R-TREES

NDBI007: Practical Class 6

R-TREE

> Height-balanced tree

- Extension of B+tree for spatial data
- Pointers to data only from the leaf level
> Nodes correspond to disk pages
> Each node contains n-dimensional bounding box I
> MBRs (minimum bounding rectangle)

- Leaf level contains pointers to the spatial objects
- Inner levels contain MBRs
> MBR of a node is MBR of all children

SPLITING IN R-TREE: GUTTMAN

> First, we identify a pair of elements which would result in the largest dead space
> I.e., we apply method PickSeeds

- Next, remaining elements are added one by one
- If remaining entries need to be assigned into node in order to have the minimum number of entries, then assign them
- Otherwise, Pick the one that would make the biggest difference in area enlargement when put to one of the two groups (method PickNext)
- Add in to the one with the least difference

SplitNode(P,PP,E)

Input: node P, new node $P P, m$ original entries, new entry E Output: modified P, PP

PickSeeds(); \{ chooses first E_{i} and E_{i} for P and PP \}
WHILE not assigned entry exists DO
IF remaining entries need to be assigned to P or PP in order to have the minimum number of entries m THEN assign them;

ELSE

$\mathrm{E}_{\mathrm{i}} \leftarrow$ PickNext() \{choose where to assign next entry\}
Add E_{i} into group that will have to be enlarged least to accommodate it. Resolve ties by adding the entry to the group with smaller area, then to the one with fewer entries;

```
PickSeeds()
FOREACH E 
    d
        {J is the MBR covering E E and E E }
    pick E E and E E with maximal dij;
```


PickNext()

FOREACH remaining E_{i} DO
$\mathrm{d}_{1} \leftarrow$ area increase required for MBR of P and $E_{i} \cdot I$;
$\mathrm{d}_{2} \leftarrow$ area increase required for MBR of PP and $\mathrm{E}_{\mathrm{i}} . \mathrm{I}$;
pick E_{i} with maximal $\left|\mathrm{d}_{1}-\mathrm{d}_{2}\right|$;

EXAMPLE 1: GUTTMAN'S SPLIT

> Split the following overflown node with Guttman's splitnode method

- The maximum number of items in a node is $M=8$
- The minimum number of items in a node is $m=3$

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXAMPLE 1: GUTTMAN'S SPLIT

> We apply Guttman's PickSeeds method to find two elements having the largest dead space if being placed together

Pair	Overall area	Area of the objects	Dead space
AB	18	8	10
AD	16	4	12
\ldots		59	
AI	64	5	53
\ldots	56	3	
DH		4	10

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

> The largest dead space has AI thus those will be the seeds of the splitting method

EXAMPLE 1: GUTTMAN'S SPLIT

> Next, iteratively add such an object into a node which will maximise the difference in the node area enlargements if the object was inserted into the first or second node

Object	A	I	Difference
B	$6 \times 3-4=14$	$5 \times 7-2=33$	$\|14-33\|=19$
C	$6 \times 6-4=32$	$5 \times 3-2=13$	$\|32-13\|=19$
D	$8 \times 2-4=14$	$2 \times 8-2=16$	$\|14-16\|=2$
E	$3 \times 5-4=11$	$8 \times 5-2=38$	$\|11-38\|=27$
F	$5 \times 2-4=6$	$5 \times 8-2=38$	$\|6-38\|=32$
G	$7 \times 7-4=45$	$2 \times 3-2=4$	$\|45-4\|=41$
H	$2 \times 8-4=14$	$7 \times 2-2=12$	$\|14-12\|=2$

> The biggest difference shows the object G so it will be inserted into the

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes A and GI

EXAMPLE 1: GUTTMAN'S SPLIT

- Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

Object	A	GI	Difference
B	$6 \times 3-4=14$	$5 \times 7-6=29$	$\|14-29\|=15$
C	$6 \times 6-4=32$	$5 \times 3-6=9$	$\|32-9\|=23$
D	$8 \times 2-4=14$	$2 \times 8-6=10$	$\|14-10\|=4$
E	$3 \times 5-4=11$	$8 \times 5-6=34$	$\|11-34\|=23$
F	$5 \times 2-4=6$	$5 \times 8-6=34$	$\|6-34\|=28$
H	$2 \times 8-4=14$	$7 \times 3-6=15$	$\|14-15\|=1$

> The biggest difference shows the object F so it will be inserted into the

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes AF and GI

EXAMPLE 1: GUTTMAN'S SPLIT

> Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

Object	AF	GI	Difference
B	$6 \times 3-10=8$	$5 \times 7-6=29$	$\|8-29\|=21$
C	$6 \times 6-10=26$	$5 \times 3-6=9$	$\|26-9\|=17$
D	$8 \times 2-10=6$	$2 \times 8-6=10$	$\|6-10\|=4$
E	$5 \times 5-10=15$	$8 \times 5-6=34$	$\|15-34\|=19$
H	$5 \times 8-10=30$	$7 \times 3-6=15$	$\|30-15\|=15$

> The biggest difference shows the object B so it will be inserted into the

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes ABF and GI

EXAMPLE 1: GUTTMAN'S SPLIT

> Next, iteratively add such an object into a node which will maximise the difference in the node areas if the object was inserted into the first or second node

Object	ABF	GI	Difference
C	$6 \times 6-18=18$	$5 \times 3-6=9$	$\|18-9\|=9$
D	$8 \times 3-18=6$	$2 \times 8-6=10$	$\|6-10\|=4$
E	$6 \times 5-18=12$	$8 \times 5-6=34$	$\|12-34\|=22$
H	$6 \times 8-18=30$	$7 \times 3-6=15$	$\|30-15\|=15$

> The biggest difference shows the object E so it will be inserted into the

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- So now we have nodes ABEF and GI

EXERCISE 1

> Finish splitting of the overflown node

- Continue with Guttman's method
> The maximum number of items in a node is $M=8$
- The minimum number of items in a node is $m=3$
> If there are more options to choose, explain the reason of yours choice

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 2

> Finish splitting of the overflown node
> Continue with Guttman's method
> The maximum number of items in a node is $M=8$
> This time, the minimum number of items in a node is $m=4$, i.e., $m=M / 2$
> If there are more options to choose, explain the reason of yours choice

- Compare and comment the results of exercises 1 and 2

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

SPLITING IN R-TREE: GREENE

> Modification of the split algorithm in original R-Tree (Guttman)

- Splitting is based on a hyperplane which defines in which node the objects will fall
> I.e., it splits objects into two groups
> We choose an Axis
> PickSeeds work identically to the Guttman's
- We compute the normalised distances of each axis and select the axis having the highest value
- Next, we order the objects based on the selected axis

SplitNode(P,PP,E)

ChooseAxis();
Distribute();

ChooseAxis()

PickSeads; $\left\{\right.$ from Guttman's version - returns seeds E_{i} and E_{j} \}
For every axis compute the distance between MBRs $\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}$; Normalize the distances by the respective edge length of the bounding rectangle of the original node;
Pick the axis with greatest normalized separation;

```
Distribute()
Sort E}\mp@subsup{\textrm{E}}{\textrm{i}}{}\mathrm{ in the chosen axis j based on the j-th coordinate;
Add first [ (M+1)/2 \ records into P and rest of them into PP;
```

- Finally, we distribute the objects

EXAMPLE 2: GREENE'S SPLIT

> Split the following overflown node with Greene's split method

- The maximum number of items in a node is $M=8$
> The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
> PickSeeds (Guttman's)

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- ChooseAxis
> Distribute (ordering and placement)

EXAMPLE 2: GREENE'S SPLIT

> We apply Guttman's PickSeeds method to find two elements having the largest dead space if being placed together

Pair	Overall area	Area of the objects	Dead space
AB	18	8	10
AD	16	4	12
\ldots			
AI	64	5	59
\ldots	56	3	53
DH		4	10

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

> The largest dead space has AI thus those will be the seeds of the splitting method

EXAMPLE 2: GREENE'S SPLIT

> Having selected seeds, we compute the normalised distances of A and I along each of the axis and pick the axes with higher distance (better separation)
> $\mathrm{x}: 4 / 8=0.5$
$\rightarrow \mathrm{y}: 5 / 8=0.625$
> In our case, the axis better separating A and I is y

y: $5 / 8$	A	A		F		F			D
		A				B	B		
				B		B	B		
	E	E	E						
	E	E	E						
				C		C	C	G	
		H						G	
		H						1	1

EXAMPLE 2: GREENE'S SPLIT

> Now we order the objects based on their y-axis
$>$ I.e., we start from the coordination [0,0]

Object	I	H	G	C	E	B	A	F	D
Start	0	0	1	2	3	5	6	7	7
end	0	1	2	2	4	6	7	7	7

> If two objects start at the same level, we select first the one that ends at lower level

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- If two or more objects starts and ends at the same level, the order is arbitrary

EXAMPLE 2: GREENE'S SPLIT

> We place half of the objects in one node and the other half into the second node

- There are two possible solutions:

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

EXERCISE 3

> Split the following overflown node with Greene's split method

- The maximum number of items in a node is $M=9$
- The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
- PickSeeds

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

> ChooseAxis
> Distribute (ordering and placement)

SPLITING IN R* TREE

> R* tree tries to minimise coverage (area) and overlap by adding another criterion, i.e., margin
> It is used only for the level above the leaf level
> Other levels are split based on Guttman
> For every two group we can compute following auxiliary values:
> margin-value - sum of margins (surfaces) of the two groups
> overlap-value - volume of the overlap of the two groups

Split_RS(P,PP,E)

ChooseSplitAxis();
Distribute();

ChooseSplitAxis
 FOREACH axis DO

Sort the entries along given axis;

$\mathrm{S} \leftarrow$ sum of all margin-values of all different distributions;
Choose the axis with the minimum S as split axis;

Distribute

Along the split axis, choose the distribution with minimum overlap-value. Resolve ties by choosing the distribution with minimum area-value;
> area-value - sum of volumes of the two groups

EXAMPLE 3: SPLITTING IN R* TREE

> Split the following overflown node with R^{*} Tree split method

- The maximum number of items in a node is $M=8$
> The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
> ChooseSplitAxis

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- Distribute

EXAMPLE 3: SPLITTING IN R* TREE

> First, we compute the margin-values for every possible distributions of objects with regard to the x and y axis
$>\operatorname{margin}$-value: $\operatorname{margin}\left(\operatorname{MBR}\left(G_{1}\right)\right) * 2+\operatorname{margin}\left(\operatorname{MBR}\left(G_{2}\right)\right) * 2$

- These are summed and such an axis is chosen which minimises the sum
- Ordering* based on the x-axis: AEHFBCGID
$>$ margin-value $(\mathrm{AEH}|\mid \mathrm{FBCGID})=(3+8) * 2+(5+8) * 2=22+26=48$
$>$ margin-value $(\mathrm{AEHF}|\mid \mathrm{BCGID})=(5+8) * 2+(5+8) * 2=26+26=52$
$>$ margin-value $(\mathrm{AEHFB} \|$ CGID $)=(6+8) * 2+(5+8) * 2=28+26=54$

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

AEHFBCGID
$>$ margin-value $($ AEHFBC $|\mid G I D)=(6+8) * 2+(2+8) * 2=28+20=48$

- Sum $=48+52+54+48=202$
* If two objects start at the same level, we select first the one that ends at lower level. Or if two or more objects starts and ends at the same level, the order is arbitrary

EXAMPLE 3: SPLITTING IN R* TREE

> Ordering* based on the y-axis: IHGCEBAFD
$>$ margin-value $(\mathrm{IHG}|\mid$ CEBAFD $)=(8+3) * 2+(8+6) * 2=22+28=50$
$>$ margin-value $(\mathrm{IHGC}|\mid \mathrm{EBAFD})=(8+3) * 2+(8+5) * 2=22+26=48$
$>$ margin-value $($ IHGCE $|\mid$ BAFD $)=(8+5) * 2+(8+3) * 2=26+22=48$
$>$ margin-value $(\mathrm{IHGCEB}|\mid \mathrm{AFD})=(8+7) * 2+(8+2) * 2=30+20=50$

- Sum $=50+48+48+50=196$
> X-axis: 202
> Y-axis: 196

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

- Therefore we chose splitting along the y-axis

EXAMPLE 3: SPLITTING IN R* TREE

> Now we compute the overlap-values among all the distributions (along y-axis) and pick the distributions minimising the overlap
> overlap-value (IHG||CEBAFD) $=8$ (row CCCG)
> overlap-value $($ IHGC $|\mid$ EBAFD $)=0$
> overlap-value (IHGCE||BAFD) $=0$
> overlap-value (IHGCEB||AFD) $=8$ (row ABB)

- If more distributions lead to the minimum overlap, the one is chosen which shows the smallest area-value

A	A		F	F			D
	A			B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

> area-value $\left(\right.$ IHGC $|\mid$ EBAFD $)=(7 * 3)+\left(8^{*} 5\right)=21+40=61$
$>$ area-value $($ IHGCE $|\mid$ BAFD $)=(8 * 5)+(8 * 3)=40+24=64$

EXERCISE 4

> Split the following overflown node with R *Tree split
method
> The maximum number of items in a node is $M=9$

- The minimum number of items in a node is $m=3$
> I.e., execute the following methods:
> ChooseSplitAxis
> Distribute

G			A			I	I				J
G		A	A	A							
			A					C			
	F							C	C		
	F				H	H		C			
	F										
				E	E	E		B	B	B	
D	D	D							B		

- Illustrate the result

