
DYNAMIC HASHING
NDBI007: Practical Class 4

DYNAMIC HASHING
➤ Static forms of hashing lose its good performance as the table utilisation comes to

its maximum

➤ On the other hand, dynamic hashing algorithms allow to increase the size of the
table with increasing number of stored records

➤ Fagin

➤ Litwin

➤ LHPE-RL

2

FAGIN
➤ Directory

➤ List of entries in the main memory that points to the pages in the primary file

➤ Global depth - Number of least significant bits of the hash needed to address an entry in the directory

➤ Primary file

➤ Distributed collection of pages stored in the secondary memory, i.e., continuous space is not required

➤ Each page has a constant size

➤ Each page remembers local depth - Number of least significant bits of the hash common to all records

➤ tells how many directory entries points to the particular page in the primary file

➤ Overflowing causes a change in the structure of the directory and primary file

➤ - the particular page can be split, i.e., the page is split and incremented

➤ - the directory must be expanded, i.e., the directory is doubled and incremented

➤ Inserting/Searching for a record with key

➤ Compute

➤ Convert into directory entry by leaving the least significant bits

➤ The pointer in the corresponding entry points to the page where the record should be inserted/searched

dG h(k)

n

dL h(k)

2dG−dL

dL < dG dL

dL = dG dG

k

k′￼= h(k)

k′￼ k′￼′￼ dG

3

n = 3

0

1

1

0

dL

dG

EXAMPLE 1: FAGIN
➤ Insert records with keys 20, 11 and 8

➤

➤ Using the least significant bit of key 20, i.e., 0, the corresponding
record is inserted into the page using entry 0

➤

➤ Record with key 11 is stored to the same page using entry 1

➤

➤ Record with key 8 is inserted into the same page using entry 0

h(2010) = 101002

h(1110) = 10112

h(810) = 10002

4

0

1

1

0 8 11 20

EXAMPLE 2: FAGIN - SPLITTING A PAGE
➤ Insert record with key 27 into the structure from example 1

➤

➤ Page is overflown

➤ The local value of the page is less than the global value of the
directory

➤ Therefore we can split the page into two new pages and increment
values of both the pages

➤ Finally, we reinsert the records previously allocated into the page being split

➤ After the reinsert, the even keys are stored in the page referenced from
the zero-th directory entry while the odd records are referenced from the
first entry

h(2710) = 110112

dL dG

dL

5

0

1

1

1

1

0

1

1

1 11 27

1 8 20

EXAMPLE 3: FAGIN - EXPANDING THE DIRECTORY
➤ Insert records with keys 19 and 5 into the structure from example 2

➤

➤ After inserting record with key 19, a page is filled

➤

➤ The insert of the record having key 5 causes:

➤ Expanding the directory, i.e.,

➤ Splitting of the second page, i.e.,

➤ Reinserting of records with keys 5, 11, 19 and 27

➤

➤

➤

h(1910) = 100112

h(510) = 1012

dL = dG

dL = 2

h(1110) = 10112

h(1910) = 100112

h(2710) = 110112

6

0

1

1

1 11 19 27

1 8 20

00

01

2

2 5

1 8 20

2 11 19 27

10

11

EXERCISE 1
➤ Insert records with keys 24 and 32

➤ Note all the computations and illustrate the solution

7

00

01

2

2 5

1 8 20

2 11 19 27

10

11

LITWIN
➤ Directory-less scheme that avoids exponentially increasing size of the directory, but we need a continuous space

in the secondary memory

➤ Addition of a single page after pre-defined condition

➤ The primary file is linearly expanded with time (stages), i.e., adding one page after another

➤ Stage starts with pages and ends when the number reaches (i.e., stage begins)

➤ During the stage, a split pointer identifies the next page to be split

➤ At the beginning of stage , the pointer points to page 0

➤ After every split operation, the pointer is incremented by 1, or moved to the start when we enter a new stage

➤ Records from page (and overflow pages) will be distributed between split pages and using

➤ If a page overflows before its time to split, overflow page will be utilised

➤ At each stage, we have two types of hash functions

➤ for pages not yet split, i.e., the least significant bits of the hashed value are used

➤ for the already split pages

d s = 2d s = 2d+1 d + 1

p ∈ {0,…,2d − 1}

d

p p p + s hd+1(k)

hd(k) d h(k)

hd+1(k)

8

11

3

1

20

8

24

00 10

Pointer
Split
page

Stage
delimiter

New
page

EXAMPLE 4: LITWIN
➤ Insert records with keys 20, 11 and 8 into an empty primary file

➤ I.e., start the stage with one page (capacity 3 records), ,

➤ Pre-defined condition: Splitting occurs after 2 inserts

➤ The records with key 20 and 11 are inserted into the 0-th page disregarding the value of the key

➤ bits of the keys are used at this point

➤ We have inserted 2 keys, therefore splitting occurs (a new page is created)

➤ The records from 0-th page are redistributed using the least significant bit of the hashed key

➤

➤

➤ Because is reached, the stage changes to ,

➤ Now, we use bit for not yet split pages and bits for split pages

➤ The record with key 8 is inserted into the page 0 using the least significant bit

➤

d = 0 h(k) = k p = 0

d = 0

h(2010) = 101002

h(1110) = 10112

p = 21 d = 1 p = 0

d = 1 d + 1

h(810) = 10002

9

20

11

11

1

20

0

11

1

20

8

0

EXAMPLE 5: LITWIN
➤ Insert records with keys 3, 24 and 32 into the structure from example 4

➤ A record with key 3 will now be inserted into page 1

➤

➤ We have already inserted 2 records in the stage , therefore page is split into pages ,

➤ Next, we will insert a pair of records with keys 24 and 32

➤

➤ Because and , it is necessary to address the keys using 2 least significant
bits, i.e., , and the key belongs in the page 00

➤

➤ The key 32 belongs to the same page, but that is already filled and thus overflows

➤ Finally, the page 1 is split

➤ Since the number of pages reaches , the second stage is initiated, i.e., ,

h(310) = 112

d = 1 p = 0 p0 = 00
p1 = 10

h(2410) = 110002

h1(110002) = 0 0 < p
h1(1000002) = 0

h(3210) = 1000002

s = 21+1 = 4 d = 2 p = 0

10

11

3

1

20

8

00 10

11

3

1

20

8

24

00 10

11

3

1

20

8

24

00 10

32

01

20

8

24

00 10

11

3

11

32

EXERCISE 2
➤ Insert records with keys 27, 19, 10, and 5 into the

following structure

➤ I.e., start the stage with pages (capacity 3
records), ,

➤ Pre-defined condition: Splitting occurs after 2 inserts

➤ Note all the computations and illustrate the solution

d = 2 s = 4
h(k) = k p = 0

11

01

20

8

24

00 10

11

3

11

32

LHPE-RL
➤ Simplified version of LHPE

➤ At the stage , the primary file consists of pages

➤ Each page has capacity

➤ Pages are grouped into groups

➤ Each group has pages

➤ When a predefined condition is met (e.g., after insertions), a new page is
inserted at the end of the primary file and records in pages in the group
pointed to by the split pointer are redistributed between these pages and the
new page (being the new member of the group)

➤ When the last page is redistributed, the file is (virtually) reorganized (stage
) so that all the pages are again sorted into pages

➤

d pd

b

sd = pd ÷ g

g

L

d + 1 sd+1 = pd+1 ÷ g

pd+1 = ⌈sd * (g + 1) ÷ g⌉ * g

12

0 52 2 70A

1 17

9

21

3 43

35

B

pages
g = 2

groups
sd = 2

Group

Split
pointer

EXAMPLE 6: LHPE-RL
➤ Insert records with keys 17, 9, 43, 21, 49, 35, 70, 52, 40, 13, 5, 80 into the following empty

structure

➤ Stage

➤ The initial number of groups

➤ Page capacity

➤ Hash functions

➤

➤ Determines into which of 4 initial pages a record is inserted at the beginning

➤

➤ Determines where the records are inserted when a group splits for the first time

➤

➤ Determines where the records are inserted when a group splits for the second time

➤ We are going to split regularly after two inserts, i.e.,

➤ We have pages, thus the first split happens after insertion of records

d = 0

s0 = 2

b = 3

h0(k) = k mod 4

h1(k) = k mod 3

h2(k) = (k ÷ 3) mod 3

L = 2

n = s × g = 4 n × L = 8

13

0 2A

1 3B

EXAMPLE 6: LHPE-RL
➤ Inserts of the first 8 keys, i.e., 17, 9, 43, 21, 49, 35, 70, 52, are not interesting since

they are inserted where the function says

➤

➤

➤

➤

➤

➤

➤

➤

➤ The only problem is with key 49 which is assigned to a (already full) page 1

h0

h0(17) = 17 mod 4 = 1

h0(9) = 9 mod 4 = 1

h0(43) = 43 mod 4 = 3

h0(21) = 21 mod 4 = 1

h0(49) = 49 mod 4 = 1

h0(35) = 35 mod 4 = 3

h0(70) = 70 mod 4 = 2

h0(52) = 52 mod 4 = 0

14

0 52 2 70A

1 17

9

21

3 43

35

B

49

Overflown
area

EXAMPLE 6: LHPE-RL
➤ We have inserted 8 keys so we have to split the group pointed by the split

pointer, i.e., the group A having pages 0, and 2

➤ Page 4 is added into the group A

➤ Function is applied in order to redistribute keys in the group A

➤ returns the index of a page in a group A, i.e., for
the page 0, for the page 2, for the page 4

➤ , therefore key 52 goes into the page 2

➤ , therefore the key 70 goes into the page 2

➤ Split pointer is incremented

➤ The key in the overflow area, i.e., 49, does not belong neither to page 0
nor to page 2, and thus stays where it is

h1(k)

h1(k) h1(k) = 0
h1(k) = 1 h1(k) = 2

h1(52) = 52 mod 3 = 1

h1(70) = 70 mod 3 = 1

15

0 2 52

70

A

1 17

9

21

3 43

35

B

49

4

EXAMPLE 6: LHPE-RL
➤ Next, we insert record with key 40

➤

➤ Based on the function , the record with key 40 should be assigned to the page 0
but this page has already been split

➤ Therefore we need to use which sends it into the second page in the group A
(page 2)

➤

➤ Next, we insert record with key 13

➤

➤ Based on the function , the record with key 13 belongs to the page 1, which has
not been split yet

➤ No need to use

➤ The page 1 is full, therefore the overflow area is used

h0(40) = 40 mod 4 = 0

h0

h1

h1(40) = 40 mod 3 = 1

h0(13) = 13 mod 4 = 1

h0

h1

16

0 2 52

70

40

A

1 17

9

21

3 43

35

B

13

4

49

EXAMPLE 6: LHPE-RL
➤ Once again, we have to split the group (we have already inserted

records)

➤ Split pointer points to the group B, i.e., pages 1 and 3 will be split

➤ Page 5 is added

➤ Function will be applied in order to redistribute keys in the group B

➤ , therefore goes to the page 5

➤ , therefore goes to the page 1

➤ , therefore goes to the page 1

➤ , therefore goes to the page 3

➤ , therefore goes to the page 5

➤ , therefore goes to the page 3

➤ , therefore goes to the page 3

L = 2

h1(k)

h1(17) = 17 mod 3 = 2

h1(9) = 9 mod 3 = 0

h1(21) = 21 mod 3 = 0

h1(43) = 43 mod 3 = 1

h1(35) = 35 mod 3 = 2

h1(49) = 49 mod 3 = 1

h1(13) = 13 mod 3 = 1

17

0 2 52

70

40

A

1 9

21

3 13

43

49

B

4

5 17

35

EXAMPLE 6: LHPE-RL
➤ Having all the groups processed (by split operation), the

end of the stage occurs

➤ We will reorganize the file into 3 groups, each having
two pages

➤ The reorganization is only virtual

➤ The page numbers are kept, we just think of the pages
differently

d = 0

18

0 3 13

43

49

A

1 9

21

4B

2 52

70

40

5 17

35

C

EXAMPLE 6: LHPE-RL
➤ Now, we insert record with key 5

➤

➤ Based on the function , this record belongs to the page 1, but this has been split
once

➤ Therefore we have to use

➤ (note that redistribution is only virtual)

➤ The record comes into page 5

➤ Next, we insert record with key 80

➤

➤ Based on the function , this record belongs to the page 0, but this has been split
once

➤ Therefore we have to use

➤ (note that redistribution is only virtual)

h0(5) = 5 mod 4 = 1

h0

h1

h1(5) = 5 mod 3 = 2

h0(80) = 80 mod 4 = 0

h0

h1

h1(80) = 80 mod 3 = 2

19

0 3 13

43

49

A

1 9

21

4 80B

2 52

70

40

5 17

35

5

C

EXAMPLE 6: LHPE-RL
➤ Having inserted additional records, we must split once again

➤ The split pointer points to the group A, i.e., pages 0 and 3

➤ Page 6 is added into the group A

➤ Function is applied in order to redistribute keys in the group A

➤ returns the index of a page in a group A, i.e., for
the page 0, for the page 3, for the page 6

➤ -> page 6

➤ -> page 3

➤ -> page 3

➤ Finally, split pointer is incremented

L = 2

h2(k)

h2(k) h2(k) = 0
h2(k) = 1 h2(k) = 2

h2(43) = (43 ÷ 3) mod 3 = 2

h2(49) = (49 ÷ 3) mod 3 = 1

h2(13) = (13 ÷ 3) mod 3 = 1

20

0 3 13

49

A

1 9

21

4 80B

2 52

70

40

5 17

35

5

C

6 43

EXERCISE 3
➤ Insert records with keys 37 into the structure from example 6 (see

the picture)

➤ Stage

➤ Page capacity

➤ Predefined condition

➤ Hash functions:

➤

➤

➤

➤ Note all the computations and illustrate the solution

d = 1

b = 3

L = 2

h0(k) = k mod 4

h1(k) = k mod 3

h2(k) = (k ÷ 3) mod 3

21

0 3 13

49

A

1 9

21

4 80B

2 52

70

40

5 17

35

5

C

6 43

