (Nodes) - main entity with information, additional features/properties,
connected with Edges

- Edges (Arcs) - connection between Vertices, unidirectional/bidirectional

« RecordID (RID) - auto-generated unique identifier for record, immutable, universal,
never reused, access by RID in O(1)complexity, format # <bucket-identifier>:<record-
position>,

- Bucket-identifier - id of bucket to which record belongs (max 2,147,483,643 buckets in
database)

- Record-position - absolute position of record in bucket (#-1:-1 is null RID)

ﬂ

Types - closest to ‘Table’ in relational databases, schema-less/schema-full/mix, can
inherit attributes from other types

- Each type has buckets (data files), one type can have multiple buckets, query against type
fetches all buckets

Buckets - provide physical or in-memory space in which ArcadeDB actually stores the
data, bucket = one file at file system, part of one type, significant help during queries

Relationships -

- Referenced - storing direct links to target object
- Embedded - storing the relationship within the record, stronger than referenced
« 1:1/n:1 - express using EMBEDDED type

« 1:n/n:n - express using LIST (ordered list) or MAP (ordered map key:value) type

Transactions - ACID: atomicity (all or nothing), consistency (from one valid state to
another), isolation (incomplete transaction might not even be visible to another),
durability (committed transactions will remain)

ﬁ

CREATE BUCKET Customer_Europe
CREATE BUCKET Customer_Americas
CREATE BUCKET Customer_Asia
CREATE BUCKET Customer_Other

CREATE VERTEX TYPE Customer BUCKET Customer_Europe,Customer_Americas,Customer_Asia,Customer_Other

Customer Record A ------cccecaaaa > Record B Invoice
RID #5:23 RID #10:2
Record A <>---------- > Record B
TYPE=Account TYPE=Address
RID #5:23 NO RID

arcadeDB> SELECT FROM Account WHERE address.city = 'Rome’

ﬂ

Commands, functions, methods

CRUD

SELECT

INSERT

UPDATE

DELETE

TRAVERSE

TRUNCATE TYPE

TRUNCATE BUCKET

Graph

CREATE VERTEX

CREATE EDGE

MATCH

Schema & Indexes
CREATE TYPE
ALTER TYPE

DROP TYPE
CREATE PROPERTY

ALTER PROPERTY

DROP PROPERTY

CREATE INDEX
REBUILD INDEX

DROP INDEX

Conversions

convert()

asBoolean()

asDate()

asDatetime(),

asDecimal()

asFloat()

toLowerCase()

Database
CREATE BUCKET
ALTER BUCKET
DROP BUCKET
ALTER DATABASE

CREATE DATABASE (console
only),

DROP DATABASE (console
only),

BACKUP DATABASE
IMPORT DATABASE
EXPORT DATABASE
CHECK DATABASE

ALIGN DATABASE

String manipulation

append()
charAt()
indexOf()
Left()
right()
prefix(,
asList()
asMap()

asString()

Collections
i}

size()
remove()
removeAll()
keys()

values(),

replace()
subString()

toUpperCase()

inEQ

bothE()

outV()

inv(

traversedElement()

median(),

last()

dijkstra(),

astar()

bothV()

Misc
exclude()
include(),
javaType()
toJSON()
type()

asinteger(),

asLong()
asSet()

normalize()

abs()

avg()

count()
mode()
flatten()
shortestPath(),

stddev()

Collections

difference()

first(),

intersect(),

distinct()

traversedEdge(),

variance()

Misc

date()

sysdate(),

format()

distance()

ifnull()

coalesce(),

uuid()

if()
traversedVertex()
percentile()

symmetricDifference()

Commands, functions, methods

* No JOINS - relationships represented by LINKS
* No “HAVING” keyword, instead nested queries

 Supports selection, projection, aliases, conditions,
operators, where clause, grouping, ordering,
pagination, matching, batch (executing more
commands), transactions

« Commands EXPLAIN, UPDATE, PROFILE (similar to
EXPLAIN)

ﬂ

SELECT

FROM Employee A, City B
WHERE A.city = B.id
AND B.name = 'Rome'’

In ArcadeDB, an equivalent operation would be:

SELECT * FROM Employee WHERE city.name = 'Rome’

SELECT city, sum(salary) AS salary
FROM Employee

GROUP BY city

HAVING salary > 1000

This groups all of the salaries by city and extracts the result of aggregates with the total salary greater than 1,000 dollars.
In ArcadeDB the HAVING conditions go in a select statement in the predicate:

SELECT FROM (SELECT city, SUM(salary) AS salary FROM Employee GROUP BY city) WHERE salary >
1000

+ Create an edge of the type E1 and define its properties:

ArcadeDB {db=foo}> explain select from v where name = 'a'

ArcadeDB> CREATE EDGE E1 FROM #10:3 TO #11:4 SET brand = 'fiat', name = 'wow' i
Profiled command '[{

* Create edges of the type Watched between all action movies in the database and the user Luca, using sub-queries: executionPlan:{...},

executionPlanAsString:
ArcadeDB> CREATE EDGE Watched FROM (SELECT FROM account WHERE name = 'Luca') TO
(SELECT FROM movies WHERE type.name = 'action') + FETCH FROM TYPE v
+ FETCH FROM BUCKET 9 ASC
FETCH FROM BUCKET 10 ASC
FETCH FROM BUCKET 11 ASC
FETCH FROM BUCKET 12 ASC
FETCH FROM BUCKET 13 ASC
FETCH FROM BUCKET 14 ASC
FETCH FROM BUCKET 15 ASC
FETCH FROM BUCKET 16 ASC
FETCH NEW RECORDS FROM CURRENT TRANSACTION SCOPE (if any)
FILTER ITEMS WHERE
name = 'a'

ArcadeDB> DELETE FROM Profile WHERE surname.toLowerCase() = 'unknown'

+ o o+ o+ o+ A+

ArcadeDB> INSERT INTO Profile SET name = 'Jay', surname = 'Miner’

+

}1' in 0,022000 sec(s)
ArcadeDB> INSERT INTO Profile CONTENT {"name": "Jay", "surname": "Miner"}
PROFILE SELECT sum(Amount), OrderDate
FROM Orders
WHERE OrderDate > date("2012-12-09", "yyyy-MM-dd")
GROUP BY OrderDate

ArcadeDB> MATCH {type: Person, as: person, where: (name = 'John')}.both('Friend') {as: friend}
RETURN person, friend

-------- Fomm e m -
person | friend result:
________ [S
#12:0 | #12:1
#12:0 | #12:2 + FETCH FROM INDEX Orders.OrderDate (1.445us)
#12:0 | #12:3 OrderDate > date("2012-12-09", "yyyy-MM-dd")
#12:1 | #12:0 + EXTRACT VALUE FROM INDEX ENTRY
#12:1 | #12:2 + FILTER ITEMS BY TYPE
"""" Foommmooes Orders
+ CALCULATE PROJECTIONS (5.065us)
¢ Update an embedded document. The UPDATE command can take JSON as a value to update. Amount AS _$$$0ALIASSS 1, OrderDate

+ CALCULATE AGGREGATE PROJECTIONS (3.182us)
sum(_$$$0ALIASSS_1) AS _$$$0ALIAS$$_0, OrderDate

ArcadeDB> UPDATE Account SET address={ "street": "Melrose Avenue", "city": { GROUP BY OrderDate

"name": "Beverly Hills" } } + CALCULATE PROJECTIONS (1.116us)
_$$$0ALIAS$$_0 AS “sum(Amount)’, OrderDate

Pros/Cons

* Pros

Fast, flexible

Automatic usage of
indexes

Possible usage of Studio
(web tool)

Usage from command line

Interaction from multiple
APIs

Multi-model
Backup/restore databases

e Cons

New, so less
iInformations

Little complicated
setup

Still new, so some
ISsues can appear

ﬁ

Summary

* Properties
e Informations about models

 Languages, queries, main concepts

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

