:
»
.

——-

i &

™o o ot 0

A |

r,.C L,
S

R

)ﬂ..v"”.. b - o acd -
v, v :.-...)y
R e R e TR L,
"~ 1 . . Lo i O
. E .
oL ..-. . 2 e b’
P S : gl > ’
as i g Ty e Y
3 L, ST SR S AL AT
AN - vl 101, g
- T ! ot 95 e A U el

., .
-

ey

.t .

.ﬁs,;.'(“

i

W
I
o+ |
> L
.
T e
hr
> —~
/’
4
€23
) Bt
2 o
v &>
[»
‘-.
-
9
.
-

%

-

e
.

n‘

-
Fx]

o

—

‘.W‘~‘ -

DYNAMIC HASHING

cal Class 4

ica

Pract

®
®

NDBIOO07

DYNAMIC HASHING

» Static forms of hashing lose its good performance as the table utilisation comes to
1ts maximum

» On the other hand, dynamic hashing algorithms allow to increase the size of the
table with increasing number of stored records

» Fagin
> Litwin

» LHPE-RL

> Directory

> List of entries in the main memory that points to the pages in the primary file

> Global depth d, - Number of least significant bits of the hash /(k) needed to address an entry in the directory
> Primary file

» Distributed collection of pages stored in the secondary memory, i.e., continuous space is not required

» Each page has a constant size n

» Each page remembers local depth d; - Number of least significant bits of the hash /(k) common to all records

> 294 te]ls how many directory entries points to the particular page in the primary file

> Overflowing causes a change in the structure of the directory and primary file

> d; < dg - the particular page can be split, i.e., the page is split and d; incremented

> d; = d - the directory must be expanded, i.e., the directory is doubled and d; incremented

» Inserting/Searching for a record with key k
» Compute k' = h(k)
» Convert k' into directory entry k" by leaving the d; least significant bits

> The pointer in the corresponding entry points to the page where the record should be inserted/searched

EXAMPLE 1: FAGIN

» Insert records with keys 20, 11 and 8

» Using the least significant bit of key 20, i.e., 0, the corresponding
record is inserted into the page using entry O

» Record with key 11 is stored to the same page using entry 1

» Record with key 8 is inserted into the same page using entry O

EXAMPLE 2: FAGIN - SPLITTING A PAGE

» Insert record with key 27 into the structure from example 1

» Page is overflown

» The local value d; of the page is less than the global value d; of the

directory

» Therefore we can split the page into two new pages and increment d;
values of both the pages

n
» Finally, we reinsert the records previously allocated into the page being split M

> After the reinsert, the even keys are stored in the page referenced from
the zero-th directory entry while the odd records are referenced from the 27

first entry

EXAMPLE 3: FAGIN - EXPANDING THE DIRECTORY

> Insert records with keys 19 and 5 into the structure from example 2

> After inserting record with key 19, a page is filled

» The insert of the record having key 5 causes:

» Expanding the directory, i.e., d; = d;

» Splitting of the second page, i.e., d; = 2

» Reinserting of records with keys 5, 11, 19 and 27

> h(11,,) = 1011,

> h(27,0) = 11011,

EXERCISE 1

» Insert records with keys 24 and 32

» Note all the computations and illustrate the solution

LITWIN

» Directory-less scheme that avoids exponentially increasing size of the directory, but we need a continuous space
in the secondary memory

» Addition of a single page after pre-defined condition

» The primary file is linearly expanded with time (stages), i.e., adding one page after another

> Stage d starts with s = 29 pages and ends when the number reaches s = 2¢*! (i.e., stage d + 1 begins)

> During the stage, a split pointer p € {0,...,2¢ — 1} identifies the next page to be split

» At the beginning of stage d, the pointer points to page O

» After every split operation, the pointer is incremented by 1, or moved to the start when we enter a new stage

» Records from page p (and overflow pages) will be distributed between split pages p and p + s using h,, (k)

> [f a page overflows before its time to split, overflow page will be utilised

Stage
delimiter

> At each stage, we have two types of hash functions
> h (k) for pages not yet split, i.e., the least significant d bits of the hashed value /(k) are used

> h,, (k) for the already split pages

EXAMPLE 4: LITWIN

> Insert records with keys 20, 11 and 8 into an empty primary file

> l.e., start the stage d = 0 with one page (capacity 3 records), (k) =k, p =0
» Pre-defined condition: Splitting occurs after 2 inserts
» The records with key 20 and 11 are inserted into the O-th page disregarding the value of the key

» d = 0 bits of the keys are used at this point

» The records from O-th page are redistributed using the least significant bit of the hashed key

> We have inserted 2 keys, therefore splitting occurs (a new page is created) *

> Because p = 2! is reached, the stage changestod =1, p =0

> Now, we use d = 1 bit for not yet split pages and d + 1 bits for split pages

» The record with key 8 is inserted into the page 0 using the least significant bit

EXAMPLE 5: LITWIN

> Insert records with keys 3, 24 and 32 into the structure from example 4

> A record with key 3 will now be inserted into page 1

> h(310) — 112

» We have already inserted 2 records in the stage d = 1, therefore page p = 0 is split into pages p, = 00,
p; =10

» Next, we will insert a pair of records with keys 24 and 32

» Because /;(11000,) = 0 and O < p, it is necessary to address the keys using 2 least significant
bits, i.e., 1;(100000,) = 0, and the key belongs in the page 00

» The key 32 belongs to the same page, but that is already filled and thus overflows
> Finally, the page 1 is split

21+1

» Since the number of pages reaches s = = 4, the second stage is initiated, i.e., d =2, p =0

00 01 10 11

EXERCISE 2

» Insert records with keys 27, 19, 10, and 5 into the
following structure

> l.e., start the stage d = 2 with s = 4 pages (capacity 3
records), (k) =k, p =0

» Pre-defined condition: Splitting occurs after 2 inserts

» Note all the computations and illustrate the solution

11

LHPE-RL

» Simplified version of LHPE
> At the stage d, the primary file consists of p, pages

» Each page has capacity b

Split

> Pages are grouped into s, = p, + g groups pointer

» When a predefined condition is met (e.g., after L insertions), a new page is
inserted at the end of the primary file and records in pages in the group

» Each group has g pages

pointed to by the split pointer are redistributed between these pages and the
new page (being the new member of the group)

> W

hen the |

ast page is redistributed, the file is (virtually) reorganized (stage

d -

-1) sot

nat all the pages are again sorted into s, | = p,;.1 ~ & pages

> Par1 = |85 (@ +1)+g]*g

Sd:2
groups

12

EXAMPLE 6: LHPE-RL

» Insert records with keys 17, 9, 43, 21, 49, 35, 70, 52, 40, 13, 5, 80 into the following empty
structure

» Staged =0

» The initial number of groups s; = 2

» Page capacity b = 3

» Hash functions

> ho(k) =k mod 4

» Determines into which of 4 initial pages a record is inserted at the beginning

> (k) =k mod 3

» Determines where the records are inserted when a group splits for the first time
> (k) = (k+3) mod 3
» Determines where the records are inserted when a group splits for the second time

» We are going to split regularly after two inserts, i.e., L = 2

» We have n = s X g = 4 pages, thus the first split happens after insertion of n X L. = 8 records

13

EXAMPLE 6: LHPE-RL

> Inserts of the first 8 keys, i.e., 17, 9, 43, 21, 49, 35, 70, 52, are not interesting since A
they are inserted where the A, function says

> hy(17) =17 mod 4 =1

> hy(9) =9 mod 4 =1

> hy(43) =43 mod 4 = 3 %
> hy(21) =21 mod 4 =1
> hy(49) =49 mod 4 =1

> hp(35) =35 mod 4 =3

> hy(70) =70 mod 4 =2

> hy(52) =52 mod 4 =0 Overflown
area

» The only problem is with key 49 which is assigned to a (already full) page 1

14

EXAMPLE 6: LHPE-RL

» We have inserted 8 keys so we have to split the group pointed by the split

pointer, i.e., the group A having pages 0, and 2

» Page 4 is added into the group A

» Function h,(k) is applied in order to redistribute keys in the group A

> h,(k) returns the index of a page in a group A, i.e., h (k) = 0 for
the page O, /;(k) = 1 for the page 2, h (k) = 2 for the page 4

> 1;(52) =52 mod 3 = 1, therefore key 52 goes into the page 2 ’

> h,(70) =70 mod 3 = 1, therefore the key 70 goes into the page 2

» Split pointer is incremented

> The key in the overflow area, i.e., 49, does not belong neither to page O
nor to page 2, and thus stays where it is

15

EXAMPLE 6: LHPE-RL

» Next, we insert record with key 40 A

> hp(40) =40 mod 4 =0

» Based on the function /A, the record with key 40 should be assigned to the page 0
but this page has already been split

» Therefore we need to use i; which sends it into the second page in the group A
(page 2) o,

A

» Next, we insert record with key 13

> hy(13) =13 mod 4 =1

> Based on the function /4, the record with key 13 belongs to the page 1, which has
not been split yet

> No need to use h;

» The page 1 is full, therefore the overflow area is used

16

EXAMPLE 6: LHPE-RL

» Once again, we have to split the group (we have already inserted L = 2 A
records)

» Split pointer points to the group B, i.e., pages 1 and 3 will be split

» Page 5 is added

» Function h,(k) will be applied in order to redistribute keys in the group B

» hy(17) =17 mod 3 = 2, therefore goes to the page 5 e

> 1;(9) =9 mod 3 =0, therefore goes to the page 1

» h;(21) =21 mod 3 = 0, therefore goes to the page 1

» h,(43) =43 mod 3 = 1, therefore goes to the page 3
> h;(35) =35 mod 3 = 2, therefore goes to the page 5
> 1,(49) =49 mod 3 = 1, therefore goes to the page 3
» hy(13) = 13 mod 3 = 1, therefore goes to the page 3

17

EXAMPLE 6: LHPE-RL

» Having all the groups processed (by split operation), the

end of the stage d = 0 occurs

» We will reorganize the file into 3 groups, each having
tWO pages

» The reorganization is only virtual

» The page numbers are kept, we just think of the pages
differently

18

EXAMPLE 6: LHPE-RL

» Now, we insert record with key 5

> hp(5) =5 mod 4 =1

» Based on the function A, this record belongs to the page 1, but this has been split

once

» Therefore we have to use A,

> h;(5) =5 mod 3 =2 (note that redistribution is only virtual)

» The record comes into page 5

» Next, we insert record with key 80

> hp(80) =80 mod 4 =0

» Based on the function A, this record belongs to the page O, but this has been split
once

» Therefore we have to use A,

> 1,(80) = 80 mod 3 = 2 (note that redistribution is only virtual)

19

EXAMPLE 6: LHPE-RL

» Having inserted additional L = 2 records, we must split once again

> The split pointer points to the group A, i.e., pages 0 and 3

» Page 6 is added into the group A

» Function h,(k) is applied in order to redistribute keys in the group A

> h,(k) returns the index of a page in a group A, i.e., h,(k) = O for
the page 0, h,(k) = 1 for the page 3, h,(k) = 2 for the page 6

> h,(43) = (43 +3) mod 3 =2 -> page 6
> 1,(49) =(49+3) mod 3 =1 -> page 3
> 1,(13) =(13+3) mod 3 =1->page3

> Finally, split pointer is incremented

20

EXERCISE 3

> Insert records with keys 37 into the structure from example 6 (see
the picture)

» Stage d = 1

> Page capacity b = 3

» Predefined condition L = 2

» Hash functions:
> hy(k) =k mod 4
> hy(k) =k mod 3
» h,(k) = (k<+3) mod 3

» Note all the computations and illustrate the solution

21

