B-TREES: SOLUTION
NDBI007: Practical Class

EXERCISE 1

> Suppose a non-redundant B-tree of degree $m=3$ (see the figure)

- First, illustrate the b-tree after insertion of records 11, 18 and 14
> Second, illustrate the b-tree after deletion of records 40
 and 14

EXERCISE 1: SOLUTION 1/2

> Insertion of 11
> Key 11 is less than 19, i.e., we navigate to the left (leaf) node $(9,15)$

- After the insertion, the leaf $(9,11,15)$ contains too many keys, a splitting occurs

> Key 11 goes to the parent $(11,19,25)$ that also contains too many keys, i.e., additional splitting occurs and the tree height is increased
- Insertion of 18
> Key 18 if less than 19, i.e., we navigate to the left node (11)
> Key 18 is greater than 11, i.e., we navigate to the right node (15)
> Key 18 goes to the leaf $(15,18)$

> Insertion of 14
> Key 14 is less than 19, i.e., we navigate to the left node (11)
- Key 14 is greater than 11, i.e., we navigate to the right (leaf) node $(15,18)$
> After the insertion, the leaf $(14,15,18)$ contains too many keys, a splitting occurs
> Key 15 goes to the parent $(11,15)$

EXERCISE 1: SOLUTION 2/2

> Deletion of 40
> Key 40 is greater than 19, i.e., we navigate to the right node (25)
> Key 40 is greater than 25 , i.e., we navigate to the right (leaf) node (40)
> Key 40 is removed, but we have to merge nodes (empty) and (25)
> Parent node (empty) has too few keys, therefore we take key from the
 left sibling (19)
> Finally, taking a key from the left sibling $(11,15), 15$ goes to the root node

- Deletion of 14
> Key 14 is less than 15, i.e., we navigate to the left node (11)
- Key 14 is greater than 11, i.e., we navigate to the right (leaf) node (14)
- Key 14 is removed, causing the splitting of nodes (9) and (11)
- Finally, we have to merge nodes $(15,19)$ to establish a new root node

EXERCISE 2

- Suppose a B^{+}-tree of degree $m=4$ (see the figure)
> Minimum number of children in a node is 2
- Illustrate the B^{+}-tree after the insertion of records 40,50 and 60

EXERCISE 2: SOLUTION

> The insertion of a record with key 40 splits the right leaf node into nodes $(20,21)$ and $(30,40)$

- The separating value 30 is inserted into the parent node where there is enough space
- The insertion of a key 50 is trivial, it goes to the node $(30,40,50)$
- The insertion of a key 60 splits the right leaf node into nodes $(30,40)$ and $(50,60)$
- The separating value 50 is inserted into the parent node $(9,20,30,50)$ where it leads to the cascade split
- The parent is split to nodes $(9,20)$ and (50) while (30) goes to the root node

EXERCISE 3

> Continue with previous example and delete the records with keys 15, 9 and 8 from redundant B^{*}-tree
> Finally, remove (single) additional key of your choice from the B*-tree
> Illustrate and comment the removals step by step

EXERCISE 3: SOLUTION

- We can delete the record 15 by moving the record 20
- The record with key 9 will be removed while moving the record with key 8 and modification of the split value
- The record with key 8 will be removed while moving the record with key 7 and modification of the split value

> Removing another record would lead to merging of the three nodes into two

