- . t»ﬂ..vﬂn.. - S -)
. v “: wi ..v.”h.
Gy 8 Bl R e
- e) - . | S8 e Lo 4 " B
iy 509 SPR e £ Vil st
e >l -) h\ 3 . ' ¥ L 4 o t
2 oy * 0 e - : vl | . .
v ey P4 bt e
e - . . Vo. . + [le” R R
* b ol A S S £t A ;gf.\b
04\’.. “ B e <F - 4 = ® | \... ‘}L.
- - M ¥ T .. ot 4 & U 4l

}
g
)

., .

[Class 3

| J

ica

- e Y -

'y
.n.. h LN 4

Pract

®
®

NDBIOO07

SIATIC HASHING

e
.

n‘

.ﬁs,;.'(“
-

&

©

:

i

.Jl.n.“r :
' s o
L 14

@) : MLV.M.L..(..lA L
_ . St . -l

ey

.t .

%

‘.W‘~‘ -

i] ' § K
R R 4t
; O Yoy AW L = Sy
J e A
fw :
y
& -' 7 .
N,
-
NG S
NS
.
-~
B
)) il
o
> —~
/’
% 5 3
. - 4
» & > i SN
” A A3
o -
> . N . =<
A ~ o . ~
- | = -
Ly N R
. A o
»
A b &
BT
.
A 5
1y
o
L4 -.
»
)

HASHING

» Hashing is an eftective method for key-value association
» In optimal situation, we need only one memory access to retrieve the values for a given key
» Nevertheless, mapping a larger domain of keys into much smaller storage leads to collisions

> [.e., data from two different keys should be stored on the same address

» (Collision can be solved in a number of different ways:

» Separate chaining
» Open addressing
» Perfect hashing, 1.e., avoiding collisions completely

» Choosing hashing function (process) that does not create collision on a given key set

PERFECT HASHING

» Examples:
» Cormack

» Larson & Kalja

» Both methods are also members of the static hashing family

> [.e., they are not designed to be used for rapidly growing number of data

CORMACK

» Perfect static hashing method based on Divide and Conquer
» Divide set of all records to be hashed into smaller subsets

» Find a perfect hashing function for each small subset of records independently on each other

» Primary hash function h(k, s) hashes given key k into a directory of size s
» E.g. h(k,s) =k mod s

» Secondary hashing function h/k, r) address collisions of the primary hashing function
» [- index of used hashed function

» r - number of referenced records in the hash table

» E.g., h(k,r) =(k>>1) mod r= (k= 2 mod r

CORMACK

» For each directory, we have to remember its parameters:
> s - size of they directory, i.e., how many records can be stored there
» [- index of locally pertect hashing function to be used
> 1 - number of collisions in the primary file

> p - pointer to start of the primary file

» The directory has a fixed size and its change is generally not possible
» Unless all the stored records are reinserted

> In general, when a new item (key, value) is inserted, its class storage is moved to the end of file,
expanded, new /,(k, r) is found and all the values in the storage are reinserted

» Once the class storage is ready, the record in directory is updated

EXAMPLE 1: CORMACK

» Insert records 14, 17 and 10 into directory of size s =7/

""" 0 14
» Primary hashing function is given as i(k,s) =k mods .. o O 1 0 1 ''''''''''''''''''''''''
___________________ |
» Secondary hashing function is hi(k,r) = (k > > 1) mod r N — 2
___________________ 3 D
2 — c S
» Inserting record 14 5 ''' SR
"" O
> h(14,7) = 14 mod 7 = 0 6 .
» Position O in the directory is empty
» Therefore weseti=0,r=1,p=0 key value
_______ position 1t p._ O 14
> Inserting record 17 o 01 0 117 --------
> 1(17,7) =17 mod 7 = 3 ; 2
> Position 3 in the directory is empty 3. ..0.1.1 f; -----------------------------------
> We append a new class storage at the end of primary file ;1 5
> We remember parameters i =0, r = 1, p=1 6 --- 2 -----------------------------------

EXAMPLE 1: CORMACK

» Inserting record 10
» h(10,7) =10 mod 7 =3

» Position 3 already contains record (i.e., 17) for existing class
storage

> As the class storage is located at the end of the primary file, we
can easily expand it

» Given class storage has now two elements, i.e., r = 2, and

starts on position p = 1

> Finally, we need to find i, i.e., Ak, r) for which there will beno position i r p k(e)y ----------- Valze
collision o 0 1 0 10 """"

1 S —

> hp(10,2) = (10 > > 20) mod 2 =10 mod 2 =0 2 ''' 2 17
"" 3

> hy(17,2) = (17 > > 20) mod 2 =17 mod 2 =1 i ----------------------- e 4
> The records in class storage are stored in order given by B g ------------------------------------
secondary hashing function 6 7 """""""""""""""""""

EXAMPLE 2: CORMACK EXPANDING

» Expand directory by adding record 21

» h(21,7) =21 mod 7 =20
» Respective class storage is not located at the end of the file

» We have to move it, i.e., we set position p = 3 and r = 2

» Again, we need to find suitable i

> hy(14,2) = (14> >2% mod 2 =14 mod 2 =0

> hy21,2) =21 >>2" mod2=21 mod2=1 position i _r p.

___________________ 00..2 3.

___________________ S

» Position O is marked as unused space and will be never used again 2

as the class storage always moves on the end of the primary file i ----------------------- o2 L

> Optimization for space reusability could be employed, but that is 5
out of scope of this lecture 6

EXERCISE 1

» Expand directory from example 2

» Insert record 28
» Primary hashing function is given as h(k,s) = k mod s
» Secondary hashing function is i.(k,r) = (k> > 1) mod r

» Compute all the parameters and illustrate the directory and primary file

EXERCISE 2

» Expand directory from exercise 1

» Insert record 42
» Primary hashing function is given as h(k,s) = k mod s
» Secondary hashing function is i.(k,r) = (k> > 1) mod r

» Compute all the parameters and illustrate the directory and primary file

» Advice: If you get a collision for every i, increment parameter r by 1 and try
computation again

10

LARSON & KALJA

» The disadvantage of Cormack is the necessity of storing the directory

> Larson & Kalja hashing uses only a few bites instead of a directory record Page number

> Splits data into pages, where each page has a separator

> Record ﬁtS intO Certain page Only 1t ltS Smaller than the Separator Separator '''

> l.e., the separator is greater than all the keys in respective page

» Pages have limited capacity, therefore overflow may occur

> In the overflow occurs, the page separator is updated (i.e., its value is
lowered)

» All the records which do not fit into the page any more due to the
updated separator are re-inserted

11

EXAMPLE 3: LARSON & KALJA

» Insert records 10, 20, 30, 32, 37, 42, 51, 61
» Use hash function h(k) = (k+i) mod 5

> To get the number of page in which the data should be inserted (i.e., we have 5 pages)

» Employ function s,(k) = (k > > i) mod 7 to get the signatures

» [stands for the number of previously unsuccessful inserts

> Initial separator values are set to 111, as the maximum inserted record is s;(k) = 110, =6 1 S1 61

hy(10) =10 mod 5 =
hy(20) =20 mod
hy(30) =30 mod
hy(32) = 32 mod
hy(37) = 37 mod
hy(42) =42 mod
hy(51) =51 mod
hy(61) =61 mod

5o(10) =10>>0 mod 7=10 mod 7=3 ~ 011,
50(20) =20>>0 mod 7=20 mod 7=6 ~ 110,
5(30) =30>>0 mod 7=30 mod7=2~ 010,
59(32) =32>>0 mod 7=32 mod 7 =4~ 100,
50(37) =37>>0 mod7=37 mod7=2~010,
59(42) =42 > >0 mod 7=42 mod 7 =0 ~ 000,
5o(31) =51>>0 mod 7=51 mod 7=2~ 010,

|
DN DO O O

LU L L L L D W
|

5(61) =61 >>0 mod 7=61 mod 7=5~ 101,

EXAMPLE 4: LARSON & KALJA - SPLIT PAGE

» Insert record 40 and split a page
» hp(40) =40 mod 5=0 54(40)=40>>0 mod 7=40 mod 7=5~ 101,
> Page O is already full
» We sort all the records (including newly added record) according to the separator
> We select the item having the biggest signature
» In our particular case, the biggest signature belongs to 20

» We update page separator to 110 (signature of 20)

» Record 20 gets out of the page

» We insert record 40 into page O

> As the next step, we have to reinsert record 20

> hp(20) =20 mod 5=0 5y(20)=20>>0 mod7=20 mod7=6~ 110,

» Again, we should put record 20 into page 0, but we cannot as page separator is smaller or equal
to the signature

» We increase [and we try to reinsert record 20 once again

» 1(200=(20+1) mod5=1 520)=20>>1) mod7=3~011,

EXERCISE 3

» Apply Larson & Kalja method to insert record 41 into the structure from example 4

» Note all the computations and illustrate the result

» Tip: In some cases, we can split multiple pages on a single insert

14

EXERCISE 4

» Apply Larson & Kalja method to insert record 67 into the structure from exercise 3

» Note all the computations and illustrate the result

» Tip: If one page contains more records with the same signature and we need to
split this page, then we may reinsert more than just a single record

15

SUMMARY

» Larson & Kalja method does not have to store the item's signature as its
computation is often straightforward

» The whole directory consists of M e d, where M is number of pages and d is
separator size

» Thanks to the smaller size, the directory should fit into primary memory (RAM)

» In contrast to Cormack, we have to sequentially scan a page (class storage) to get
the value for given key

» Both methods require appropriate selection of the primary and secondary hashing
functions

16

