B-TREES

NDBI007: Practical Class 5

B-TREE

- B-Tree of degree m is balanced m-ary tree where
- The root has at least 2 children unless it is a leaf
> Every inner nodes have at least $\left\lceil\frac{m}{2}\right\rceil$ and at most m children
> Every inner node contains at least $\left\lceil\frac{m}{2}\right\rceil-1$ and at most $m-1$ data entries (e.g., keys, pointers)
- All the paths from the root to the leaf are of the same length
- The nodes have the structure $p_{0},\left(k_{1}\left[, d_{1}\right], p_{1}\right),\left(k_{2}\left[, d_{2}\right], p_{2}\right), \ldots,\left(k_{n}\left[, d_{n}\right], p_{n}\right), u$
> p_{i}-pointers to the children
- k_{i} - keys
$>d_{i}$ - data or pointers to them

- u - unused space
> where $\left\lceil\frac{m}{2}\right\rceil-1 \leq n \leq m-1$
> Records $\left(k_{i}\left[, d_{i}\right], p_{i}\right)$ are sorted with respect to k_{i}
- Keys k_{j} in the subtree pointed by p_{i} are greater than or equal to k_{i} and less than k_{i+1}

EXAMPLE 1: INSERT (SPLITTING THE ROOT)

> Insert entries with keys 15, 9 and 23 into an empty tree
> Suppose a non-redundant B-tree of degree $m=3$

- The inner nodes have between $\lceil 3 / 2\rceil$ and 3 children, i.e., they contain between 1 and 2 keys

15
$9|15|$

- The records with keys 15 and 9 fit into a single (root) node
- The record with key value 23 does not fit and causes splitting
> First, we order the records 15, 9, 23 to 9, 15, 23 (ascending order)
- The middle record (15) will divide the smaller records (9) in one node from the bigger records (23) in a new node
- The dividing record will be placed into the parent node (new root node)

EXAMPLE 2: INSERT

> Insert records with keys 25, 19 and 40 into the B-tree from previous example

> The record 25 fits into the (right) leaf

- The record with key 19 will split the (right) node into two
 nodes, i.e., (19) and (25) with (23) being the dividing record > The dividing record (23) finds its place in the parent node
> The record 40 will fall into the right node

EXAMPLE 3: INSERT (PROPAGATION)

> Insert records with keys 17 and 21 into the B-tree from previous example

- The record 17 falls into the middle leaf
- The record 21 causes splitting of the middle leaf $(17,19,21)$
 and propagation of the record (19) to the parent
> However, there is no more space in the parent node (root)
> Thus, the parent node $(15,19,23)$ needs to be split as well which increases the tree height

EXAMPLE 4: DELETE

- Remove record 23 from the non-redundant B-tree of degree 3 (see figure)
> The deletion of a data entry from an inner node leads to
 its replacement with the most left descendant entry from the right subtree or the most right entry from its left subtree
- If we delete 23 from the tree above, we can replace it with entry 25 from the bottom node (leaf)
> Moving the entry 25 from the leaf $(25,40)$ is safe
 since it still has the minimum number of entries

EXAMPLE 5: DELETE (MERGING)

> Remove record 17 from the non-redundant B-tree of degree 3 (see figure)

- We cannot borrow an entry from the neighbour (21) since it also contains the minimal number of entries
- We have to merge nodes (9), (empty) and (15)
> The entries of the current node (none left after removing 17), those from the neighboring node (9) and the dividing entry will be moved into a single node $(9,15)$
- Thus, the entry 15 needs to be removed from the parent node which causes underflow of that node
- We have to merge nodes (empty parent node), (19) and (25)
> Once again, we cannot borrow an entry from the neighbour node (25)
- The empty node () is merged with the node (25) and dividing entry (19) from the root node, resulting in the node $(19,25)$
> Having entry 19 removed from root node (), the height of the tree decreases

EXERCISE 1

> Suppose a non-redundant B-tree of degree $m=3$ (see the figure)

- First, illustrate the b-tree after insertion of records 11, 18 and 14
> Second, illustrate the b-tree after deletion of records 40
 and 14

B+-TREE

> B+-Tree differs from the original B-tree by:

- It is always redundant, i.e., the data are stored or pointed to from the leaf nodes
- The leaf nodes are chained using pointers a linked list which simplifies range queries
> In reality, often all the levels are linked (not just the leaf level)
- The inner nodes contain only the values using which the tree can be traversed
> The nodes have the structure $[$ prev, $] p_{0},\left(k_{1}, p_{1}\right), \ldots,\left(k_{n}, p_{n}\right), u[$, next $]$

- p_{i} - pointers to the children
> k_{i} - keys
- Keys k_{j} in the subtree pointed by p_{i} are greater than or equal to k_{i} and less than k_{i+1}, if k_{i+1} exists
- The minimum number of children can be raised to $\lceil(m+1) / 2\rceil$

EXAMPLE 6: INSERT

> Insert records with keys 10, 7, 15, 5, 30 and 20 into an empty B+-tree

- Suppose a B+-tree of degree $m=6$

- The minimum number of children is therefore 3
> Insertion of keys 10, 7, 15, 5 and 30 is trivial, all belong to the root

| 5 | 7 | 10 | $15\|\|30\|$ |
| :--- | :--- | :--- | :--- | :--- | node

- Insertion of key 20 leads to a page split
- A half of the records, i.e., ($5,7,10$), stays in the original page while the rest, i.e., $(15,20,30)$, moves into a new page
- The max key value in the left node, i.e., 10 , is propagated into the
 higher level (new root node)
> However, any value $10 \leq$ value ≤ 14 would work

EXAMPLE 7: INSERT

- Insert additional records with keys $13,3,11,21,8$ and 9 into the B^{+}-tree from previous example
- The insertion of records with keys 13,3 and 11 is trivial
- The insertion of a record with key 21 splits the right leaf node into nodes $(11,13,15)$ and $(20,21,30)$
- The separating value 15 is inserted into the parent node where there is enough space so it does not lead to another split
> Inserting of records with keys 8 and 9 leads to the split of the leaf into $(3,5,7)$ and $(8,9,10)$
- The separation value 7 is inserted into the parent node

EXAMPLE 8: DELETE (MERGE NODES)

- Remove the entry with key 15 from the B^{+}-tree (see the previous page)
- When removing entries from a B^{+}-tree, the given entry is simply removed from the leaf unless the corresponding leaf underflows
> In such case, the tree tries to borrow an entry from a neighbouring leaf node (and to change the splitting value in the parent)
> If also the neighbours have the minimum number of entries, it is necessary to merge two nodes into one and remove the splitting value from the parent
- Which can lead to the merge cascade up to the root
> In our example, every node (except the root) needs to include at least three keys
> By removing the entry 15 , this condition is violated and the neighbouring nodes cannot lose any entry either
- Thus we merge node $(11,13)$ with $(20,21,30)$ and remove the splitting value 15 from the parent

EXAMPLE 9: DELETE (BORROW KEY)

> Remove the entry with key 10 from the B^{+}-tree (see the previous page)
> To remove the entry 10 we need to move the entry with key 11 from the neighbouring node to keep the condition of minimum number of entries in every node

- It is necessary to change the splitting value in the parent from 10 to 11

EXAMPLE 10: DELETE

> Remove records with keys 3, 10 and 11 from the B^{+}-tree (see the previous page)

- Removing the key 3
> After the removal, the number of records in the node (5,

7) falls under minimum and the neighbouring nodes, i.e., $(9,10,11)$, cannot provide any record

- The nodes $(5,7)$ and $(9,10,11)$ are merged
> Finally, the splitting value 7 is removed from the parent
- Removing the keys 10,11
- It is sufficient to remove the keys from the node, no modifying of splitting value is needed

EXERCISE 2

- Suppose a B^{+}-tree of degree $m=4$ (see the figure)
> Minimum number of children in a node is 2
- Illustrate the B^{+}-tree after the insertion of records 40,50 and 60

B^{*}-TREE

- B^{*}-tree differ from the standard B-tree by:
- The non-root nodes have at least $\lceil(2 m-1) / 2\rceil$ children
- If the tree contains few records (i.e., after splitting the root node), the only two leafs can contain less records (about half))
> If a node has too few items, or overflows, it is balanced using both of its neighbours
> If a node and its neighbour are full, they are split (together with the new record) into three nodes being $2 / 3$ filled

EXAMPLE 11: INSERT

- Insert records with keys $10,7,15,5,30,20$ and 13 into an empty redundant B*tree
> Suppose an empty B^{*}-tree of degree $m=5$
> The minimum number of children is $\left\lceil\frac{2}{3}(m-1)\right\rceil+1=\left\lceil\frac{2 m-2}{3}\right\rceil+1=4$

```
|5 5 7 7 | 10| 15 
```

> Insertion of records with keys $10,7,15$ and 5 is trivial, all goes to the root node
> Inserting a record with key 30 leads to root node split

- Split nodes are $(5,7,10)$ and $(15,30)$

- The dividing value 10 is inserted into the new parent (new root)
- A record with key 20 can be inserted into the right leaf, as well as a record with a key 13

EXAMPLE 12: INSERT

- Continue with previous example and insert records with keys 21 and 3 into the redundant B^{*}-tree
> Inserting the key 21
> We cannot insert the key 21 into the full node ($13,15,20,30$), but the
 record with key 13 can be moved to the neighbouring, not yet filled node
> The splitting value in the parent needs to be modified
- Inserting the key 3
- The key 3 cannot be inserted into the node ($5,7,10,13$) and the neighbour is full as well
- The records in both nodes, together with record 3, will be split into three
 nodes $(3,5,7),(10,13,15)$ and $(20,21,30)$
- Splitting values 7 and 15 need to be inserted into the parent node instead of the existing splitting value 13

EXAMPLE 13: INSERT

- Continue with previous example and insert records with keys 8, 9 and 11 into the redundant B^{*}-tree

- The record 8 fits into the middle leaf
- The record 9 causes redistribution of the record 8 to the left and change of the splitting value from 7 to 8

> The redistribution of the record with key 15 to the right and modification of the splitting value in the parent from 15 to 13
- Split of nodes $(3,5,7,8)$ and $(9,10,13,15)$ into three nodes $(3,5,7)$, $(8,9,10)$ and $(11,13,15)$
> The splitting value 8 would be replaced by a pair 7 and 10

EXAMPLE 14: DELETE

> Continue with previous example and delete the records with keys 13, 11 and 10 from redundant B^{*}-tree

- The record with key 13 can be easily deleted from the middle leaf

> The same holds for the record with key 11
- The record with key 10 cannot be deleted directly
- The number of entries in a node would decrease under the threshold
> Therefore it is necessary to mode there the record with key 15 from the neighbouring node
> The splitting value in the parent changes from 13 to 15

EXERCISE 3

> Continue with previous example and delete the records with keys 15, 9 and 8 from redundant B^{*}-tree
> Finally, remove (single) additional key of your choice from the B*-tree
> Illustrate and comment the removals step by step

