R-TREES: SOLUTION

EXERCISE 1

> Finish splitting of the overflown node

- Continue with Guttman's method
> The maximum number of items in a node is $M=8$
- The minimum number of items in a node is $m=3$
> If there are more options to choose, explain the reason of yours choice

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 1: SOLUTION

- Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

Object	ABEF	GI	Difference
	$6 \times 6-30=6$	$5 \times 3-6=9$	$\|6-9\|=3$
C	$8 \times 5-30=10$	$2 \times 8-6=10$	$\|10-10\|=0$
D	$6 \times 8-30=18$	$7 \times 3-6=15$	$\|18-15\|=3$

> The biggest difference shows the objects C and H , but we choose C so it

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes ABCEF and GI

EXERCISE 1: SOLUTION

- Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

- The biggest difference shows the object H so it will be inserted into the node which is closer, i.e., ABCEF
- So now we have nodes ABCEFH and GI

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 1: SOLUTION

> Finally, object D must be placed in the node GI because the minimum number of items per node is $m=3$ and

$$
|G I|=2 \text {, i.e., }|G I|<m
$$

- As a result, we have nodes ABCEFH and DGI

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 2

> Finish splitting of the overflown node
> Continue with Guttman's method
> The maximum number of items in a node is $M=8$
> This time, the minimum number of items in a node is $m=4$, i.e., $m=M / 2$
> If there are more options to choose, explain the reason of yours choice

- Compare and comment the results of exercises 1 and 2

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 2: SOLUTION

- Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

Object	ABEF	GI	Difference
	$6 \times 6-30=6$	$5 \times 3-6=9$	$\|6-9\|=3$
C	$8 \times 5-30=10$	$2 \times 8-6=10$	$\|10-10\|=0$
D	$6 \times 8-30=18$	$7 \times 3-6=15$	$\|18-15\|=3$

> The biggest difference shows the objects C and H , but we choose C so it

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes ABCEF and GI

EXERCISE 2: SOLUTION

> Finally, objects H and D must be placed in the node GI because the minimum number of items per node is $m=4$ and $|G I|=2$, i.e., $|G I|<m$

- As a result, we have nodes ABCEF and DGHI
- There is a smaller death space in ABCEF node but for a price of a huge overlapping area, therefore it is already better to use smaller value of m in this particular case

EXERCISE 3

> Split the following overflown node with Greene's split method

- The maximum number of items in a node is $M=9$
- The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
- PickSeeds

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

> ChooseAxis
> Distribute (ordering and placement)

EXERCISE 3: SOLUTION

> PickSeeds

- The largest dead space has DJ thus those will be the seeds of the splitting method

Pair	Overall area	Area of the objects	Dead space
AB	$9 \times 8=72$	$5+4=9$	$72-9=63$
AC	$8 \times 5=40$	$5+4=9$	$40-9=31$
\ldots			
BG	$11 \times 8=88$	$4+2=6$	$88-6=82$
\ldots			
DJ	$12 \times 8=96$	$3+1=4$	$96-4=92$
\ldots			
IJ	$6 \times 1=6$	$2+1=3$	$6-3=3$

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

EXERCISE 3: SOLUTION

> ChooseAxis

- $\mathrm{x}: 8 / 12=0.667$
> $\mathrm{y}: 6 / 8=0.750$
> In our case, the axis better separating D and J is y

	G			A			I	I				J
	G		A	A	A							
				A					C			
		F							C	C		
		F				H	H		C			
		F										
					E	E	E		B	B	B	
	D	D	D							B		

EXERCISE 3: SOLUTION

> Distribute according to axis y

Object	D	B	E	F	H	C	A	G	I	J
Start	0	0	1	2	3	3	5	6	7	7
end	0	1	1	4	3	5	7	7	7	7

- The solution:

G			A			I	I				J
G		A	A	A							
			A					C			
F											
	F					H	H		C		
	F										
				E	E	E		B	B	B	
	D	D	D							B	

> BDEFH || ACGIJ

EXERCISE 4

> Split the following overflown node with R *Tree split
method
> The maximum number of items in a node is $M=9$

- The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
> ChooseSplitAxis
> Distribute

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

- Illustrate the result

EXERCISE 4: SOLUTION

> Ordering* based on the x-axis: GDFAEHICBJ
> margin-value $($ GDF $\|$ AEHICBJ $)=(3+8) * 2+(10+8) * 2=22+36=58$
$>$ margin-value $($ GDFA $|\mid$ EHICBJ $)=(5+8) * 2+(8+8) * 2=26+32=58$
$>$ margin-value $($ GDFAE $|\mid$ HICBJ $)=(7+8) * 2+(7+8) * 2=30+30=60$
$>$ margin-value $($ GDFAEH $|\mid$ ICBJ $)=(7+8) * 2+(6+8) * 2=30+28=58$
$>$ margin-value $($ GDFAEHI $|\mid$ CBJ $)=(8+8) * 2+(4+8) * 2=32+24=56$

- Sum $=58+58+60+58+56=290$
> Ordering* based on the y-axis: DBEFHCAGIJ
$>$ margin-value $(\mathrm{DBE}|\mid$ FHCAGIJ $)=(11+2) * 2+(12+6) * 2=26+36=62$
$>$ margin-value $($ DBEF $|\mid \mathrm{HCAGIJ})=(11+5) * 2+(12+5) * 2=32+34=66$
> margin-value $(\mathrm{DBEFH}|\mid \mathrm{CAGIJ})=(11+5) * 2+(12+5) * 2=32+34=66$
$>$ margin-value $\left(\mathrm{DBEFHC}|\mid \mathrm{AGIJ})=(11+6)^{*} 2+(12+3) * 2=34+30=64\right.$

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

DBEFHCAGIJ
AEHFBCGID
$>$ margin-value $(\mathrm{DBEFHCA}|\mid \mathrm{GIJ})=(11+8) * 2+(12+2) * 2=38+24=62$

- Sum $=62+66+66+64+62=320$

EXERCISE 4: SOLUTION

- We chose splitting along the x -axis (smaller sum)
> overlap-value $($ GDF $|\mid$ AEHICBJ $)=8($ column AD $)$
$>$ overlap-value $($ GDFA $|\mid E H I C B J)=8($ column AE $)$
> overlap-value (GDFAE ||HICBJ) $=16$ (columns HE; IHE)
> overlap-value $($ GDFAEH $|\mid$ ICBJ $)=8$ (column IHE)
> overlap-value (GDFAEHI||CBJ) $=0$
> There is only one distribution having the smallest overlap, therefore the area-value does not have to be computed

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

- The result is: GDFAEHI||CBJ

