5
»
vl \ :
-
-
:
.
.
.
N5
-
" 2
- 5
piw .-\‘.
AY ! »
ipe- -~
’ ¥ :
-
'S S N
B :
.
Moo ."{'\‘.Y,J":
 nditd :
. : -+ E "N
.' » n‘ -8 -
. | A oy - S h B . ; . <
. P . - - D 21 et N
. e B AP o, s e
pe . - by . i :
> 2475 c Py Cha . .
L350 u & . . ! v (i : TN) :) M g o«
; e - . A v 3 ~-» .y S N T 1 N
. o ™ ' . -~ . N Seae S) i % s ‘ . ——
~ty 3 : - . . a - . < F o ! e s e : \ ""' :
» - -t - ", ‘ JAS : .5 S . . - o SN - A . > : N -~ O -
) e . .) - - - s : : !
R ~... ! : e R ’ : . " a . - b2 - > s ——
- - g . . é . : S 4 -
3 o - > - ‘e ‘e 0 -’y - X . . : ! - e
l\“_'.,. - - ' . : ' 5 - 1 - — -
' 3 X ¥ , e { : . “'.-.’;N<.§:l€4:\.‘is \ A 4 : - . .
: - ” - v & ’ - d - _'___.f“[.--:‘ . - s - ™ 3 ~
= Iy : oo t® =e 7 2 "o i\ S iy . - < : 3 \-*
- - i T R T NP T S A >
. <y [o . 2% i) i - . v e ~ R AT N T
5 . WA : . ,,_;;..s.‘.....' g e . SRS

NDBIOO7: Practical Class 5

.-V

» B-Tree of degree m is balanced m-ary tree where

» The root has at least 2 children unless it is a leaf

. m .
» Every inner nodes have at least [E] and at most m children

m ° °
» Every inner node contains at least [7] — | and at most m — 1 data entries (e.g., keys, pointers)

» All the paths from the root to the leaf are of the same length

» The nodes have the structure p,, (k,[, d1, p)), (k[, d,1, p>), ..., (k,[, d 1, p,), u

> p; - pointers to the children

> k; - keys

» d. - data or pointers to them

> u - unused space

m
» where [?]—ISnSm—l

» Records (K[, d;], p;) are sorted with respect to k;

> Keys k; in the subtree pointed by p; are greater than or equal to k; and less than k; |

EXAMPLE 1: INSERT (SPLITTING THE ROQT)

» Insert entries with keys 15, 9 and 23 into an empty tree

» Suppose a non-redundant B-tree of degree m = 3

» The inner nodes have between [3/2]| and 3 children, i.e., they contain
between 1 and 2 keys

1iSINI HEAEEN

» The records with keys 15 and 9 fit into a single (root) node

» The record with key value 23 does not fit and causes splitting

> First, we order the records 15, 9, 23 to 9, 15, 23 (ascending order)

» The middle record (15) will divide the smaller records (9) in one node
from the bigger records (23) in a new node

» The dividing record will be placed into the parent node (new root node)

EXAMPLE 2: INSERT

» Insert records with keys 25, 19 and 40 into the B-tree from
previous example

» The record 25 fits into the (right) leaf

» The record with key 19 will split the (right) node into two
nodes, i.e., (19) and (25) with (23) being the dividing record

» The dividing record (23) finds its place in the parent node

» The record 40 will fall into the right node

EXAMPLE 3: INSERT (PROPAGATION)

» Insert records with keys 17 and 21 into the B-tree from
previous example

» The record 17 falls into the middle leaf

» The record 21 causes splitting of the middle leaf (17,19, 21)
and propagation of the record (19) to the parent

» However, there is no more space in the parent node

(root) i 23] |

» Thus, the parent node(15,19,23) needs to be split as well
which increases the tree height 190 azie 2] Iz zo)

s ;

EXAMPLE 4: DELETE

» Remove record 23 from the non-redundant B-tree of
degree 3 (see figure)

> The deletion of a data entry from an inner node leads to WA (AR AR [z o)
its replacement with the most left descendant entry
from the right subtree or the most right entry from its
left subtree T T

23

ISl

—
» Moving the entry 25 from the leaf (25,40) is safe N (RS2 TEZ T (i

since it still has the minimum number of entries X/

> If we delete 23 from the tree above, we can replace it
with entry 25 from the bottom node (leaf) IS

6

EXAMPLE 5: DELETE (MERGING)

» Remove record 17 from the non-redundant B-tree of degree 3 (see figure)

» We cannot borrow an entry from the neighbour (21) since it also contains the I 15 I I
minimal number of entries

» We have to merge nodes (9), (empty) and (15) I 9 I I |17| I |21 I I |40I I

» The entries of the current node (none left after removing 17), those from the
neighboring node (9) and the dividing entry will be moved into a single node

(9,15)
» Thus, the entry 15 needs to be removed from the parent node which causes 17
underflow of that node _»
» We have to merge nodes (empty parent node), (19) and (25) 15
» Once again, we cannot borrow an entry from the neighbour node (25))

» The empty node () is merged with the node (25) and dividing entry (19) from I 9 I 15 I
the root node, resulting in the node (19,25) \+

» Having entry 19 removed from root node (), the height of the tree decreases

EXERCISE 1

» Suppose a non-redundant B-tree of degree m = 3 (see
the figure)

» First, illustrate the b-tree after insertion of records 11,
18 and 14

» Second, illustrate the b-tree after deletion of records 40
and 14

» B+-Tree differs from the original B-tree by:
» It is always redundant, i.e., the data are stored or pointed to from the leaf nodes
» The leaf nodes are chained using pointers a linked list which simplifies range queries
> In reality, often all the levels are linked (not just the leaf level)

» The inner nodes contain only the values using which the tree can be traversed

» The nodes have the structure [prev,| py, (k,py), ..., (k,p,), ul, next]

> p; - pointers to the children

> k. - keys

> Keys k; in the subtree pointed by p; are greater than or equal to k; and less than k;,, if

k;, | exists

» The minimum number of children can be raised to [(m + 1)/2]

EXAMPLE 6: INSERT

» Insert records with keys 10, 7, 15, 5, 30 and 20 into an empty B+-tree

» Suppose a B*-tree of degree m = 6

» The minimum number of children is therefore 3

> Insertion of keys 10, 7, 15, 5 and 30 is trivial, all belong to the root 5 7 10 15 30
node

> Insertion of key 20 leads to a page split

> A half of the records, i.e., (5, 7, 10), stays in the original page
while the rest, i.e., (15, 20, 30), moves into a new page

10 Il 15 20 30

» The max key value in the left node, i.e., 10, is propagated into the
higher level (new root node)

» However, any value 10 < value < 14 would work

10

EXAMPLE 7: INSERT

» Insert additional records with keys 13, 3, 11, 21, 8 and 9 into the B+-tree from previous example

» The insertion of records with keys 13, 3 and 11 is trivial

» The insertion of a record with key 21 splits the right leaf node into nodes (11, 13, 15) and (20, 21, 30)
» The separating value 15 is inserted into the parent node where there is enough space so it does not lead to another split

> Inserting of records with keys 8 and 9 leads to the split of the leaf into (3,5,7) and (8,9,10)

» The separation value 7 is inserted into the parent node

20 21 30

11

EXAMPLE 8: DELETE (MERGE NODES)

» Remove the entry with key 15 from the B+-tree (see the previous page)

» When removing entries from a B*-tree, the given entry is simply removed from the leaf unless the corresponding leaf underflows

> In such case, the tree tries to borrow an entry from a neighbouring leaf node (and to change the splitting value in the parent)

» [f also the neighbours have the minimum number of entries, it is necessary to merge two nodes into one and remove the splitting
value from the parent

» Which can lead to the merge cascade up to the root

> In our example, every node (except the root) needs to include at least three keys
» By removing the entry 15, this condition is violated and the neighbouring nodes cannot lose any entry either

» Thus we merge node (11, 13) with (20, 21, 30) and remove the splitting value 15 from the parent

Al II AR II11I13I20I21I30I

12

EXAMPLE 9: DELETE (BORROW KEY)

» Remove the entry with key 10 from the B*-tree (see the previous page)

» To remove the entry 10 we need to move the entry with key 11 from the neighbouring node to keep the
condition of minimum number of entries in every node

> [t is necessary to change the splitting value in the parent from 10 to 11

I| 9 10 11 Il 13 20 21

30

13

EXAMPLE 10: DELETE

» Remove records with keys 3, 10 and 11 from the B*-tree
(see the previous page)

» Removing the key 3

> After the removal, the number of records in the node (5,

7) falls under minimum and the neighbouring nodes, i.e., 10 11 . 13120/ 21 30

(9,10,11), cannot provide any record

» The nodes (5,7) and (9, 10, 11) are merged

» Finally, the splitting value 7 is removed from the parent

» Removing the keys 10, 11
» [t is sufficient to remove the keys from the node, no ‘*
13/ 20 21 30

modifying of splitting value is needed

14

EXERCISE 2

» Suppose a B+-tree of degree m = 4 (see the figure)

» Minimum number of children in a node is 2

» [llustrate the Bt-tree after the insertion of records 40, 50 and 60

15

B"-TREE

» B*-tree differ from the standard B-tree by:

» The non-root nodes have at least [(2m — 1)/2] children

> If the tree contains few records (i.e., after splitting the root node), the only two
leafs can contain less records (about half))

» If a node has too few items, or overflows, it is balanced using both of its
neighbours

» [f a node and its neighbour are full, they are split (together with the new record)
into three nodes being 2/3 filled

16

EXAMPLE 11: INSERT

> Insert records with keys 10, 7, 15, 5, 30, 20 and 13 into an empty redundant B*-
tree

» Suppose an empty B*-tree of degree m = 5

- . .2 2m — 2
» The minimum number of children is [E(m -D]+1=] 3 1+1=4

» Insertion of records with keys 10, 7, 15 and 5 is trivial, all goes to the root node

» Inserting a record with key 30 leads to root node split

» Split nodes are (5, 7, 10) and (15, 30)

» The dividing value 10 is inserted into the new parent (new root)

> A record with key 20 can be inserted into the right leaf, as well as a record with

a key 13 13/ 15 20 30

17

EXAMPLE 12: INSERT

» Continue with previous example and insert records with keys 21 and 3 into
the redundant B*-tree

» Inserting the key 21

» We cannot insert the key 21 into the full node (13, 15, 20, 30), but the 15/ 201 21 30
record with key 13 can be moved to the neighbouring, not yet filled node

» The splitting value in the parent needs to be modified

> Inserting the key 3

» The key 3 cannot be inserted into the node (5, 7, 10, 13) and the
neighbour is full as well

20 21 30

» The records in both nodes, together with record 3, will be split into three 101315
nodes (3,5,7), (10, 13, 15) and (20, 21, 30)

» Splitting values 7 and 15 need to be inserted into the parent node instead
of the existing splitting value 13

18

EXAMPLE 13: INSERT

» Continue with previous example and insert records with keys 8, 9 and 11
into the redundant B*-tree

20 21 30

» The record 8 fits into the middle leaf 13| 15

» The record 9 causes redistribution of the record 8 to the left and change of
the splitting value from 7 to 8

20 21 30

» The record with a key 11 will cause one of two possibilities: 1315

» The redistribution of the record with key 15 to the right and
modification of the splitting value in the parent from 15 to 13

» Split of nodes (3,5,7,8) and (9,10,13,15) into three nodes (3,5,7),
(8,9,10) and (11,13,15)

15 20 21 30

» The splitting value 8 would be replaced by a pair 7 and 10
117 13

EXAMPLE 14: DELETE

» Continue with previous example and delete the records with keys
13, 11 and 10 from redundant B*-tree

15 20 21 30

» The record with key 13 can be easily deleted from the middle leaf

» The same holds for the record with key 11

» The record with key 10 cannot be deleted directly

» The number of entries in a node would decrease under the
threshold

» Therefore it is necessary to mode there the record with key 15
from the neighbouring node

20 21 30

» The splitting value in the parent changes from 13 to 15

20

EXERCISE 3

» Continue with previous example and delete the records with keys 15, 9 and 8 from
redundant B*-tree

» Finally, remove (single) additional key of your choice from the B*-tree

» [llustrate and comment the removals step by step

LA

N N A 120f21]s0] F
SIS

21

