

The multi-model database
for graph and beyond

(NDBI040) Jindřich Bär, 2022

Introduction

● Created in 2011, latest v3.9.1 (07/04/2022)

● Free and open-source multi-model DBMS
● Supports distributed deployment modes
● Provides a native REST API over HTTP

https://github.com/arangodb/arangodb

Data models

● Key/value data
● Hierarchical (JSON) documents
● Graph data
● All can be combined in one query
● Under the hood, all these are documents

Key-Value example

● The _key property is indexed with the primary index
● The “value” does not need to be flat, can be

anything (anything JSON-able)

db.coll.save({_key: “fightclub”, title: “Fight Club”})

db.coll.save({_key: “se7en”, title: “Se7en”})

db.coll.document(“fightclub”).title

> Fight Club

Document example

db.coll.save({
_key: “fightclub”,
info: { year: 1999 },
title: “Fight Club” });

db.coll.save({
_key: “se7en”,
info: { year: 1995 },
title: “Se7en” });

db.coll.byExample({ info: { year: 1995 }}).toArray();
> {

...
 "info" : { "year" : 1995 },
 "title" : "Se7en"
 }

Graph ...example?

[{
 "id": "person/dfincher",
 "firstName" : "David",
 "familyName" : "Fincher"
 },
 {
 "id": "person/enorton",
 "firstName" : "Edward",
 "familyName" : "Norton"
 }
...
]

[{
 "_from":"person/enorton",
 "_to":"person/dfincher",
 "since" : 1999
 },
 {
 "_from":"person/bpitt",
 "_to":"person/dfincher",
 "since": 1995
 }, ...
]

Graph functions

● ArangoDB provides a myriad of graph-related
functions
● ._neighbors(vertex)
● ._distanceTo(vertex, vertex)
● .shortestPath(vertex, vertex), ...

● Pregel - Distributed Iterative Graph Processing

● PageRank, Connected Components,
Community Detection, Single source shortest
path, …

AQL

● arangosh runs on JS (see prior examples)
● AQL – only data manipulation language

● missing DDL elements (CREATE, ALTER,
DROP)

● database structure needs to be created in
advance

● syntax similar to other query languages

AQL – examples #1

● (WHERE) Select all movies newer than 1996:

FOR m in movie FILTER m.info.year >= 1996 RETURN m

● (GROUP BY) Count movies by years:

FOR m in movie COLLECT year = m.info.year WITH COUNT into c
RETURN { year: year, count: c }

● (UPDATE) Age all actors by 5 years

FOR a in actor UPDATE a WITH {year: a.year – 5} IN actor

AQL – examples #2

● (JOIN) For every actor, list their movies

FOR a in actor FOR m in movie FILTER
CONTAINS_ARRAY(m.actors, a._id) RETURN {actor: a, movie: m}

● (Graph) All the people who know Edward Norton

FOR x in ANY 'person/enorton' know RETURN x

● (Graph) Find the shortest chain of people between two actors

FOR person IN ANY SHORTEST_PATH 'person/enorton' TO
'person/mfreeman' know RETURN person)

Pros / cons

Pros
● Distributed
● Competitive

performance
● Extensive graph-

related features
● Steep learning

curve (JS)

Cons
● Relatively small

user base
● …?

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

